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Abstract: Androgens are key for pubertal development of the mammalian testis, a phenomenon that
is tightly linked to Sertoli cell maturation. In this review, we discuss how androgen signaling affects
Sertoli cell function and morphology by concomitantly inhibiting some processes and promoting others
that contribute jointly to the completion of spermatogenesis. We focus on the molecular mechanisms
that underlie anti-Müllerian hormone (AMH) inhibition by androgens at puberty, as well as on the
role androgens have on Sertoli cell tight junction formation and maintenance and, consequently, on its
effect on proper germ cell differentiation and meiotic onset during spermatogenesis.
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1. Introduction

At birth, the mammalian testis consists of a series of cords formed by immature Sertoli cells and
undifferentiated spermatogonia. At this stage, both cell types proliferate by mitosis. The seminiferous
cords are surrounded by peritubular myoid cells and the interstitial compartment, formed by Leydig
cells together with developing vasculature and lymph vessels. Similarly to other organs, the testis
undergoes a series of changes throughout its development. These morphological and physiological
changes are more notorious during the period spanning from birth until puberty, the prepubertal stage.
The length of this critical period varies greatly between species. While some groups, like humans and
other primates, have a prepubertal period that lasts years, other mammals such as rodents have a
much shorter one that lasts around 45 days, e.g., the mouse. Despite the variation in their duration,
the key changes that occur during this period are consistent across studied species.

Testicular maturation is intertwined with the maturation of the hypothalamic-pituitary-gonadal
(HPG) axis, characterized by the existence of positive and negative feedback loops that ensure proper
gonadal development and function. Several hormones are involved in testicular maturation, such as
follicle-stimulating hormone (FSH), luteinizing hormone (LH), estrogens and androgens.

Androgens participate in processes as dissimilar as the regulation of Sertoli cell maturation,
Sertoli-Sertoli and Sertoli-germ cell junction involved in blood-testis-barrier (BTB) formation and
maintenance, germ cell proliferation and differentiation [1–3] and spermiation [4]. Androgen action
occurs through the androgen receptor (AR), which can act through the classical/genomic or the
non-classical/non-genomic pathway [5]. Intuitively, maturation processes occurring in the testes are
believed to be the consequence of androgen-induced upregulation of target genes. However, work using
high-throughput techniques, like transcriptomic studies based on microarray analyses, clearly indicates
that the proportions of androgen up-regulated and down-regulated genes in the testes are similar [6].
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In this review, we will focus on the androgen-dependent changes that take place in the mammalian
testis around pubertal onset, using both human and mouse as models, with special interest in Sertoli
cell maturation and germ cell meiotic entry.

2. Sertoli Cell Maturation during Postnatal Development

Immature Sertoli cells are the main component of the prepubertal testis. They proliferate actively
during the early postnatal period in response to FSH [7–12] and other growth factors [13–15]. The total
number of Sertoli cells that is generated during this stage will have a direct effect on sperm production
in adult life, since each Sertoli cell is capable of supporting a certain, fixed number of developing
germ cells [7,16–19].

Immediately after birth, Sertoli cells are small and oval. Their size increases during the prepubertal
period due to expansion of their cytoplasmatic volume [20,21]. Concomitantly, Sertoli cells begin to form
hemidesmosome-like unions between their basal region and the basal lamina of the tubule [22]. These
intercellular unions will ensure the scaffolding of the seminiferous epithelium, which will then support
germ cell development throughout spermatogenesis. Therefore, the morphological changes that Sertoli
cells undergo as part of their maturation process reflect the changes that germ cells in direct contact with
them undergo as well. A key player in this mutual maturation process is the Sertoli cell cytoskeleton,
mainly formed by microtubules, actin filaments and vimentin intermediate filaments [23–27].

As for their physiology, prepubertal Sertoli cells produce high levels of anti-Müllerian hormone
(AMH), even in the absence of FSH, and begin to express the AR. In humans, the AR is expressed
in Sertoli cells at around 12 months after birth [28,29], whereas in the mouse, Sertoli cells begin to
express the AR between 4–5 days after birth [8,30]. Both the number of AR positive Sertoli cells and
the expression levels increase progressively until pubertal onset, when all Sertoli cells express the AR.
High expression levels of AMH are a trademark of immature Sertoli cells during the prenatal period
and prepuberty. By the time puberty begins, AMH levels start to decline as a direct consequence of
androgen action on Sertoli cells. We will expand on the evidence available on AMH inhibition in
response to androgens in upcoming sections of this review.

Many of the nurse-like and scaffolding roles fulfilled by Sertoli cells are a direct result of the
maturation process they undergo from birth to puberty in the mammalian testis. Amongst these
changes, the appearance and maintenance of the BTB is of critical importance, since it allows for the
creation of two distinct compartments within the seminiferous epithelium and also supports germ cell
migration from the basal lamina towards the lumen of the seminiferous tubules [31]. The formation of
the BTB is regulated by several hormones, such as FSH and androgens, cytokines and by the presence
of the germ cells themselves [32].

Hormonal Regulation of Sertoli Cell Maturation in the Postnatal Testis

After birth, Leydig cells in the interstitial compartment of the testis continue to produce
androgens in response to LH, while FSH induces an increase in Sertoli cell proliferation and AMH
production [8,10,33]. The high AMH production and the lack of Sertoli cell morphological changes,
typical of maturation occurring at this stage when testosterone production is high, reflect a transient,
physiological insensitivity to androgens of the Sertoli cell (Figure 1) [8,28]. Shortly after, e.g., by the 6th
month in the human male, the HPG axis enters a quiescent period, which results in a decay in FSH
and LH levels. This ‘turning-off’ of the HPG axis leads to the disappearance of functional Leydig cells
and, therefore, causes a dramatic drop in androgen production. Concomitantly, FSH decay results in
cessation of Sertoli cell proliferation. Nevertheless, immature Sertoli cells continue to produce high
levels of AMH, which resembles the gonadotrophin-free context production of this hormone occurring
in the fetal gonad [34]. AMH production is a characteristic of immature Sertoli cells, and serum AMH
is actually used in patients as a biomarker of prepubertal Sertoli cell function [35–44]. Interestingly,
the androgen-induced decline in AMH expression during pubertal maturation is partially reversed by
the depletion of intratesticular androgen concentration provoked by treatment with a gonadotrophin
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releasing hormone (GnRH) analogue in adult males with prostate cancer [45]. Additionally, low AMH
is also a biomarker of the impaired functional status of Sertoli cells in congenital disorders, like gonadal
dysgenesis [46], or acquired conditions, like in chemotherapy-induced testicular toxicity [47].
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the decline of AMH expression, and also in the onset of adult spermatogenesis. HE: hematoxylin-
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(pmol/l) and T (ng/dl) reflect schematic AMH and testosterone serum levels from birth to 20 years of 
age in the human male. Reproduced with permission from Rey et al. 2009 [29]. Copyright 2009, Wiley-
Liss, Inc. 

As previously mentioned, prepubertal immature Sertoli cells begin to express the AR at 12 
months-old in humans [28] and around 4–5 days after birth in the mouse [8,30]. The increase in AR 
expression happens in a testosterone-free environment, thus not inducing Sertoli cell maturation. If 
due to abnormal conditions, testosterone production is maintained during the expectedly “quiescent” 
period, AMH expression is inhibited, reflecting precocious Sertoli cell maturation [48,49].  

Figure 1. Androgen levels, androgen receptor (AR) expression and AMH in the human testis from
fetal life to puberty. A–C: During infancy, testosterone levels are high, but they do not induce Sertoli
cell maturation because the latter do not express the AR: AMH is high, and germ cells do not enter
meiosis. D–F: During the “quiescent” period of the hypothalamic-pituitary-gonadal axis occurring in
childhood, most Sertoli cells express the AR (immunohistochemistry), but there are no mature Leydig
cells in the interstitial compartment and testosterone is low; therefore, Sertoli cells remain immature.
G–I: In puberty and adulthood, the increase in testosterone provokes Sertoli maturation, reflected in
the decline of AMH expression, and also in the onset of adult spermatogenesis. HE: hematoxylin-eosin
stain; % AR+: percentage of Sertoli cells with positive immunostaining for the AR. AMH (pmol/l) and
T (ng/dl) reflect schematic AMH and testosterone serum levels from birth to 20 years of age in the
human male. Reproduced with permission from Rey et al. 2009 [29]. Copyright 2009, Wiley-Liss, Inc.

As previously mentioned, prepubertal immature Sertoli cells begin to express the AR at 12
months-old in humans [28] and around 4–5 days after birth in the mouse [8,30]. The increase in AR
expression happens in a testosterone-free environment, thus not inducing Sertoli cell maturation.
If due to abnormal conditions, testosterone production is maintained during the expectedly “quiescent”
period, AMH expression is inhibited, reflecting precocious Sertoli cell maturation [48,49].

The importance of the AR signaling pathway in the male reproductive system has been studied in
depth. The promoter for the AR gene lacks a typical TATA box and, in agreement with many TATA-less
genes, transcription is driven primarily by binding of the zinc finger transcription factor Specificity
Protein 1 (Sp1) to GC box regulatory elements [50]. In human prostate cancer LNCaP cells, inhibition
of Sp1 activity results in a strong decrease in the AR protein level [51], showcasing Sp1 relevance in the
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regulation of AR transcription. However, the factors that trigger AR expression, particularly in the
Sertoli cell, remain yet to be determined.

Reactivation of the HPG axis at puberty results in the reappearance of Leydig cells [52–54], which
are now active and start producing androgens in increasing amounts. This strong intratesticular
androgen production is maintained throughout puberty and adulthood. At the onset of puberty,
Sertoli cells already show a strong expression of the AR and are, therefore, sensitive to androgen
action (Figure 1), which brings about a decline in AMH production as a result of a direct action on
Sertoli cells [30,40,55–59]. As a consequence of the Sertoli cell maturation process BTB formation
commences [23–27]. Concomitantly, germ cells enter meiosis and sperm production ensues.

3. AR Signaling in Sertoli Cells

The AR is a member of the ligand-activated nuclear receptor superfamily, which includes receptors
for estrogens, progestins, glucocorticoids, mineralocorticoids, vitamin D, thyroid hormones and retinoic
acid. The AR is encoded by a single copy gene in the X chromosome that is composed by 8 exons [60,61].
The exon-intron boundaries for this gene are conserved in other steroid receptors, suggesting a common
ancestor. The classical nuclear/cytoplasmic AR is a modular protein that consists of three functional
domains: an N-terminal domain (NTD), a DNA-binding domain (DBD) and a ligand-binding domain
(LBD) [62,63]. Androgens act through two different mechanisms: the classical/genomic pathway and
the non-classical/non-genomic pathway (Figure 2).
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Figure 2. Pathways of androgen action in the Sertoli cell. The classical and non-classical pathways of
androgen action co-exist in the Sertoli cell. In the cytoplasm the androgen receptor (AR) is bound to
heat-shock proteins (HSP). When androgens bind to the AR it causes a conformational change that
releases the AR as monomers. In the Sertoli cell, ligand-bound AR monomers can either migrate to the
inner side of the cell membrane and interact with Src, thus activating the non-classical/non-genomic
pathway of androgen action; or they can translocate to the nucleus and form homodimers that can
interact with androgen response elements (ARE) or with other transcription factors (TF), thus activating
the classical/genomic pathway of androgen action. Src: Steroid receptor coactivator, EGFR: Epidermal
growth factor receptor, MEK: Mitogen-activated protein kinase, ERK: Extracellular signal-regulated
kinase, CREB: cAMP response element binding protein. Based on refs. [5,64–67].
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3.1. Classical Pathway of Androgen Action

The classical (or genomic) pathway of androgen action involves the nuclear/cytoplasmic AR
(Figure 2). Monomers of this receptor are bound to cytoplasmic heat-shock proteins. Binding between
androgens and the AR induce conformational changes that result in the release of these monomers
from the heat-shock proteins, an increase in receptor phosphorylation, and homodimer formation
and interaction with DNA [62,63,68]. The ligand-bound AR dimer can then interact with specific
DNA sequences present within the regulatory regions of its target genes, known as androgen response
elements (AREs). AREs are usually formed by two palindromic regions 5′-AGAACA-3′ joined by a
3-non-defined-base spacer, with the human consensus ARE being 5′-AGAACAnnnTGTTCT-3′ [69,70].
There are both consensus and non-consensus ARE sequences that have been described for known
androgen-regulated genes such as Rhox5 [71], Cyp17 [72], Eppin [73] and Tubb3 [74]. This is a relatively
slow mechanism, requiring 30 to 45 min for transcriptional regulation after androgen stimulation, and
additional time is required for the response to be reflected at the protein level [75].

Although recent microarray studies have identified similar numbers of up-regulated and
down-regulated genes in Sertoli cells during the process of postnatal maturation [76], and especially
in response to androgens in Sertoli cells [6,77,78], most of the androgen-regulated genes thoroughly
studied so far are positively regulated by androgens. Amongst those, Rhox5 (reproductive homeobox-5),
formerly known as Pem, is perhaps one of the best characterized androgen-responsive genes [79].
Rhox5 is expressed in prepubertal and pubertal Sertoli cells and its regulation has been studied in detail.
This gene has two regulatory regions; a distal region that is independent of androgen action and a
region within intron 2 that is androgen-dependent and responsible for its expression in both testis and
epididymis [80,81]. Within the intronic regulatory region, there are two AREs that act synergistically
and respond in an androgen-specific manner [71].

The ligand-bound AR can also act indirectly by interacting with other trans-activating factors that
are bound to the regulatory regions of their target genes, as is the case for the LH subunits α [82] and
β [83] genes. This means that AR action is not determined by the presence of ARE sequences. Regardless
of the type of interaction between the AR and its target genes, the outcome can be either positive or
negative, meaning that androgens can both stimulate or inhibit the expression of their target genes.

3.2. Non-Classical Pathways of Androgen Action

The non-genomic (or non-classical) pathway translates signals into changes in cellular function
very rapidly, within second to minutes (Figure 2) [5,84–86]. In the Sertoli cell, testosterone stimulation
provokes the classic AR to localize near the plasma membrane, where it activates Src tyrosine kinase
resulting in phosphorylation of the epidermal growth factor receptor (EGFR). Consequently, the MAP
kinase cascade is triggered, including the kinases Raf, MEK and ERK followed by the activation of
the p90Rsk kinase, resulting in the phosphorylation of target protein, e.g., the transcription factor
cyclic-AMP response element binding-protein (CREB).

An alternative pathway, involving a membrane AR, has been described in different cell types [87,88].
Recently, a member of the ZIP zinc transporter family, ZIP9 has been reported as a membrane AR,
unrelated to the classic intracellular AR [89]. There is only one report to date in which the role for ZIP9
is shown in Sertoli cells [90].

3.3. Co-Repressors and Co-Activators of AR in Sertoli Cells

The AR can interact with a diverse range of proteins, including components of the general
transcription machinery, specific transcription factors and proteins that act as co-activators or
co-repressors, also known as co-regulators of AR function. The histone acetyltransferase binding to the
origin recognition complex, HBO1 (also known as MYST2 in rodents or KAT7 in humans) has been
shown to act as a co-repressor of the AR in prepubertal Sertoli cells [91]. HBO1 prevents the action of
steroid receptor coactivator 2 (SRC2, formerly known as TIF2), an AR co-activator that interacts with the
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activation function 1 (AF1) and 2 (AF2) domains of the AR [92]. SRC2 is also involved in cell adhesion
between Sertoli cells and germ cells in the adult mouse testis [93,94]. More recently, the orphan nuclear
receptor DAX1, encoded by Nr0b1, has also been described to act as a co-repressor of the AR in Sertoli
cells where it inhibits the expression of ubiquitin-conjugating enzyme E2B (UBE2B) [95].

4. Androgens and the Sertoli Cell

As already mentioned, androgen action on Sertoli cells is critical for proper testicular maturation
and normal spermatogenesis progression. When the AR is specifically absent from Sertoli cells or
it malfunctions, Sertoli cells remain immature, and spermatogenesis is blunted since meiosis does
not occur, resulting in infertility. Evidence for these phenotypic characteristics stems from both
human [46,68,96–98] and experimental mouse models [8,99–103].

Sertoli cell maturation in response to androgens involves both upregulation and inhibition of
different genes. We will discuss some examples known up to date that show the stimulatory effect
of androgens on several BTB tight junction components in Sertoli cells and on meiotic onset in the
pubertal testis. We will also expand on the inhibitory effect of androgens on the expression of a key
immaturity Sertoli cell marker, AMH.

4.1. Stimulatory Effects of Androgens on BTB-Related Gene Expression in Sertoli Cells and its Role on Meiotic
Onset in the Testis

The BTB appears at a time when serum gonadotrophins, FSH and LH, are elevated as a result of
pubertal reactivation of the HPG axis [104,105]. While FSH acts directly on the Sertoli cells through its
own receptor, LH induces androgen production by the Leydig cells. Androgens act then on Sertoli
cells to promote their maturational changes.

The BTB divides the seminiferous tubules into two compartments, basal and adluminal, thus
creating two distinct microenvironments. The BTB is both a tight [106] and dynamic structure that
keeps separate compartments within the seminiferous epithelium while allowing for germ cell transit
from basal to adluminal space during spermatogenesis [26,31,107]. The mature, fully-formed BTB
consists of tight junctions, a testis-specific type of adherent junction known as basal ectoplasmic
specializations [22,108], gap junctions and desmosomes [105,107,109–111] (Figure 3).
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Figure 3. The blood-testis barrier. The BTB is formed by intercellular unions between adjacent Sertoli
cells. In the presence of androgens, AR-expressing Sertoli cells can mature and express several genes
needed for BTB formation, such as Cldn3, Cldn11, Ocln and Tjp1. CLDN3, CLDN11, OCLN and TJP1,
together with other proteins and components of the cytoskeleton, such as actin bundles, constitute tight
junctions at the BTB. BTB: Blood-testis barrier, TJP1: Tight junction protein 1. Based on refs. [32,107].
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Tight junctions are formed by claudins, namely claudin-3 (CLDN3) and claudin-11 (CLDN11) in
the mouse [112–114]. Tight junctions interact with the cytoskeleton of Sertoli cells through scaffolding
proteins, like Tight junction protein 1 (TJP1, also known as zonula occludens 1 or ZO1) [115] (Figure 3).
Cldn3, Cldn11 and Tjp1 are all expressed throughout postnatal development in the mouse testis [116–118]
and their proteins localize to the BTB region from pubertal onset onwards [117,119,120]. In mice,
the expression of Cldn11 and Tjp1 increases progressively from birth, with a marked increase around
day 10—in coincidence with the upsurge of first meiotic division—and remains elevated throughout
adulthood [121].

In the gonadotrophin-deficient hypogonadal (hpg) mouse, spermatogenesis is arrested at the
prepubertal stage when meiosis has not begun yet, in association with a disorganization of the
tight junctions resulting in the lack of a properly formed BTB. This phenotype stems from the lack
of maturation of the Sertoli cells in the absence of androgen production due to a disrupted HPG
axis [99,122,123]. In the tubules of hpg mice there is no CLDN3 expression and CLDN11 is localized to
adluminal areas of Sertoli cells. When treated with FSH alone, hpg mice recovered normal CLDN11
distribution, but the tight junctions were still unable to function as a proper barrier. In contrast,
treatment with DHT induced a normal distribution of CLDN11 and an increase in the expression of
both Cldn3 and Cldn11 genes [124].

Evidence of androgen-dependency of the BTB for its appearance and maintenance also derives
from studies in mice lacking proper AR expression or function. While general defects in BTB formation
were initially described in Tfm mice [125], mouse models that either lack AR expression completely
(ARKO mice, [101]) or in Sertoli cells only (SCARKO mice, [102,118]) have provided evidence for many
genes potentially involved in BTB formation around pubertal onset and maintenance through puberty
and adulthood. Histological and electron microscopy studies showed a clear disruption of the BTB in
SCARKO mice [118], and the use of microarrays allowed for the identification of androgen-regulated
genes involved in BTB formation [126,127].

The expression of Ocln (Occludin) and Cldn11 is inhibited in the absence of androgen action as
seen in SCARKO mice [118,128–130], and the same occurs with Tjp1 [131] and Cldn3 [118]. While FSH
plays a role in the regulation of Cldn11 expression to a lesser extent than androgens [121], this is not the
case for Tjp1, which is strongly inhibited in SCARKO mice but not in FSHRKO mice [131]. Changes
in gene expression have been shown with a classic RT-qPCR approach [118,121,130] and also with
RNA-Seq [127].

Another example is that of Claudin-13 (Cldn13) and a non-canonical Tight junction protein 2 isoform
(Tjp2iso3), which have been shown to be downregulated in the SCARKOtm2.1 model [132]. Both Cldn13
and Tjp2iso3 have several putative ARE sequences, mainly with the TGTTCT motif, to which the AR
can bind, as seen by ChIP-qPCR. While CLDN13 is part of the Sertoli cell tight junction, TJP2iso3
participates in tricellular junctions. Furthermore, new candidate genes associated with cell-adhesion
and cytoskeleton dynamics show altered expression levels in the SCARKO mouse testis, such as
Actn3 (actinin-a3), Ank3 (ankyrin 3), Anxa9 (annexin A9) and Scin (scinderin) [118]. However, their
involvement in BTB integrity remains yet to be unveiled and much remains to be investigated.

Recently it has been shown that dehydroepiandrosterone sulfate (DHEAS) stimulates the
expression of Cldn3 and Cldn5 in the mouse Sertoli cell line TM4 through a membrane-bound
G-protein-coupled receptor that interacts with Gnα11 and induces phosphorylation of ERK1/2,
CREB and ATF1 [133]. This mechanism would mimic the non-classical/non-genomic pathway of
androgen action.

Coincidentally with the disorganization and delay in BTB formation, there is an incomplete
meiosis in the testis of both Tfm and SCARKO mice. The lack of complete meiosis progression in the
absence of the AR, specifically in Sertoli cells, demonstrates the central role that androgen-signaling
through Sertoli cells plays on spermatocyte entry into meiosis [102,103]. The dynamic nature of the
BTB is fundamental for migration of meiotic germ cells from the basal to the adluminal compartment.
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On the other hand, in a transgenic mouse model with Sertoli cell-specific premature postnatal AR
expression [134], Rhox5 levels were elevated. Furthermore, there was a precocious upregulation of tight
junction markers Cldn11 and Tjp1 resulting in early BTB and seminiferous tubular lumen formation,
associated with premature meiotic onset, shown by increased levels of meiotic markers Dmc1 (DNA
meiotic recombinase 1) and Spo11 (SPO11 meiotic protein covalently bound to double strand breaks).

The connection between androgen-induced Sertoli cell maturation and germ cell entry into
meiosis remains yet to be fully elucidated. A plausible connection could be that the androgen-induced
cytoskeletal changes within Sertoli cells might cause changes in the germ cell cytoskeleton itself, thus
promoting transition into meiosis and germ cell movement through the BTB. A crucial role for Sertoli
cells in the establishment of an immunoprivileged microenvironment at the time of tight junction
formation has also been suggested [117,135]. Whether any of these are the case or not, it is clear that
androgen action through the AR on Sertoli cells is pivotal to initiation of meiosis in the pubertal testis,
since when the AR is absent, there is no complete meiotic progression.

4.2. Inhibitory Effect of Androgens on AMH Gene Expression in Sertoli Cells

Inhibitory effects of androgens on gene expression have not been as extensively studied as the
stimulatory ones, with few examples available to date. Genes coding for WNT5A and podoplanin
are down-regulated through unknown molecular mechanisms [59]. The androgen-inhibited genes
through AR binding to ARE include Maspin [136,137] and Ccnd1 [138]. Representing inhibited genes
without functional ARE on their promoter regions that rely on AR interaction with trans-activating
factors are Ngfr (Nerve growth factor receptor, formerly Neurotrophin receptor p75) [139] and the
genes encoding the α- [82,140] and β- [83,141] subunits of LH.

As previously mentioned, the decrease in AMH expression at pubertal onset is indicative of Sertoli
cell maturation. Despite the fact that AMH downregulation by androgens has been established a long
time ago in all animals studied, including human [55,58,96,142], mouse [8,48,49,143], ram [144,145],
pig [146,147], stallion [148], bovine [149,150], and tammar wallaby [151], it has not been until recently
that the underlying mechanism of androgen action was described [30].

Sertoli cells begin to express AMH early during gonadal development, at 7 weeks in the human
embryonic gonad [34] and at 12.5 days post-coitum in the mouse male gonad [152]. The expression
of the AMH gene relies on the presence and action of several transcription factors that bind to their
promoter, namely SOX9, SF1, WT1, GATA4, AP2 and NFκB [143]. AMH transcription is dependent
mainly upon SOX9 binding to the promoter, but it also relies on SF1 action. SF1 can bind directly
to the AMH promoter and also interact with other transactivating factors, such as SOX8, to induce
AMH expression (Figure 4A). When SF1 is absent, AMH expression drops dramatically [153]. When
interaction between SF1 and SOX8, SF1 and WT1 and/or SF1, SOX9 and GATA4 is disrupted by
interaction of DAX1 with SF1, AMH expression is inhibited in Sertoli cells [154,155]. This inhibitory
capacity of DAX1 on AMH, however, has no relation to androgen action, since it has been described at
a time when Sertoli cells do not express the AR and are, therefore, insensitive to this type of hormones.
At pubertal onset, the androgens testosterone and dihydrotestosterone have a direct negative effect on
AMH promoter activity in Sertoli cells. This inhibitory effect involves the proximal region of the AMH
promoter and requires the presence of the AR together with at least one intact binding site for SF1 in
the promoter of the AMH gene [30]. These findings were shown using a mouse prepubertal Sertoli
cell line [156] and suggest that the inhibitory effect of androgens on AMH expression could be due to
direct interaction between the AR and SF1 or by the AR blocking SF1 binding sites, thus preventing SF1
from exerting its stimulatory action on the AMH promoter (Figure 4B) [30]. A similar mechanism of
action posing an interaction between the AR and SF1 has been described for the androgen-dependent
inhibition of the LH β subunit gene [141].
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stimulatory effects. AMH is an immaturity Sertoli cell marker that is regulated by androgens in a
negative manner, thus presenting itself as a clear example for androgen inhibition.

5. Concluding Remarks

Sertoli cells constitute the physical and physiological foundation of the seminiferous epithelium.
They are the link between the HPG axis and germ cells and, therefore, sperm production. To ensure
their many roles in the adult testis, Sertoli cells must mature in a timely manner and they do so by
preparing themselves to respond to androgen action at the right time. Androgens are responsible for
the occurrence of several pubertal development-related events in the testis, most of which are known
to be dependent on the stimulatory role of androgens.

Immature Sertoli cells are impervious to androgen action because they lack AR expression.
Once the AR becomes present in Sertoli cells and androgen levels increase at pubertal onset, a
consortium of genes—like tight junction-associated genes involved in the formation of the BTB—is
upregulated, while others—like AMH—become repressed, together depicting the androgen-dependent
process of Sertoli cell pubertal maturation. As a consequence of androgen action, Sertoli cell maturation
sets a favorable environment for germ cell entry to meiosis and the full progression of spermatogenesis.
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