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Parkinson’s disease (PD), the main risk factor of which is age, is one of the most
common neurodegenerative diseases, thus presenting a substantial burden on the health
of affected individuals as well as an economic burden. Sirtuin 2 (SIRT2), a subtype in
the family of sirtuins, belongs to class III histone deacetylases (HDACs). It is known
that SIRT2 levels increase with aging, and a growing body of evidence has been
accumulating, showing that the activity of SIRT2 mediates various processes involved
in PD pathogenesis, including aggregation of α-synuclein (α-syn), microtubule function,
oxidative stress, inflammation, and autophagy. There have been conflicting reports about
the role of SIRT2 in PD, in that some studies indicate its potential to induce the death of
dopaminergic (DA) neurons, and that inhibition of SIRT2 may, therefore, have protective
effects in PD. Other studies suggest a protective role of SIRT2 in the context of neuronal
damage. As current treatments for PD are directed at alleviating symptoms and are
very limited, a comprehensive understanding of the enzymology of SIRT2 in PD may be
essential for developing novel therapeutic agents for the treatment of this disease. This
review article will provide an update on our knowledge of the structure, distribution, and
biological characteristics of SIRT2, and highlight its role in the pathogenesis of PD.
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INTRODUCTION

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases and is
characterized by the loss of dopaminergic (DA) neurons in the striatum and the aggregation
of Lewy bodies, the main component of which is α-synuclein (α-syn; de Oliveira et al.,
2012; Satoh and Imai, 2014). The exact etiology of PD is still unclear, and aging is suggested
to be one of the strongest factors for the progression of this disease (Collier et al., 2011;
Dexter and Jenner, 2013; Pringsheim et al., 2014; Beilina and Cookson, 2016; Pellegrini
et al., 2017). Abnormal aggregation, the change of microtubule dynamics, oxidative/nitrative
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damage, inflammation, and autophagy are recognized as vital
physiological process which is associated with DA neuron
degeneration in PD (Hirsch et al., 2012; Lynch-Day et al., 2012;
Pellegrini et al., 2017). Many therapeutic approaches have aimed
at increasing dopaminergic, while inhibiting cholinergic activity.
The limited success of these approaches makes it essential to
identify new therapeutic strategies. One such strategy may be
targeted at aging-related deteriorations, as aging affects many
pathophysiological processes involved in PD.

Sirtuins are conserved from bacteria to humans. There
are seven human homologs, sirtuin1–7 (SIRT1–7). SIRT1 is
ubiquitously expressed in all tissues including the brain,
particularly in neurons (Ramadori et al., 2008). SIRT1 may
play a protective role in PD. On the one hand, SIRT1 could
suppress the aggregation of α-syn by activating molecular
chaperones in animal and cell models of PD (Donmez et al.,
2012). SIRT1 deacetylase activity mediates clearance of
α-syn through light chain 3 (LC3) mediated autophagy to
protect against PD pathology (Guo et al., 2016). Moreover,
extracellular α-syn accumulation leads to mitochondrial
dysfunction and a reduction of SIRT1 expression (Motyl et al.,
2018). One the other hand, the upregulation, and activation of
SIRT1 could activate peroxisome proliferator-activated receptor
γ co-activator 1 (PGC-1α) to confer DA neuron protection
against oxidative stress (Mäkelä et al., 2016). In addition,
SIRT1 was shown to deacetylate histone residue H3K9 which
is the p53 promoter, eventually leading to the reduction
expression and protecting against apoptosis in SH-SY5Y
cells (Feng et al., 2015). But no protection was observed in a
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
PD model using SIRT1 transgenic mice (Kakefuda et al.,
2009). Activating SIRT1 may seem to be beneficial for the
organism against certain age-associated diseases. But the
role of SIRT1 in PD needs to be further researched. Indeed,
small compounds that could elevate the content of SIRT3 are
protective against neuronal injury induced by 1-methyl-4-
phenylpyridinium (MPP+) which is degraded from MPTP
(Hu et al., 2014). Knock-out of SIRT3 significantly exacerbated
nigrostriatal neuron death by MPTP (Liu et al., 2015; Zhang
et al., 2016).

Sirtuin 2 (SIRT2), part of the family of sirtuins, belongs to
class III histone deacetylases (HDACs) and is most abundantly
found in the cortex, striatum, hippocampus, and spinal cord
(Maxwell et al., 2011). The enzymatic activity of SIRT2 is
dependent on nicotinamide adenine dinucleotide (NAD+), and
it not only catalyzes the deacetylation of histone substrates,
but also that of non-histone substrates (Landry et al., 2000).
SIRT2 thus regulates a large spectrum of physiological processes
such as genome stability, mitosis, nutrient metabolism, aging,
mitochondrial function, autophagy, myelination, apoptosis,
antioxidant mechanisms and cell motility (North and Verdin,
2007; Maxwell et al., 2011; Liu et al., 2014, 2017; Braidy
et al., 2015; Gomes et al., 2015; Fourcade et al., 2017). Recent
studies have indicated that SIRT2 is implicated in several
aging-related neurodegenerative diseases, and the fact that its
expression increases not only with age but also in PD models
suggests its key role in this particular disease (Harting and

Knöll, 2010; Maxwell et al., 2011; Poulose and Raju, 2015;
Sun et al., 2018). Here, we present a brief review article
of the structure, distribution and biological characteristics of
SIRT2. We then summarize the current literature and provide
a comprehensive analysis of the role of SIRT2 in PD, and
its potential as a therapeutic target for the treatment of
this disorder.

SIRT2: STRUCTURE, DISTRIBUTION, AND
BIOLOGICAL CHARACTERISTICS

SIRT2 is one isoform of class III sirtuins, which differ from
class I, II and IV in that their catalytic activity requires NAD+

as a cofactor for catalysis. SIRT2 catalyzes the deacetylation
of both histone and non-histone substrates (Cen et al., 2011).
This enzyme has a highly conserved catalytic core domain
consisting of about 275 amino acid residues. The catalytic
core comprises two staple parts: a large domain and a small
domain. Unlike other sirtuins, the large Rossmann-fold domain,
which is a typical NAD+ binding site, is formed by a central
β-sheet surrounded by seven α-helices. The small domain
contains three anti-parallel β-sheets (β4–6), one α-helix (α9)
and a Zn2+ cation, which is coordinated by four cysteine
residues (Parenti et al., 2015). Although zinc ions do not
directly participate in catalytic activities, they are necessary to
ensure normal activity of the enzyme (Min et al., 2001). The
small domain has the most variable regions, suggesting that
they may play important roles in regulating key properties,
such as substrate specificity, and may also be binding-sites
for sirtuin-selective modulators. The two domains are joined
by a number of flexible loops, termed cofactor-binding loop,
and together form a large groove. The conjunctive groove
contains the NAD+-binding site, which is conserved among
all sirtuins. The catalytic core substrate-binding pocket can be
divided into three subdomains: the adenine ribose moiety of
NAD+ is bound in site A, the nicotinamide ribose moiety
is bound in site B, while site C, located deep inside the
pocket and containing the catalytic center, binds nicotinamide
during catalysis (Finnin et al., 2001). The C-and N-terminal
extensions of SIRT2 differ from other sirtuins and play a
crucial role in its subcellular localization and distribution
(Chang et al., 2002).

SIRT2 not only possesses stronger deacetylation activity,
but also features adenosine diphosphate (ADP) nucleic acid
transferase activity, demyristoylase activity and mediates long
adipose chain diacylation (Landry et al., 2000; Teng et al., 2015).
The deacetylation reaction is the transfer of the substrate’s
acetyl group to the ADP-ribosyl moiety of NAD+, whereby
one NAD+ molecule splits into nicotinamide (NAM) and
O-acetyl ADP ribose (OAADPr; Shimizu et al., 2016); Similar
to other family members of sirtuins, SIRT2 is widely distributed
throughout the body, and is found to be particularly broadly
expressed in metabolically active tissues and organs such as
liver, prostate, pancreas, kidney, and adipose tissue in mice.
Recent research has found that SIRT2 levels are distributed more
in the central nervous system (CNS), especially in the cortex,
striatum, hippocampus and spinal cord (Maxwell et al., 2011).
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A study demonstrated that expression levels of the SIRT2 in
the Substantia Nigra pars compacta (SNpc) remain relatively
unaltered with PD development, indicating the potential of its
targeting in PD patients (Harrison et al., 2018). Within the
CNS, SIRT2 is expressed in the neurites and growth cones of
neurons (Pandithage et al., 2008), as well as in oligodendrocytes
(OLs), the myelinating cells of the CNS. Li et al. (2007)
found that overexpression of SIRT2 inhibits OL differentiation,
together indicating that this enzyme plays a crucial role in
CNS diseases.

SIRT2 regulates microtubule function, cell cycle, oxidative
stress, autophagy, and neuroinflammation, all of which are
recognized as prominent processes in the pathogenesis of PD
(Zhao et al., 2010b; Maxwell et al., 2011; de Oliveira et al.,
2012; Liu et al., 2014; Kida and Goligorsky, 2016). The level
of SIRT2 increases in models of PD, suggesting it may have a
significant effect also in the human disease (Wang et al., 2015;
Guan et al., 2016; Sun et al., 2018). SIRT2 is mainly localized
to the cytoplasm and deacetylates cytoplasmic proteins, such
as the main component of microtubules (MT): α-tubulin. Its
main site of action is lysine 40, thereby affecting intracellular
transport and cell integrity (North et al., 2003). Within the G2/M
phase of mitosis, SIRT2 is transferred from the cytoplasm to
the nucleus where it deacetylates histone H4 at lysine 16, thus
reducing the level of H4K16 acetylation, which in turn decreases
chromatin condensation and facilitates DNA replication, but the
specifical role in the pathogenesis of PD is not clear (Vaquero
et al., 2006). In addition, SIRT2 also shuttles to the nucleus in
response to cellular stress and is capable of deacetylating the
forkhead box class O (FOXO) family of transcription factors,
which are pivotal in a myriad of physiological processes (Wang
et al., 2007; Pais et al., 2013; Akbulut et al., 2015). Under oxidative
stress, SIRT2 releases FOXO1, which is then being acetylated and
able to bind to ATG7, eventually contributing to autophagy in
cancer (Zhao et al., 2010a). SIRT2 is also associated with nuclear
transcription factor kappa B (NF-κB), which plays an important
role in gene regulation related to aging and inflammation
(Rothgiesser et al., 2010). Inhibition of SIRT2 causes a decrease in
cytoplasmic p53 expression, subsequently promoting autophagy
through the resulting increase in the acetylation level of this
tumor suppressor (Sun et al., 2018). In addition, SIRT2 acts in
maintaining mitochondrial biology (Liu et al., 2017).

The role of SIRT2 in the pathogenesis of neurodegenerative
diseases is controversial. SIRT2 overexpression promotes
neurodegeneration, which may be attributed to enhanced
deacetylation of tubulin to impair microtubule stability in
neurons (Outeiro et al., 2007). In a mouse model of Huntington’s
disease, the inhibition of SIRT2 led to a decreased accumulation
of polyglutamine in the N-terminus of neurons (Qiu et al., 2010).
Furthermore, the expression of SIRT2 was found to exacerbate
α-syn toxicity in models of PD, whereas the inhibition of
SIRT2 led to an increase in the survival of neuronal cells (de
Oliveira et al., 2017). It was also found that SIRT2 expression
can decrease neuronal cell death in animal models treated by
MPP+. Thus, SIRT2 may have different functions depending on
the context. In the following sections, the role of SIRT2 in the
most important PD-associated processes will be discussed.

THE ROLE OF SIRT2 IN PARKINSON’S
DISEASE

SIRT2 Increases α-syn Aggregation and
Toxicity
Lewy bodies, eosinophilic inclusion bodies that appear in the
nigrostriatal system, are a typical pathological feature of PD
(Spillantini et al., 1997). The most important component of the
Lewy body is α-syn. Within the normal CNS, α-syn is abundant,
mainly in the pre-synaptic membranes and cytoplasm of the
striatum, neocortex, olfactory bulb, hippocampus, SN, thalamus
and amygdala. α-syn is a protein of 140 amino acids consisting of
three parts: the N-terminus (amino acids 1–60), which is highly
conserved in the synuclein family; a central portion which is
highly hydrophobic and is thought to underlie the aggregation-
prone nature of the protein; and an acidic C-terminal tail (amino
acids 96–140) which is highly charged and is a site subject to
post-translational modifications (Krumova et al., 2011). Previous
studies have shown that the acetylation of α-syn occurs at
the N-terminus and interacts with the liquid membrane. This
N-terminal acetylation improves α-helical folding induced by
the membrane, reducing the aggregation of α-syn (Bartels et al.,
2014; Theillet et al., 2016). α-syn is highly soluble under normal
physiological conditions and plays a crucial role in regulating the
size of the vesicle pool, vesicle transport, docking of vesicles with
the pre-synaptic membrane, and DA biosynthesis. Furthermore,
α-syn plays a protective role in oxidative stress, thus reducing DA
toxicity (Quilty et al., 2006). Soluble α-syn is degraded by the
ubiquitin-proteasome system (UPS) and chaperone-mediated
autophagy (CMA), whereas insoluble α-syn tends to form
aggregates which inhibit the system of degradation and induce
toxicity-a key factor in the pathogenesis of PD (Zhang et al.,
2008). The abnormal aggregation of α-syn leads to the formation
of insoluble inclusion bodies, simultaneously reducing the level
of soluble, functional α-syn. This, in turn, causes impairment
of UPS function and acceleration of mitochondrial dysfunction,
increases in sensitivity to oxidative stress, and enhances DA
transporter-mediated toxicity, thereby promoting cell death and
contributing to the development of PD pathogenesis (Sharma
et al., 2006; Buttner et al., 2008).

SIRT2 has been reported to exacerbate α-syn toxicity in
models of PD (de Oliveira et al., 2017). In contrast, a different
study found that inhibition of SIRT2 increases the aggregation of
α-syn and aggravates toxicity. These findings demonstrate that
the role of SIRT2 in this context needs further investigation.
It is known that SIRT2 affects the conformation of α-syn
through deacetylation at K6 andK10 in the conservedN-terminal
region, thus rendering it more prone to aggregation (de Oliveira
et al., 2017; Figure 1). Additionally, SIRT2 may also regulate
the main clearance pathway of α-syn by interfering with the
alkaline phosphatase (ALP; Sampaio-Marques et al., 2012). The
same study also showed that increased α-syn acetylation and
knockdown of SIRT2 led to a reduction in the aggregation of
α-syn, and therefore decreased toxicity (de Oliveira et al., 2017).
Outeiro et al. (2007) found that the expression of SIRT2 induces
the formation of small Lewy bodies, increasing neurotoxicity
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FIGURE 1 | Possible mechanism for Sirtuin 2 (SIRT2) to regulate α-synuclein (α-syn), the aggregation of which is the key characteristic of Parkinson’s disease (PD)
pathogenesis. SIRT2 affects the conformation of α-syn through deacetylation at K6 and K10 in the conserved N-terminal region. Besides, the expression of
SIRT2 can lead to an increase in small Lewy bodies, whereas its inhibition increases α-syn levels. SIRT2 inhibition has been demonstrated to protect neural cells from
α-syn-mediated neurotoxicity. In contrast, other studies have reported an increase in α-syn following inhibition of SIRT2.

induced by α-syn. Moreover, arabidopsis guanylate kinase 2
(AGK2)-and adenylate kinase 1 (AK1)-mediated inhibition of
SIRT2 increases the volume of α-syn inclusion bodies in cells
transfected with labeled α-syn, and the enlargement of such
inclusion bodies are reported to reduce their toxicity (Outeiro
et al., 2007). AK7-mediated inhibition of SIRT2 was found
to ameliorate α-syn toxicity and provide neuroprotection in
models of PD (Chen et al., 2015). SIRT2 levels in the brain
increase with aging, which is accompanied by a decrease in
acetylated α-syn (Maxwell et al., 2011; de Oliveira et al., 2017).
This, in turn, leads to the production of smaller Lewy bodies,
interferes with the clearance of α-syn and decreases levels of its
soluble version, thus increasing overall α-syn-mediated toxicity
and loss of DA neurons (Figure 1). α-syn aggregation can
also be induced by oxidative stress, which is aggravated by
AGK2-mediated inhibition of SIRT2 (Singh et al., 2017). A
study found that increased mitophagy activity, mediated by the
regulation of ATG32 by SIRT2, is an important phenomenon
linked to SNCA-induced toxicity during aging (Rubinsztein et al.,
2011; Sampaio-Marques et al., 2012). While the majority of the
literature has reported that the expression of SIRT2 can aggravate
α-syn-induced neurotoxicity, the precise functional relationship
between SIRT2 and α-syn remains elusive. Further research
will be needed to better understand the role of SIRT2 in this
context and help to clarify its potential as a target for therapeutic
intervention in PD.

SIRT2 Exacerbates Oxidative Damage
Oxidative stress is considered a key factor contributing to the
degeneration of DA neurons in PD. There is still controversy

about the specific role of SIRT2 in oxidative stress in the
context of this disease. While some studies have reported that
SIRT2 aggravates oxidative damage, others have found the
opposite. In animal models of PD, MPTP, 6-hydroxy-dopamine
(6-OHDA), diquat and rotenone were found to produce reactive
oxygen species (ROS; Perier et al., 2007). The elevation of
malondialdehyde (MDA), lipids and cholesterol hydroperoxide
in the substantia nigra (SN) of PD patients reflect the increase of
oxidative stress in PD, caused by an imbalance in the production
and clearance of ROS (Dexter et al., 1989). Rats treated by
rotenone exhibit a range of motor symptoms, which may be
exacerbated by elevated SIRT2 in response to rotenone (Wang
et al., 2015). Selective SIRT2 inhibition via adenylate kinase
7 (AK7) significantly diminishes striatal DA depletion and
improves behavior abnormalities in rotenone-treated aging rats
(Wang et al., 2015). Similar results were obtained in experiments
in which mice were treated with MPTP, substantiating the role
of SIRT2 in aggravating oxidative damage (Guan et al., 2016).
DA neurons are sensitive to oxidative stress based on the high
content of iron and polyunsaturated fatty acids, leading to a
greater generation of ROS and an increased rate of DA neuron
death due to mitochondrial dysfunction and neuroinflammation
(Sanders and Timothy Greenamyre, 2013; Mackeh et al., 2014;
Navarro-Yepes et al., 2014; Rivas-Arancibia et al., 2015; Guo
et al., 2018).

Furthermore, oxidative stress is closely related to apoptosis,
another physiological process SIRT2 is implicated in. In
this context, SIRT2 deacetylates FOXO3a, thus activating
pro-apoptotic protein-Bim, inhibiting the anti-apoptotic activity
of Bcl-2, activating caspase-3, initiating apoptotic neuronal death
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FIGURE 2 | Possible mechanisms of SIRT2 for regulating oxidative stress, autophagy, and the function of microtubules (MT), all of which play an important role in
the pathogenesis of PD. Following MPP+-treatment in cells or methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-injection in mice, the expression of
SIRT2 increases levels of cytoplasmic p53 and subsequently decreases autophagy, which could lead to apoptosis and aggregation of PD-associated proteins such
as leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and parkin, which decrease the stability of MT and further cause apoptosis. Furthermore,
SIRT2 is able to deacetylate α-tubulin at lysine 40, thereby declining the stability of MT and leading to a shortening of neurites. Deacetylation of FOXO3a by
SIRT2 leads to activation of pro-apoptotic protein-Bim, then inhibiting the anti-apoptotic activity of Bcl-2 and activating caspase-3, initiating, initiating apoptosis in
mitochondria, thus resulting in fewer cells producing dopamine (DA) in the SN only after MPP+-treatment in cells or MPTP-injection in mice. SIRT2 acts at H4K16,
which in turn decreases chromatin condensation and facilitates DNA replication, but the specifical role in the pathogenesis of PD is not clear. FOXO3a also regulates
SOD2 to protect neural cells against reactive oxygen species (ROS).

(Liu et al., 2014; Li et al., 2016; Figure 2). This eventually
results in fewer cells producing DA in the SN only after MPP+-
treatment in cells or MPTP-injection in mice; and deletion or
silencing of SIRT2 prevents neuronal cells death (Liu et al.,
2014; Figure 1). The inhibition of SIRT2 also has protective
effects in vitro as well as in a Drosophila model of PD (Outeiro
et al., 2007). Nie et al. (2014) found that AGK2-mediated
SIRT2 inhibition protects differentiated PC12 cells from toxic
damage caused by H2O2 and that silencing SIRT2 decreased
ROS production after H2O2 treatment. Another study found that
microRNA-7 (miR-7) inhibits SIRT2, causing a decrease in RelA
expression and a relieve of NF-κB suppression, consequently
protecting against MPP+-induced cell death (Choi et al.,
2014). Contrasting results from other groups demonstrate that
SIRT2 can also be beneficial to the survival of DA neurons.
In SH-SY5Y cells for example, SIRT2 shuttles to the nucleus
and rescues cells from oxidative damage by deacetylation of
FOXO3a, thereby increasing expression of FOXO3a targets
such as SOD2 and counteracting the effects of ROS. In
addition, when SH-SY5Y cells are treated by diquat or rotenone,
AGK2-mediated inhibition of SIRT2 was also shown to promote
cell death (Singh et al., 2017).

SIRT2 Decreases Microtubule Stability
Cytoskeletal homeostasis is crucial for the development and
function of the nervous system. MT, one of three main

components of the cytoskeleton, are polar cylindrical polymers of
α/β-tubulin heterodimers (Janke, 2014; Coles and Bradke, 2015).
They are also an integral part of the spindle, centrosomes and
specialized cellular structures like flagella and cilia (Subramanian
and Kapoor, 2012). In neurons, MTs also play important roles
during the morphological transitions that occur during neuronal
development, such as neurite initiation, migration, polarization,
and differentiation (Kapitein and Hoogenraad, 2015). MT
defects cause a wide range of nervous system abnormalities
and several human neurodevelopmental disorders have been
linked to altered microtubule-mediated processes (Kapitein
and Hoogenraad, 2015). In addition, SIRT2 is overexpressed
during mitosis, affecting the cell cycle and its activity has
been found to be deregulated in PD (Dryden et al., 2003;
Garske et al., 2007; Inoue et al., 2009). Mounting evidence
indicates cytoskeletal dysfunction to be one factor contributing
to PD pathogenesis. A number of proteins implicated in
PD such as α-syn, parkin, PTEN-induced kinase 1 (PINK1),
and leucine-rich repeat kinase 2 (LRRK2) have been shown
to bind tubulin and regulate MT stability, highlighting the
involvement of MT in the pathogenesis of this disease (Alim
et al., 2004; Yang et al., 2005; Weihofen et al., 2009; Dagda
et al., 2014; Godena et al., 2014; Law et al., 2014). α-
syn is MT-associated protein (MAP; Esteves et al., 2019). It
was demonstrated that the MT network and MT-dependent
trafficking are impaired upon overexpression of α-syn (Lee et al.,
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2006). The structure and function of MT are also regulated
by other post-translational modifications such as acetylation
of α-tubulin at lysine 40, which enhances MT stability and
increases the transport efficiency of cargo proteins along the
MT (Dompierre et al., 2007; Creppe et al., 2009; Solinger
et al., 2010). This modification is also associated with other
biological processes such as fibrillar hair depolymerization, cell
migration, and autophagy, and is known to influence cellular
stress, inflammation and viral responses (Ishiguro et al., 2011;
Misawa et al., 2013; Sabo et al., 2013; Mackeh et al., 2014; Wang
et al., 2014). In sporadic PD brains, a decrease in the level of
acetylated MT could be caused by a change in mitochondrial
metabolism, which is related to the activation of SIRT2
(Esteves et al., 2018).

In neurons, recent studies have shown that MT acetylation
is essential for normal neuronal development and function
(Creppe et al., 2009; Solinger et al., 2010). The degree of
acetylation is balanced by the controlled activity of acetylases
and deacetylases. One of the main acetylases is acetyltransferase
1 (TAT1), also known as MEC-17 (Akella et al., 2010; Kalebic
et al., 2013). The activity of deacetylation is mediated by two
enzymes, the NAD-independent histone deacetylase 6 (HDAC6)
and the NAD+-dependent deacetylase SIRT2 (Hubbert et al.,
2002; Matsuyama et al., 2002; North et al., 2003). The activity
of SIRT2 is mainly affected by the intracellular NAD+ content,
which correlates with tubulin acetylation (Skoge et al., 2014).
Conversely, NAD depletion leads to the activation of HDAC6,
thereby increasing the deacetylation of tubulin (Skoge et al.,
2014). These findings indicate that SIRT2 and HDAC6 act
on different subunits of α-tubulin in their deacetylation
and acetylation activities, respectively (Hubbert et al., 2002;
Matsuyama et al., 2002; North et al., 2003; Skoge and
Ziegler, 2016). Importantly, it was shown that in sporadic
PD patient-derived cells, when NAD+ metabolism is altered,
SIRT2 is activated, causing the level of acetylation of α-
tubulin to diminish. Consequently, by inhibiting SIRT2 activity,
the levels of acetylated α-tubulin are increased, thereby
improving MT dynamics via enhanced α-syn/tubulin binding.
The activation of SIRT2 or HDAC6 could increase the tubulin
deacetylation and induce MT loss stability and depolymerization
(Esteves et al., 2019).

SIRT2 mediates MT deacetylation, thus impairing the
integrity and causing a shortening of neurites, a key feature
of PD pathogenesis. 6-OHDA is a neurotoxin that can cause
PD-like symptoms in models of this disease. It is transported
into neuronal cells by DA re-uptake transporters and generates
ROS through various mechanisms, eliciting an oxidative damage
response and inducing a decrease in the rate of MT growth
(Patel and Chu, 2014). In addition, 6-OHDA alters the
subcellular localization of certain transcription factors, leading
to an alteration in gene transcription and decreasing the
survival of midbrain neurons (Chalovich et al., 2006). At
least to an extent, the above-mentioned effects of 6-OHDA
may be mediated by its inhibition of SIRT2 activity and the
consequent reduction in the rate of deacetylation, independently
of NAD+ levels (Patel and Chu, 2014). In animal models
of PD, MPP+ specifically acts on the kinetic system of

MT synthesis, thereby impairing this process and promoting
apoptosis of DA neurons, confirming the importance of a
functioning MT in the context of PD (Cappelletti et al., 2005).
In sporadic PD patient-derived cells, it was observed that
selective inhibition of SIRT2 restored the levels of tubulin
acetylation, reducing the ratio of free/polymerized tubulin and
improving MT-mediated transportation (Esteves et al., 2018).
In addition, AK7-mediated inhibition of SIRT2 results in
increased levels of acetylated α-tubulin, attenuating the loss
of striatal DA and nigral TH+ neurons and improving motor
function. In summary, the above-described findings suggest
an important role of SIRT2 in regulating MT function in
the context of PD (Chen et al., 2015; Wang et al., 2015;
Guan et al., 2016).

SIRT2 Aggravates Neuroinflammation
A growing number of studies have shown that PD progression is
characterized by chronic inflammation-induced DA neuron
degeneration within the SN (Schapira, 2013). Increased
microglial and astrocyte activation, cyclooxygenase-2 (COX-
2), pro-inflammatory cytokines and nitric oxide (NO) levels
have been reported in many toxic animal models of PD
(Noelker et al., 2013). In this context, MPTP causes chronic
inflammation and progressive neurotoxicity, but the underlying
mechanisms remain all not clear (Fox and Brotchie, 2010).
It has been suggested that inflammation-associated oxidative
stress and cytokine-dependent toxicity are at least in part
responsible for the loss of DA neurons in PD (Frankola
et al., 2011). Activated microglia produce large amounts
of superoxide and NO, causing oxidative/nitrative stress
and neurotoxicity in the CNS. These cells also release
pro-inflammatory cytokines such as tumor necrosis factor-
alpha (TNF-α), or neurotoxic glutamate, leading to the
degeneration of DA neurons in MPTP models of PD
which deteriorates with aging (García-Domínguez et al.,
2018; Yao and Zhao, 2018). The death of DA neurons
also results in the release of harmful molecules such as
oxidized proteins, lipids and DNA, which in turn activate
microglia and sustain a pro-inflammatory environment
(Block et al., 2007). Together, these findings suggest that
microglial activation is a key event in neuroinflammation in PD
(Frank-Cannon et al., 2009).

It was shown that SIRT2 is required for microglial
activation induced by lipopolysaccharide (LPS) and that
SIRT2 inhibition decreases microglial activation and alleviates
neuroinflammation, ultimately decreasing DA neuron death.
A study also showed that siRNA-mediated knockdown of
SIRT2 had a similar effect on microglia and led to a decrease
in the production of NO and inflammatory cytokines such as
TNF-α and interleukin 6 (IL-6), indicating that SIRT2 is critical
for microglial activation induced by LPS (Chen et al., 2015).
SIRT2 is required for LPS-induced activation of BV2 microglia.
A recent study provided evidence that inhibition of SIRT2 by
AGK2 impairs microglia survival and decreases the ATP
levels of microglia-mediated by poly (ADP-ribose) polymerase
(PARP) activation, which is a known mediator of programmed
necrosis (Li et al., 2013). In addition, SIRT2 deacetylates p65 at
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Lys310, regulating the expression of NF-κB-related genes (Deeb
et al., 2010). Therefore, SIRT2 could promote inflammation
and neuronal cell death by activating transcription of NF-κB
(Amigo and Kowaltowski, 2014). The effect of SIRT2 on the
survival of microglia under resting and activated conditions
is unclear. AGK2 has been shown to reduce the survival
rate of basal small cells, whether it would have a favorable
or adverse effect on PD. In conclusion, SIRT2 is able to
induce microglial activation, thereby promoting inflammation
in the CNS, which may have important implications in the
pathogenesis of PD.

SIRT2 Impairs Autophagy
Autophagy is a highly conserved mechanism of lysosome-
mediated protein and organelle degradation that plays a
crucial role in maintaining cellular homeostasis. The process
of autophagy is categorized into micro- and macro-autophagy
and CMA, the latter plays an important role in the occurrence
and development of PD. There is an ever-enlarging body
of evidence that suggests that several processes implicated
in PD pathogenesis converge on impaired CMA function,
including α-syn accumulation, mitochondrial dysfunction,
and oxidative stress. Furthermore, CMA is related to genes
that are the cause of PD such as LRRK2, UCH-L1 and PAPR7
(Kabuta et al., 2008; Orenstein et al., 2013; Wang et al.,
2016). In addition, an impairment of autophagic activity
leads to the deposition of a variety of harmful PD-related
proteins besides α-syn such as LRRK2, PINK1, Parkin, and
ATP13A2 which are related to PD and trigger apoptosis
(Venderova and Park, 2012; Martinez-Vicente, 2015; Figure 2).
What’ more, PINK1 detects mitochondrial dysfunction and
then signals Parkin to ubiquitinate specifically the damaged
mitochondria to instigate their removal by autophagy,
indicating PINK1 and parkin regulate autophagy activity
together (Pickrell and Youle, 2015). Previous studies have
identified transcription factors p53 and FOXO, as well as
histones H3 and H4 as sirtuin-regulated targets, suggesting
that SIRT2 may interfere with the expression of protective
genes and thereby contribute to a loss of neurons. Indeed, it
has been reported that the tumor suppressor p53 is a major
deacetylation substrate of SIRT2 (van Leeuwen et al., 2013).
An increase in p53 acetylation via SIRT2 inhibition reduces
cytoplasmic p53 levels, thus blocking the inhibitory effect of
cytoplasmic p53 on autophagy (Sun et al., 2018; Figure 2). As
in PD models the expression of p53 is elevated, inhibition of
SIRT2 rescues autophagy function, demonstrating its crucial role
in this context.

The activity of autophagy is also closely associated with
MT function and aggregation of α-syn. As mentioned above,
the clearance of α-syn is regulated by autophagy, and a
dysfunction of this process can lead to an aggregation of this
protein, which is recognized as the underlying mechanism
in the development of sporadic PD (Tofaris et al., 2011).
Furthermore, the fusion of autophagosomes with lysosomes
requires acetylated MT, and MT activity mediates the formation
of autophagosomes and the sorting and transport of cargo
(Xie et al., 2010). AK1-mediated inhibition of SIRT2 was

shown to restore MT stabilization and improve autophagy.
In addition, α-syn-mediated neurotoxicity in several PD
models is partly due to deacetylation of α-tubulin by SIRT2
(Outeiro et al., 2007). Together, SIRT2 may present a key
target in restoring autophagy function, which could have
a promising potential in therapeutic intervention in PD
(Sampaio-Marques et al., 2012).

CONCLUSION

In summary, SIRT2 not only acts on histones, but also on a
variety of non-histone proteins to regulate various physiological
activities such as inflammation, cell cycle, stress, et cetera.
Some researches implicated that the expression of SIRT2 could
damage the survival of neuronal cells. Under stress, it acts
on FOXO3a and increases its deacetylated degree, activating
Bim and caspase-3, initiates apoptosis in the mitochondrial
pathway, resulting in fewer cells producing DA in the SN. In
cells transfected with α-syn, SIRT2 inhibitors may increase
the volume of α-syn inclusion bodies, reduce the number and
their toxic effects on nerve cells. Under stress, SIRT2 acts on
a-tubulin, resulting in a decrease in the degree of a-tubulin
acetylation. The stability is weakened, causing changes in
kinetics and shortening of axons, resulting in the death of
nerve cells; SIRT2 promotes the development of PD by acting
on MT, α-syn, inflammation, and autophagy, which need
more researches to support. In addition, cell culture studies
demonstrate that AGK2 could inhibit the activity of SIRT
2 and result in neuroprotection in degenerating dopaminergic
neurons. The inhibition of SIRT2 such as miR-212-5p promotes
autophagy by decreasing the deacetylation of cytoplasmic
p53 expression. SIRT2 inhibitors can reduce the death of
DA neurons. SIRT2 inhibitors have neuroprotective effects,
there may exist other SIRT2 inhibitory molecules that, we
have not discovered. They delay or prevent the progression
of PD by acting on certain pathological processes of PD
pathogenesis. By studying these inhibitory small molecules,
It may provide a new strategy for the treatment of PD, and
more researches and experiments are needed to explore in the
future. On the contrary, some studies found the SIRT2 could
rescue cells from oxidative damage and AGK2-the inhibition
of SIRT2 could aggravate the cellular death under oxidative
stress. For the role of SIRT2 in PD is controversial for now
at least although the most of studies implicate the expression
of SIRT2 could lead to damage of neuronal cells in PD and
the inhibition of SIRT2 could decrease the death of neuron
cells. Further studies would be essential to estimate the role
in PD. Meanwhile, the relationship between the function
of MT, the aggregation of α-syn, autophagy is not clear,
requiring more researches. Increasing studies have researched
the inhibition of SIRT2, which is demonstrated to decrease
the death of cells in PD, exploring the potential therapy for
treating PD. 5-[(3-amidobenzyl)oxy]nicotinamides which
presents a new class of SIRT2 inhibitors is a potential therapy
for PD (Ai et al., 2016). However, the interactions between
synuclein aggregation, inflammation, oxidative stress, MT,
autophagy, and apoptosis are unclear and require further study.
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3-[(2-methoxynaphthalen-1-yl)methyl]-7-[(pyridin-3-ylmethyl)
amino]- 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4
(3H)-one (ICL-SIRT078), a substrate-competitive SIRT2
inhibitor is recovered as a candidate neuroprotective agent in an
in vitro PD model.
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