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Abstract: Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly
conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic
domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino
acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are
present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila,
a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and
ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation.
The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH
domain plays a role in the subcellular localization, dimerization, and stability of Kat2.
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1. Introduction

Microtubules play crucial roles in numerous cellular processes, including intracellular transport,
generation and maintenance of the cell shape and cell polarity, segregation of the chromosomes,
and cell motility. To perform these functions, microtubules undergo rearrangement that includes
cycles of assembly and disassembly, fragmentation, and the transport of short microtubule fragments.
The microtubule severing enzymes, including katanin (p60), katanin-like proteins, spastin, and
fidgetin, are important regulators of the organization of microtubules. These AAA domain (ATPases
associated with diverse cellular activities)-containing enzymes locally destabilize the microtubule
lattice to generate gaps and microtubule breakage, which leads to the shortening, fragmentation, or
complete disassembly of the microtubule polymer. The short microtubule fragments can be transported
and serve as seeds for new assembly (for a review, see [1]). Alternatively, gaps in the microtubule
lattice can be repaired by the incorporation of GTP-bound tubulin, leading to lattice stabilization and
an increase in the microtubule polymer mass [2].

Among the microtubule-severing enzymes, katanin p60, katanin-like protein 1, spastin, and
fidgetin share a similar domain organization; an N-terminal microtubule-interacting and -trafficking
(MIT) domain and a C-terminal catalytic AAA domain, which are separated by a non-conserved
linker [1]. In contrast, the katanin-like 2 protein (also known as katanin p60 subunit A-like 2 or Katnal2),
instead of a MIT domain, has an N-terminal LisH (Lis-homology) domain, followed by a short helical
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region that we will call a CTLH (C-terminal to LisH) by analogy to other LisH domain-containing
proteins [3]. The role of the LisH domain in Katnal2 is unknown. Moreover, compared to other
microtubule-severing proteins, our knowledge concerning Katnal2 activity and function is limited.

Katnal2 proteins are evolutionarily conserved in most eukaryotic lineages [4]. In murine fibroblasts
(NIH3T3), kidney epithelial cells (mIMCD3), and HeLa cells, Katnal2 localizes within the cytoplasm,
where it partly overlaps with microtubules of the interphase network, mitotic spindle, midbody,
and centrioles. Additionally, Katnal2 was detected in primary cilia along their entire length [5,6].
Similar Katnal2 localization was observed in Xenopus XL177 cells assembling primary cilia [7]. In the
multiciliated cells of Xenopus embryonic epidermis, Katnal2 localizes to the basal bodies and along the
axoneme of the motile cilia [7]. In the unicellular parasites Trypanosoma brucei and Leishmania major,
ectopically expressed Katnal2 localizes to flagella, especially at the base and the tip, and its expression
reduces the length of flagella [8]. The ShRNA-induced silencing of Katnal2 in mammalian cells results
in the formation of additional centrioles, a multipolar mitotic spindle, defects in cytokinesis, and
reduced ciliogenesis [5]. The assembly of fewer and shorter cilia was also observed in multiciliated
cells of Xenopus embryonic epidermis with depleted Katnal2 [7]. In mice, Katnal2 is important at
multiple stages of spermatogenesis [9].

Detailed analyses of Xenopus embryos with depleted Katnal2 have revealed abnormalities during
embryonic development and organogenesis, including a reduced brain size [7]. Defects in brain
development are in agreement with observations in mice showing that Katnal2 also plays a role in
neurons, specifically in dendrite arborization [10]. Interestingly, in humans, Katnal2 mutations may be
associated with autism [11–14].

The molecular mechanisms behind Katnal2 activity remain unknown. Until now, there have
been no data showing that Katnal2 can sever microtubules in vitro [1]. The overexpression of human
GFP-Katnal2 in HeLa cells did not change the microtubule signal, suggesting that Katnal2 does not sever
microtubules [6]. On the other hand, in mammalian cells with depleted Katnal2, tubulin acetylation
was elevated, suggesting the increased longevity of microtubules [5]. However, in Tetrahymena cells
lacking Kat2—an ortholog of Katnal2—hyperacetylated microtubules were not observed and the
phenotype of the knockout cells was not detectably altered [4]. Interestingly, when co-expressed in
HEK293T cells, Katnal2 co-immunoprecipitates with δ-tubulin and ε-tubulin and co-localizes with
these non-microtubular tubulins in murine spermatids [9].

To shed light on the molecular mechanism of action of Katnal2, we re-investigated the localization
and properties of Kat2 in a ciliate Tetrahymena thermophila, focusing on the role of the LisH domain.
The LisH domain is present in a number of proteins [15], and has been shown to mediate their
homodimerization [16–19] and stability [3,20]. Mutations in LisH disturb the intracellular localization
of some proteins, including Lis1, transducin β-like 1X (TBL1), and oral-facial-digital type 1 (OFD1)
proteins, and reduce their half-life time [20].

Here, we find that in Tetrahymena thermophila, Kat2 predominates near the basal bodies and at
the tips of cilia, and its LisH domain-containing N-terminal region plays a role in protein localization,
stability, and dimerization.

2. Materials and Methods

2.1. Tetrahymena Strains and Culture

Tetrahymena cells were cultured in a standard SPP (super proteose peptone) medium [21]
supplemented with an antibiotic-antimycotic mix at 1:100 (Sigma-Aldrich, St-Louis, MO, USA),
with shaking at 30 ◦C. The wild-type CU428.2 strain was obtained from the Tetrahymena Stock Center
(Cornell University, Ithaca, NY, USA). The paclitaxel-sensitive CU522 strain that carries a mutation
(K350M) in the BTU1 (β-tubulin 1) coding region was used for the introduction of transgenes, enabling
protein overexpression (positive transformants were selected based on their resistance to paclitaxel [22]).
The previously described Tetrahymena GFP-Ttll6A strain carries a transgene for the overproduction of a
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GFP-tagged truncated Ttll6A (tubulin tyrosine ligase like 6A) tubulin glutamylase elongase (GFP-Ttll6A
M241-V292 [23,24]).

2.2. Cross-Linkers

Glutaraldehyde (25%, Polysciences Inc., Warrington, PA, USA) was diluted with water to
a final concentration of 0.04% and added to an equal volume of a protein fraction. EDC
(1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (Thermo-Fisher Scientific, Rockford,
IL, USA), a cell-impermeable, zero-length crosslinker was prepared just before use as a 200 mM solution
in water. A cell-permeable EGS (ethylene glycol bis (succinimidyl succinate), Thermo-Fisher Scientific,
Rockford, IL, USA) that forms a 12-atom cleavable spacer arm, was prepared as a 100 mM solution in
DMSO, just before use.

2.3. Protein Tagging and Domain Analysis

All PCR reactions were performed using Phusion HSII High Fidelity Polymerase (Thermo-Fisher
Scientific Baltics, Vilnius, Lithuania), with CU428.2 genomic DNA as a template. The primers used
are listed in Table S1. To overexpress Kat2-HA or Kat2-2V5 in the BTU1 locus, the coding region of
KAT2 (TTHERM_00414230) was cloned using MluI and BamHI restriction sites into pMTT1-HA (MTT1,
Metallothionein 1) and pMTT1-2V5 plasmids, both derived from pMTT1-GFP [23]. Mutations predicted
to either abolish the ATPase activity of the AAA domain (E347Q) or prevent LisH domain-mediated
dimerization (I33R, L37R) and silent mutations, enabling screening for the positive clones, were
introduced into the KAT2 coding region using overlapping PCR. For domain truncation analyses,
fragments of the KAT2 coding region were amplified with the addition of MluI and BamHI restriction
sites, and cloned into the pMTT1-HA plasmid. A total of 15 µg of plasmid DNA was digested with ApaI
and SacII to separate the targeting fragment from the plasmid backbone, precipitated onto DNAdel
Gold Carrier Particles (Seashell Technology, La Jolla, CA, USA) according to the manufacturer’s
instructions, and was biolistically transformed into CU522 cells. Transformants were selected for 3–4
days on SPP supplemented with 20 µM paclitaxel (BioShop, Burlington, ON, CanadaBio) at 30 ◦C.

To overexpress Kat2-HA in Tetrahymena cells also carrying a transgene for the overexpression
of GFP-Ttll6A in the BTU1 locus [23,24], the coding region of KAT2 was cloned into a plasmid that
enables the overexpression of C-terminally HA-tagged protein in the MTT1 locus [25]. Approximately
15–20 µg of plasmid was used for the transformation. Transformants were selected for 3–4 days
at 30 ◦C on SPP supplied with paromomycin at a final concentration of 70 µg/mL (Sigma-Aldrich,
St-Louis, MO, USA).

To co-express full-length Kat2-2V5 and HA-tagged Kat2 truncations, the KAT2 coding region
was cloned into a plasmid that enabled the overexpression as C-terminally 2V5-tagged protein in
the genomic location carrying adjacent GRL3 (Granule lattice) and GRL4 genes. In the macronuclear
genome, the sequences encoding GRL3 and GRL4 coding regions are located on opposite DNA strands
and are separated by about 1 kb. To overexpress Kat2-2V5 in the GRL3/GRL4 region, we amplified a
0.8 kb fragment of the GRL4 gene, adding SacII and BglII restriction sites at 5′ and 3′ ends, respectively
(primers in Table S1), and cloned it into a p4T2 vector carrying a neo2 cassette digested with SacII
and BamHI. In parallel, the HA coding region and BTU1 3′UTR (untranslated region) were removed
from the Kat2-HA-overexpressing plasmid using BamHI and XhoI sites, and were replaced by the
2V5 coding region, followed by 0.6 kb of 3′UTR of BTU1 (transcription terminator) obtained from the
native locus expression plasmid [26] using BamHI and EcoRV restriction enzymes and 1.1 kb of the
GRL3 gene amplified from the genomic DNA with the addition of EcoRV and XhoI sites at 5′ and 3′

ends, respectively (Table S1). Next, the GRL4-neo2 fragment was cloned into the pKat2-2V5-GRL3
vector using SacI and Cla I restriction sites. About 10–15 µg of the obtained transgene was introduced
into cells overexpressing one of the katanin variants: a full-length Kat2-HA, I33R L37R mutant, or
truncations, all from the BTU1 locus under the MTT1 promoter. Transformants were selected for 3–4



Cells 2020, 9, 292 4 of 19

days at 30 ◦C on SPP supplied with paromomycin at a final concentration of 100 µg/mL (Sigma-Aldrich,
St-Louis, MO, USA).

To express C-terminally 3HA-tagged Kat2 in the native locus, 2.2 kb of the coding region and
a 1.7 kb fragment of the 3′UTR of KAT2 were amplified and cloned into the appropriate plasmid, as
previously described [27]. About 10 µg of the final plasmid was digested with MluI and XhoI and used
for biolistic transformation. Transformants were selected for 3–4 days at 30 ◦C on SPP with 1.5 µg/mL
CdCl2 and 100 µg/mL paromomycin and then grown under increasing paromomycin and decreasing
CdCl2 concentrations to promote phenotypic assortment.

2.4. Immunofluorescence and Transmission Electron Microscopy

For immunofluorescence analyses, cells were handled as drops on coverslips and fixed as
previously described [27,28]. The primary antibodies were used as follows: monoclonal mouse
anti-HA.11 (cat. 901503, BioLegend, San Diego, CA, USA) 1:300; polyclonal rabbit anti-HA (C29F4,
Cell Signaling Technology, Leiden, The Netherlands) 1:300; monoclonal rabbit anti-V5 (D3H8Q, Cell
Signaling Technology, Leiden, The Netherlands) 1:1600; anti-centrin 20H5 (cat. 04-1624, Merck Millipore,
Billerica, MA, USA) 1:300; concentrated monoclonal mouse anti-α-tubulin 12G10 (Developmental
Studies Hybridoma Bank, Iowa University, Iowa City, IA, USA) 1:300; polyclonal rabbit anti-polyE
antibody, developed and kindly provided by Gorovsky lab (University of Rochester, Rochester, NY,
USA) [29] at a 1:2000 dilution; and monoclonal mouse anti-K antigen 10D12 antibody kindly provided
by Dr. J. Frankel (University of Iowa, Iowa City, IA, USA) at a 1:50 dilution.

To analyze Kat2-HA localization at the ultrastructural level, the Kat2-HA-overexpressing cells
were induced with 1 µg/mL CdCl2 for 3 h and processed for immunoanalysis with anti-HA monoclonal
antibodies using either classical TEM or cryofixation methods, as previously described [27]. All samples
were analyzed using a JEM 1200 EX transmission electron microscope (JEOL Co, Tokyo, Japan).

2.5. Western Blots

Protein fractions were isolated from Kat2-HA-overexpressing cells and wild-type cells as a negative
control. The total protein extract was prepared as previously described [28]. The cytoskeletal proteins
were isolated as previously described [23]. Unless indicated otherwise, for Western blots, proteins
from 105 cells (total fraction) or 20–40 µg of proteins (cytoskeletal proteins) were separated on 10%
SDS-PAGE gels. The primary antibodies were used as follows: monoclonal mouse anti-HA at a 1:3000
dilution, concentrated mouse anti-α-tubulin 12G10 antibodies diluted to 1:40000, polyclonal rabbit
anti-polyE antibody at a 1:20000 dilution, and anti-GFP (ab6556 Abcam, Cambridge, UK) at 1:60,000.

2.6. Microtubule Polymerization, Microtubule Binding Assay, Protein Cross-Linking and Immunoprecipitation

Tubulin was purified from wild-type Tetrahymena cells and polymerized as previously
described [30]. To purify a full-length or truncated Kat2-HA, cells carrying an appropriate transgene
were cultured in SPP and treated with 2.5 µg/mL CdCl2 for 3 h with shaking to induce overexpression.
The HA-tagged proteins were purified from the cytosolic fraction using a resin with conjugated anti-HA
antibodies (Pierce HA Epitope Tag Antibody Agarose conjugated, Thermo Scientific, Rockford, IL,
USA), according to the manufacturer’s instructions. Purified proteins were eluted with 0.2 M glycine
(pH 2.2), neutralized by the addition of 1 M Tris with a pH of 9.5 (to a final concentration of 10 mM),
and ultrafiltered on Vivaspin 6 columns (Sartorius, Goettingen, Germany). The protein concentration
was determined using a Pierce BCA Protein Assay Kit (Thermo Scientific, Rockford, IL, USA).

Microtubules were polymerized from purified tubulin in the PME buffer (80 mM PIPES, 1mM
EGTA, 1 mM MgSO4, 20 µM paclitaxel, and 2× concentrated protease inhibitors), diluted to 1 mg/mL,
and incubated with purified Kat2 at room temperature. After 30 min, samples were centrifuged
on the glycerol cushion (60% glycerol in PME buffer) for 50 min at 100,000× g at 25 ◦C. Pellets
of microtubules and supernatants were analyzed by Western blot analysis using anti-HA and
anti-α-tubulin (12G10) antibodies.
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To analyze the formation of Kat2 dimers, cells carrying appropriate transgenes were grown in
SPP medium supplemented with 2.5 µg/mL CdCl2. After 4 h, cells were collected and cytoskeletal and
soluble fractions were purified [23]. Equal amounts of proteins from overexpressing strains (100 µg)
were incubated for 30 min with 0.02% glutaraldehyde on ice [31]. Ten (tubulin analysis) or 35 µg (Kat2
analysis) of proteins were separated on either 7% or 9% SDS-PAGE gels, transferred onto nitrocellulose,
and probed with anti-HA or anti-α-tubulin (12G10) antibodies.

For EDC crosslinking, the cytoskeletal proteins were isolated from overproducing cells that were
lysed on ice for 1 min with 0.5% Triton-X100 in Dryl’s solution (1 mM Na2HPO4, 1 mM NaH2PO4,
1.5 mM CaCl2, and 2 mM sodium citrate, pH 7.1) with protease inhibitors. After centrifugation
for 10 min at 21,000× g at 4 ◦C, pellets (cytoskeletal proteins) and supernatants were collected, and
100 µg of proteins was resuspended in Dryl’s solution with protease inhibitors and incubated with
2.5 mM EDC for an hour at RT. The reaction was stopped by the addition of 1M Tris with a pH of 7.4.
The presence of protein complexes was analyzed by Western blot analysis (as above).

For in vivo crosslinking, cells at the density 105 cells/mL were grown for 4 h in SPP medium
supplemented with 2.5 µg/mL CdCl2 and washed with warm Dryl’s solution, and the cells were
incubated in Dryl’s solution supplemented with either 0.8 mM EGS or 0.8% DMSO (control) for 75 min.
at 30 ◦C. After the isolation of the cytoskeletal and supernatant fractions, the presence of protein
complexes was analyzed as described above.

To identify proteins that co-immunoprecipitate with Kat2-HA, wild-type (control) and Tetrahymena
cells carrying the MTT1-KAT2-HA transgene were induced for 3 h (2.5 µg/mL CdCl2), washed with
diluted (1:3) PBS, pelleted, and incubated on ice with 1% Triton-X-100 in PBS and protease inhibitors
for 1 min. After centrifugation, the pelleted cytoskeletal proteins were washed with PBS with protease
inhibitors, and the protein concentration was estimated. The cytoskeletal proteins were incubated with
5 mM EDC for 1 h at RT and the reaction was stopped by 1 M Tris-HCl buffer with a pH of 7.4. Next,
cytoskeletal proteins were incubated with denaturation buffer (1% SDS in 10 mM Tris-HCl, pH 7.4),
heated for 5 min at 95 ◦C, chilled on ice and diluted 10 times with non-denaturation buffer (50 mM Tris,
pH 7.4, 1% Triton-X-100, 300 mM NaCl, and 5 mM EDTA) with protease inhibitors, and centrifuged
(10 min at 16,000× g at 4 ◦C), and the supernatant (2–4 mg of proteins) was incubated overnight with
Pierce HA Epitope Tag Antibody Agarose conjugated (Thermo Scientific, Rockford, IL, USA) at 4 ◦C,
according to the manufacturer’s instructions. After washing, precipitated proteins were separated on
the polyacrylamide gel and silver stained and were identified by mass spectrometry (Laboratory of
Mass Spectrometry, Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland).

2.7. Protein Sequence Analysis

The amino acid sequences of Katnal2 orthologs were identified in the NCBI database using
Tetrahymena thermophila Kat2 and human Katnal2 sequences as baits. The sequences were aligned
using the ClustalX2 program [32] and edited in the SeaView program [33]. Some predicted protein
sequences were manually corrected (see Figure S2’s legend). The position of the LisH and AAA
domains was predicted using SMART (www. http://smart.embl-heidelberg.de/, [34]). The 3D structure
of LisH and an adjacent CTLH domain of Tetrahymena Kat2 (TTHERM_00414230) and human Katnal2
(XP_005258414) were predicted using the automated protein structure homology-modeling server
(https://swissmodel.expasy.org/ [35,36]).

3. Results

3.1. Kat2, an Ortholog of Mammalian Katnal2, Co-Localizes with Microtubular Structures

Katnal2 orthologs are ~60 kDa evolutionarily conserved proteins with two characteristic features:
(i) an N-terminal, LisH (Lis1-homology) domain, followed by a partly helical amino acid stretch, here
called a CTLH (C-terminal to LisH domain), and (ii) a C-terminal AAA catalytic domain that is most
similar to the AAA domain of the canonical microtubule-severing enzyme—katanin p60 (Figures S1

http://smart.embl-heidelberg.de/
https://swissmodel.expasy.org/
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and S2). In all Katnal2 orthologs, the region between LisH-CTLH and AAA domains, the so-called
linker, is poorly conserved (Figure S2).

Katnal2 orthologs are present in diverse ciliated species (OrthoDB, http://cegg.unige.ch/orthodb6).
However, we were unable to identify a Katnal2 ortholog in Caenorhabditis elegans, a species with
immotile sensory cilia. In the predicted proteomes of plants, such as Arabidopsis thaliana, Oryza sativa,
and the moss Physcomitrella patens, besides the canonical katanin p60, there are AAA domain proteins
that are most similar to the AAA domain of the human Katnal2. These plant AAA domain proteins
have a limited homology to the Katnal2-type proteins within the CTLH region, but lack a LisH domain
(Figure S2).

A Tetrahymena thermophila Katnal2 ortholog, Kat2 (TTHERM_00414230) [4], is composed of 539
amino acids. The 33-amino acid-long LisH domain is positioned between R25 and L57, and is followed
by the 37 conserved amino acids of the CTLH domain (D58–K92). The conserved C-terminal region of
Kat2 (V213–V539) encompasses the AAA catalytic domain (P279–S416) (Figure S1).

Kat2—expressed as a C-terminal 3HA-tagged fusion protein under the control of its own
promoter—was detected in the cell body and at the tip of short, presumably assembling, somatic
cilia (Figure S3B, arrow) and short assembling oral cilia in the newly developing oral apparatus
(Figure S3A,B). Because the native level of Kat2 expression in Tetrahymena cells is very low
(Figure S3C,D), we engineered a strain that expressed the Kat2-HA fusion protein under the control
of a strong, cadmium-inducible promoter, MTT1 [37]. Overexpressed Kat2-HA localized to cilia,
especially shorter assembling cilia, where the protein was enriched at the distal tips (Figure 1A–C,
D–F’, G–I’). Additionally, Kat2-HA was enriched near the basal bodies (Figure S3F–H’) and along
microtubules of the radial rootlets of the contractile vacuole (Figure 1D–F”). A lower signal of Kat2-HA
was detected along the transverse and postciliary microtubules that are located near each somatic basal
body (Figure 1A’,C’). The MTT1 promoter exhibited a low level of activity, even when Cd2+ was not
added to the culture medium. At the basal level of the MTT1 promoter expression (Figure S3C,D),
Kat2-HA was apparent in cilia, again, especially in the assembling cilia and near basal bodies (Figure
S3E–E”).

A similar localization pattern was observed in Tetrahymena cells overexpressing a E347Q Kat2-HA
version (Figure S3I), carrying a substitution within the AAA domain, which in spastin abolishes the
severing activity [38]. Therefore, the co-localization of Kat2 with microtubular structures does not
require catalytic activity of the AAA domain. The overexpression of Kat2-HA E347Q did not change
the cell phenotype.

An ultrastructural immunogold analysis of Kat2-HA-expressing cells induced with a low dose
of cadmium chloride (1 µg/mL) revealed that Kat2-HA predominantly localized near the triplet
microtubules of basal bodies (Figure 2B–D) and ciliary outer doublets (Figure 2A,E). Occasionally, gold
grains were present near the cortical microtubules, including those supporting radial rootlets of the
contractile vacuole (not shown).

http://cegg.unige.ch/orthodb6
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Figure 1. Kat2-HA localizes to microtubular organelles in Tetrahymena. Immunofluorescence confocal
images of the ventral (A–C) and dorsal (D–F) sides of the Kat2-HA-overexpressing cells, showing
a co-localization of Kat2-HA (A,D) with microtubular structures (B,E). (C,F) Merged images. Note
a predominant localization of Kat2-HA in short growing cilia (A,C), especially at their distal ends
(F’, arrows), near the basal bodies (A’,C’, yellow arrowhead), and weak staining along the transverse
(A’,C’, white arrow) and postciliary microtubules (A’,C’, white arrowhead) and along microtubular
radial rootlets of the contractile vacuole (F”, arrows). (G–I) Fluorescence confocal images showing
Kat2-HA-overexpressing cells with short assembling cilia 30 min. after the experimental deciliation.
Note the strong signal of Kat2-HA (g) in growing cilia, especially at their tips (I’, arrows). (H) tubulin
staining, and (I) merged image. The white rectangles on (C), (F), and (I) images show areas magnified
in (C’), (F’), (F”), and (I’), respectively. Abbreviations: BB—basal body; C—cilium; CV—contractile
vacuole; nOA—new oral apparatus; OA—oral apparatus; PC—postciliary microtubules; R—radial
rootlets of the contractile vacuole; TM—transverse microtubules. Bar = 10 µm.
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Figure 2. Immunogold TEM localization of Kat2-HA. Kat2-HA localizes near the outer microtubules in
the axoneme (A,E) and basal bodies (B–E), of both somatic (A–D) and oral ciliary units (E). Cells were
preserved either by cryofixation (A,B) or by chemical fixation (C–E). All (A,C,D) or exemplary gold
grains (B,E) are indicated by red arrows. Overall, 57 and 80 gold grains were found decorating ciliary
or basal body microtubules, respectively, in Kat2-HA-overexpressing cells, while only seven and five
gold grains were seen near cilia or basal bodies, respectively, in the negative control wild-type cells. In
total, 1300 sections of cilia and 317 sections of basal bodies were analyzed in control samples and 500
(80 decorated) and 100 (30 decorated) cilia and basal bodies sections in Kat2-HA-overexpressing cells,
respectively. Bar = 200 nm.

3.2. Kat2-HA Preferentially Co-Localizes with Glutamylated Microtubules

In Tetrahymena cells, the overexpression of a potent β-tubulin glutamylase elongase, Ttll6A,
increases the levels of tubulin glutamylation, causing hyperstabilization of the cell body microtubules
and the assembly of short cilia with structural defects [23,24]. Recently, we showed that Kat1—a
Tetrahymena ortholog of a canonical katanin p60—is mislocalized in cells overexpressing GFP-Ttll6A,
presumably because the level of glutamylation of microtubules is important for the localization of
Kat1/p60 [27]. To determine whether the levels of tubulin glutamylation influence Kat2-HA localization
patterns, we overexpressed Kat2-HA in cells that were either wild-type or co-expressed GFP-Ttll6A
and had excessively glutamylated microtubules (Figures S4–S6) [23,24].

Immunofluorescence showed that although cells with hyperglutamylated microtubules maintained
cilia and basal bodies (Figure S6), Kat2-HA was rarely detectable in these structures (Figure 3A–F’).
Instead, Kat2-HA was enriched along the hyperglutamylated cortical and cytoplasmic microtubules
(Figure 3A, C–C’,Figure S4, Figure S6). In Tetrahymena, based on immunofluorescence, the levels of
tubulin glutamylation were higher in the assembling than in the full-length cilia [4]. Indeed, when
Kat2-HA and GFP-Ttll6A co-overexpressing cells were deciliated and allowed to regenerate cilia,
Kat2-HA was enriched in the short assembling cilia (Figure 3G–I’). We concluded that in Tetrahymena,
the pattern of localization of Kat2-HA is influenced by tubulin glutamylation, as it is in the case of
Kat1/p60 [27].
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Figure 3. Increased tubulin glutamylation causes Kat2-HA mislocalization. Immunofluorescence
confocal images of Tetrahymena cells induced with 2.5 µg mL−1 CdCl2 for 3 h to co-overexpress
Kat2-HA and GFP-Ttll6A glutamylase, stained with anti-HA antibodies (B,E) and co-labeled with
either anti-polyglutamylation polyE (A) or anti-centrin (D) antibodies. (C,F) Merged images. In cells
overexpressing GFP-Ttll6A glutamylase, Kat2-HA was not detected in full-length cilia and near basal
bodies, even in OA (please compare to Figure 1C), but co-localized with highly glutamylated subcortical
microtubules that appeared as a result of the overexpression of GFP-Ttll6A (A,C). Note that cilia and
basal bodies are present in cells co-overexpressing both enzymes (A,C,D,F). (G–I’) Kat2-HA is present
in short, newly assembled cilia. Cells co-overexpressing Kat2-HA and GFP-Ttll6A glutamylase were
deciliated and cultured in SPP medium supplemented with CdCl2 during cilia regeneration. Note
that Kat2-HA (H) is present in short cilia containing highly glutamylated microtubules (G–I,I’). In (I’),
the images obtained from two channels are slightly shifted to better visualize cilia staining. White
rectangles on (C,F,I) show areas magnified in (C’,F’) and (I’), respectively. Abbreviations: BB—basal
body; C—cilium; MT—bundles of microtubules; OA—oral apparatus. Bar = 10 µm.

3.3. LisH Domain Plays a Role in Kat2 Basal Body Targeting and Protein Stability

GFP-Kat2 (N-terminal fusion), but not Kat2-GFP (C-terminal fusion), localizes in a diffused pattern
in the cell body ([4 and our unpublished data]). Therefore, the GFP tag could affect the N-terminal
region of Kat2, which includes LisH and CTLH; thus, this region may be important for the targeting of
Kat2 to proper subsets of microtubular structures.
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To investigate the role of the LisH domain, and to identify other regions of Kat2 potentially involved
in its subcellular localization, we analyzed the localization patterns of overexpressed HA-tagged
truncated versions of Kat2 (Figure 4).Cells 2020, 9, x  10 of 19 
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Figure 4. A graphical representation of the Kat2 domain organization and analyzed truncated variants.
The black rectangle represents the LisH domain and the grey rectangle marks the position of the
adjacent CTLH, whilst the white rectangle indicates the position of the AAA domain. Abbreviations:
LisH—Lis-homology; CTLH—C-terminal to LisH.

Both a 139 amino acid-long N-terminal fragment containing LisH and CTLH (Kat2-HA M1-T139)
and a slightly longer 194 amino acid fragment—also containing a region of limited homology (Kat2-HA
M1-L194)—were targeted to the basal bodies, although the signal was much weaker compared to
the one detected in cells expressing full-length Kat2-HA (Figure S7A,B,G). Additionally, a weak
signal was observed in short, assembling oral cilia (Figure S7B). A Kat2 fragment that lacked LisH
and CTLH (Kat2-HA M101-V539) was present in growing cilia (Figure S7C,G), but the signal near
the basal bodies was weaker and more diffuse compared to cells expressing a full-length protein or
LisH domain containing fragments (Figure S7H–J’). Kat2-HA M101-V539 was also present along the
transverse and postciliary microtubules (Figure S7C). Moreover, in some cells, we observed Kat2
M101-V539-positive fiber-like structures within the cell body. A Kat2 truncation containing the AAA
domain (Kat2-HA T274-V539) was present exclusively within the cell body, while Kat2-HA D210-V539
truncation containing the entire conserved C-terminal fragment co-localized with the basal bodies
(Figure S7D–E,G). Therefore, the LisH and CTLH of Kat2 seem to play a role in targeting the basal
bodies, although a contribution of the other Kat2 fragment(s) cannot be excluded.

To investigate if Kat2 fragments containing LisH and CTLH can bind to microtubules, we performed
an in vitro microtubule-binding assay. The Kat2-HA M1-T139 and Kat2-HA M1-L194 truncations,
the Kat2-HA E347Q mutant, and full-length Kat2-HA were purified from the cytosolic fraction of
overexpressing cells using an anti-HA resin and were incubated with polymerized microtubules. Based
on Western blots, full-length Kat2-HA was observed in the microtubule-bound fraction (Figure S8A).
Similar results were obtained with Kat2-HA E347Q, carrying a mutation within the AAA domain.
Under the same experimental conditions, both truncated fragments—Kat2-HA M1-T139 and Kat2-HA
M1-L194—pelleted, even without microtubules, probably due to their oligomerization or aggregation.
However, the amounts of truncated Kat2 in the pellets without microtubules were significantly lower
than in the samples containing microtubules (Figure S8B). Therefore, we cannot exclude the possibility
that LisH- and CTLH-containing fragments can bind to microtubules.

In other proteins, LisH plays a role in protein dimerization (oligomerization) and
stability [3,16–18,20]. The I33 and L37 residues of Kat2 correspond to the residues that, in other
proteins, are important for LisH domain-mediated dimerization and stability [3,20]. To evaluate the
significance of a LisH domain in Kat2 protein, we performed side-directed mutagenesis and substituted
two amino acids in a LisH domain (I33, L37) by arginine residues (I33R, L37R). Overexpressed Kat2-HA
I33R L37R was present at a lower level compared to overexpressed Kat2-HA, and was mostly detected
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within the cell body, but also near the basal bodies and in some cells in cilia (Figure 5A–B’ and
Figure S7F).
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Figure 5. LisH domain plays a role in protein stabilization. (A) A Western blot comparative analysis of
the levels of Kat2-HA and Kat2-HA I33R L37R in the cytoskeletal and total extracts of cells overexpressing
one of these proteins. Corresponding fractions isolated from the wild-type cells (WT) were included as
a control of the anti-HA antibody specificity. Tubulin (recognized by the 12G10 monoclonal antibody)
was used as a loading control. (B,B’) Confocal images of the mixed cells overexpressing either Kat2-HA
or Kat2-HA I33R L37R. Before fixation, cells expressing Kat2-HA were cultured for 10 min in SPP
medium supplemented with an India ink and thus have dark food vacuoles. Note the lower signal
of the mutated Kat2-HA I33R L37R protein compared to Kat2-HA (cell with dark vacuoles). (B,B’)
show the same cells, but on (B’) cells, were overexposed to enhance the signal of Kat2-HA I33R L37R.
(C) A Western blot analysis of the level of Kat2-HA I33R L37R in total and cytoskeletal extracts of
cells overexpressing this protein and treated with MG132 (+), a 26S proteasome inhibitor, or with 0.4%
DMSO (−). Tubulin was used as a loading control. Note that MG132 treatment increases the total
amount of Kat2-HA I33R L37R, but does not visibly affect the amount of Kat2-HA I33R L37R in the
cytoskeletal fraction. (D,D’) Immunofluorescence confocal images of cells overexpressing Kat2-HA
I33R L37R for 6 h and treated with MG132 (+MG132) or with 0.4% DMSO (control, labeled with an
India ink before fixation and thus having dark food vacuoles). Cells were mixed on the cover slip and
fixed. (D,D’) show the same cells, but on (D’) cells, were overexposed to enhance the signal of Kat2-HA
I33R L37R. Note an increased level of the Kat2-HA I33R L37R in MG132-treated cells. Bar = 10 µm.

In the cases of LIS1, TBL1, OFD, and muskelin, mutations within LisH reduced the protein
half-life time [3,20]. Therefore, we investigated whether inhibition of the 26S proteasome-dependent
degradation would increase the levels of Kat2-HA I33R L37R. The proteasome inhibitor, MG132
(200 µM final), was added to the cell culture 2 h after induction of the protein overexpression.
Side-by-side immunofluorescence of the MG132-treated cells and control cells treated with 0.4% DMSO
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showed that MG132 increased the levels of Kat2-HA I33R L37R-HA in Tetrahymena cells (Figure 5C–D’).
Interestingly, MG132 treatment did not apparently increase the levels of Kat2-HA, Kat2-HA M1-T139,
Kat2-HA M1-L194, or Kat2-HA M101-V539 (data not shown). Taken together, it is most likely that
the LisH domain of Kat2 plays a role in protein stability and perhaps in co-localization with the
basal bodies.

3.4. LisH Domain Mediates Kat2 Dimerization

To investigate whether LisH-CTLH mediates Kat2 dimerization, we tested whether Kat2
truncations can interact with each other and with full-length Kat2. Tetrahymena cells overexpressing (4 h)
one of the following fusion proteins—Kat2-HA, Kat2-HA-I33R L37R, Kat2-HA M1-T139-HA, Kat2-HA
M1-L194-HA, or Kat2-HA M101-V539-HA—were incubated for 75 min at 30 ◦C in Dryl’s solution
supplemented with either 0.8% DMSO (control) or 0.8 mM EGS (ethylene glycol bis(succinimidyl
succinate))—a cell-permeable crosslinker that forms a cleavable 12-atom spacer arm [39]. In vivo
cross-linked Kat2 complexes in both cytoskeletal and supernatant fractions were analyzed by Western
blot. In contrast to DMSO-treated controls, in fractions purified from Kat2-HA- or Kat2-HA I33R
L37R-overexpressing cells treated with EGS, we detected additional HA-positive bands co-migrating
with 130 and 180 kDa size markers (Figure 6A,B and Figure S9A,B). Bands of a similar size were
detected using anti-tubulin antibodies (Figure 6C and Figure S9C). The predicted molecular mass
of Kat2 is ~60 kDa. The molecular masses of α- and β-tubulin are both ~50 kDa, but in vivo, are
likely to be higher due to tubulin posttranslational modifications. Because Tetrahymena Kat2-HA
co-localizes with microtubules, the ~130 kDa HA-positive band could represent a Kat2-HA dimer or a
tubulin monomer/Kat2-HA complex, while the ~180 kDa band could represent a complex composed of
Kat2-HA and a tubulin heterodimer.

The hypothesis that Kat2-HA or Kat2-HA and tubulin are the main components of the detected
complexes is supported by co-immunoprecipitation data. Mass spectrometry analyses revealed
that, besides Kat2, only α- and β-tubulins were repeatedly detected when the full-length Kat2-HA
was immunoprecipitated from the cytoskeletal fraction obtained from Kat2-HA-overexpressing cells
(Table S2).

In the presence of EGS, several HA-positive bands of a higher molecular mass (~130–180 kDa) were
also detected in the cytoskeletal and supernatant fractions isolated from cells overexpressing Kat2-HA
M101-V539-HA, a 49 kDa LisH-less fragment of Kat2 (Figure 6A,B and Figure S9A,B). These bands were
smaller when compared to the HA-positive bands detected in cells overexpressing a full-length protein.
Interestingly, tubulin-positive complexes detected in Kat2-HA M101-V539-HA-overexpressing cells
seemed to migrate in a similar way to tubulin-positive complexes in cells overexpressing full-length
Kat2-HA (Figure 6C and Figure S9C). Together, these data suggest that at least some of the HA-positive
bands likely correspond to Kat2-HA dimers/oligomers and that the lack of an N-terminal fragment
does not exclude Kat2-HA dimerization/oligomerization—perhaps via an AAA domain. Interactions
via an AAA domain could also explain why Kat2-HA I33R L37R forms complexes. Alternatively,
HA-positive bands can correspond to the complexes composed of Kat2-HA and unknown protein(s)
that were not identified in an immunoprecipitation assay.

In the presence of EGS, higher molecular mass HA-positive complexes of about 38 and 55 kDa,
respectively (Figure 6D), were also detected in cells overexpressing either 16 kDa Kat2-HA M1-T139-HA
(D1) or 22 kDa Kat2-HA M1-L194-HA (D2) truncations. Parallel analyses using anti-α-tubulin antibodies
failed to detect tubulin-positive complexes with a molecular mass of 38 kDa (Figure 6E). Therefore, it is
possible that (i) Kat2-HA M1-T139-HA and 22 kDa Kat2-HA M1-L194-HA formed dimers and that (ii)
the N-terminal fragment containing LisH and CTLH can also mediate Kat2 interactions.
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Figure 6. LisH domain mediates the formation of Kat2-HA complexes. (A–E) A Western blot-based
identification of the HA-positive complexes (A,B,D) formed either in the cytoskeletal or supernatant
(SN) fractions isolated from Tetrahymena cells overexpressing Kat2-HA (K), Kat2-HA M1-T139 (D1),
Kat2-HA M1-L194 (D2), or Kat2-HA M101-V539 (D3) for 4 h. For in vivo crosslinking, overexpressing
cells were resuspended in Dryl’s solution supplemented with 0.8 mM ethylene glycol bis(succinimidyl
succinate) (EGS) (EGS+) and cultured for 75 min. at 30 ◦C. Control cells (EGS−) were incubated in
Dryl’s medium supplemented with a corresponding concentration of DMSO (0.8%). (B,C) Whole blots
are presented in Figure S9A–C.

We performed similar analyses using crosslinkers that stabilize potential complexes in vitro:
glutaraldehyde [31] and a zero-length crosslinker, EDC (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride) [40]. In the first set of experiments, we induced Tetrahymena cells
to overexpress one of the following polypeptides: Kat2-HA, Kat2-HA I33R L37R, Kat2-HA M1-T139,
Kat2-HA M1-L194, or Kat2-HA M101-V539. Isolated cytoskeletal and supernatant proteins were
incubated either for 30 min on ice with 0.02% glutaraldehyde, or for an hour with 2.5 mM EDC at room
temperature. When cross-linked proteins were analyzed by Western blotting using anti-HA antibodies,
we detected additional bands of about 130 and 180 kDa and larger, in samples isolated from cells
expressing Kat2-HA or Kat2-HA I33R L37R, and about 38 and 55 kDa HA-positive bands in protein
extracts obtained from cells expressing Kat2-HA M1-T139 and Kat2-HA M1-L194, respectively (Figure
S9D–F and data not shown). Therefore, the use of in vitro and in vivo cross-linkers yields similar
results. Surprisingly, higher-molecular mass HA-positive complexes were not detected if cytoskeletal
and supernatant proteins isolated from cells overexpressing Kat2-HA M101-V539, a LisH-CTLH less
fragment of Kat2, were incubated with glutaraldehyde or EDC (Figure S9D and data not shown).
We hypothesize that once isolated, Kat2-HA M101-V539 complexes were unstable and prone to fast
disintegration or formed aggregates that did not enter the gel.

To further investigate if an N-terminal fragment containing LisH and CTLH can mediate the
dimerization/interaction of Kat2, we tested whether LisH- and CTLH-containing truncations can
interact with full-length Kat2 proteins. We co-overexpressed full-length Kat2-2V5 and truncated
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variants of Kat2 fused with HA tag. When expressed alone, Kat2-HA M1-T139 and Kat2-HA M1-L194
localized mainly near the basal bodies (Figure 7A,E and Figure S7A,B,H–I’). When HA-tagged Kat2-HA
M1-T139 or Kat2-HA M1-L194 truncations were co-overexpressed with full-length Kat2-2V5, their
localization overlapped. Both full-length specimens and truncations were present near basal bodies and
in growing cilia (Figure 7B–D,F–H), suggesting an interaction between the HA-tagged Kat2 truncations
and the full-length Kat2-2V5. Surprisingly, in co-overexpressing cells, the microtubules supporting
radial rootlets of the contractive vacuoles were no longer decorated by full-length Kat2-2V5.
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Figure 7. Co-overexpression of full-length Kat2-2V5 and HA-tagged Kat2 truncations causes the
re-localization of proteins. Immunofluorescence confocal images of cells overexpressing either only
C-terminally HA-tagged Kat2 truncations: (A) Kat2-HA M1-T139, (E) Kat2-HA M1-L194, or (I) Kat2-HA
M101-V539, or co-overexpressing full-length Kat2-2V5 and HA-tagged Kat2 truncations: Kat2-HA
M1-T139 (B–D), Kat2-HA M1-L194 (F–H), or Kat2-HA M101-V539 (J–L). Cells were stained with
anti-HA (A,B,E,F,I,J) and anti-V5 (C,G,K) antibodies. (D,H,L) Merged images. Note that the pattern of
co-overexpressed proteins overlaps (D,H,L). White arrows point to the fibers specifically present in
cells overexpressing Kat2 M101-V539. Bar = 10 µm.

The co-overexpression of the full-length Kat2-2V5 and Kat2-HA M101-V539 fragment missing
LisH and CTLH caused the partial mislocalization of full-length Kat2-2V5 and its association with
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fibers specifically decorated with Kat2-HA M101-V539 (Figure 7J–L, compared with Figure 7I, fiber-like
structures indicated by white arrows).

Taken together, it seems that Kat2 can form complexes, and that these interactions can be
mediated by both an N-terminal protein fragment containing LisH-CTLH domains and a C-terminal
AAA domain.

4. Discussion

Among all katanin-related enzymes, the Katnal2 protein is the most enigmatic. Despite the high
similarity within the AAA catalytic domain to the canonical katanin p60, the ability of the Katnal2
protein to sever microtubules was not demonstrated in vitro, while in vivo data are contradictory.
While the overexpression of GFP-Katnal2 in HeLa cells did not visibly affect the microtubule network [6],
the depletion of murine Katnal2 in NIH3T3 cells caused an increase in tubulin acetylation, suggesting an
elevated microtubule stability [5]. In contrast, in Tetrahymena, the knockout of KAT2 had no detectable
effect on the phenotype of Tetrahymena cells, including the rate of cell proliferation, level of microtubule
acetylation, and ciliary functions (our data not shown and Figures S3–S5 in [4]). Moreover, we did not
observe a reduction of the microtubule signal upon the overexpression of Kat2-HA. However, it is
possible that the impact of Kat2 on microtubules is subtle or highly spatially restricted. Therefore, it
remains to be established whether Tetrahymena Kat2 and orthologs function as microtubule-severing
proteins or/and play the role of microtubule-interacting proteins, affecting microtubule dynamics in a
severing-independent manner.

Unlike other microtubule-severing proteins, Katnal2 orthologs have a LisH domain instead of a
MIT domain, followed by a short conserved helical region in their N-terminal ends. LisH is a conserved
alpha-helical domain present in numerous eukaryotic proteins [15,20] and was shown to mediate
protein subcellular localization, dimerization (oligomerization), and stability. For example, in LIS1, an
N-terminal region containing LisH, along with the region predicted to form a coiled-coil region, are
required for protein homodimerization [16,41]. Mutations within the LisH domain of LIS1, TBL1, and
OFD1 cause protein mislocalization and reduce their stability [20]. Similarly, the LisH domain of FOP1
(fibroblast growth factor receptor 1 (FGFR1) oncogene partner) and muskelin is involved in protein
dimerization [3,17], and the LisH-containing fragment is also important for FOP1 localization to the
centrosome [17].

In Tetrahymena, Kat2 expressed as N-terminal GFP fusion did not co-localize with the microtubular
structures [4], while Kat2-GFP (our unpublished data) and Kat2-HA proteins co-localized with
microtubular structures, including cilia and basal bodies. Therefore, it is likely that GFP positioned at
the N-terminal end interferes with Kat2 targeting—either by changing protein conformations or by
affecting interactions with other proteins. We have shown that fragments of Kat2 containing LisH and
CTLH are targeted to the basal bodies, while Kat2 lacking the N-terminal region containing LisH and
CTLH is partly mislocalized. Therefore, LisH domain-containing fragments could play a role in the
targeting of Kat2 to the basal bodies. Basal bodies are homologous to the centrioles of the centrosome.
The centrosomal localization of FOP requires an 80-amino acid region containing LisH [17]. On the
other hand, the centrosomal localization of another LisH-containing protein, OFD1, is not influenced
by LisH [42].

When co-expressed with full-length Kat2, localization of the N-terminal LisH and CTLH
domain-containing fragments resembled the localization of a full-length protein, suggesting an
interaction between Kat2 and the truncated version, most likely mediated by the LisH-dependent
dimerization. Therefore, in Kat2—like in other proteins—LisH and CTLH may mediate protein
dimerization. On the other hand, in the presence of the truncation that lacks an N-terminal fragment, the
co-expressed, full-length Kat2 is partly mislocalized and resembles the localization of the co-expressed
truncated form. Based on the obtained data, we hypothesize that the N-terminal end is not the
sole region that enables the formation of Kat2 complexes, but that the C-terminal AAA domain also
mediates protein interactions, as is the case of other AAA domain-containing proteins [43,44], and
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as has been suggested for Katnal2 [5]. If so, Katnal2 proteins may form complexes via both the
LisH–CTLH domains and via the AAA domain. It remains to be determined whether these interactions
occur simultaneously or are mutually exclusive.

Finally, our observations suggest that Kat2 with mutations in LisH is prone to degradation.
Structural studies showed that I15R and L19R substitutions within the LisH domain of LIS1 (see
Figure S2 [20])—or the corresponding amino acid residues, C180 and F184, in muskelin [3]—affect
protein dimerization and reduce their half-life. Similarly, when the corresponding amino acid residues,
I33 and L37 were mutated in Kat2, the mutant protein was detected at a very low level and the amount
of mutated protein increased when the cells were treated with an inhibitor of the 26S proteasome.
Therefore, an LisH-dependent formation of Kat2 dimers or oligomers would possibly reduce the rate
of protein degradation.

In Xenopus embryos with depleted Katnal2, the multiciliated epidermis cells assembled fewer
and shorter motile cilia [7]. In contrast, in Trypanosoma brucei and Leishmania major, mildly shortened
flagella were observed in the cells that ectopically expressed Katnal2, while the RNAi-based reduction
of the Katnal2 level had no obvious effect on the length of flagella in Trypanosoma [8]. In murine cells
assembling primary cilia, both the depletion and overexpression of Katnal2 reduced ciliogenesis [5].
Tetrahymena cells, either overexpressing or lacking Kat2, assembled cilia in a similar number and of a
similar length to wild-type cells (our unpublished data).

Interestingly, Kat2 expressed under the control of the native promoter migrates more slowly
in SDS-PAGE gel compared to overexpressed Kat2. It is tempting to speculate that, under native
conditions, Kat2 is post-translationally modified and—in the case of overexpressed Kat2—the amount
of protein is too large to be effectively modified. If so, the unmodified Kat2 might be inactive or not
fully active, and thus has no apparent effect on the cell phenotype.

Like in Trypanosoma and Leishmania, Tetrahymena Kat2 is most prominent at the cilia tip. It
is possible that Kat2 may regulate the cilium length by modulating the dynamics of the plus
ends of ciliary microtubules. Here, we have shown that Kat2 preferentially co-localizes with
glutamylated microtubules. In cilia and flagella, only B-tubules of the peripheral doubles are
highly glutamylated [45–47]. Therefore, Kat2 may regulate the elongation/dynamics of the plus end
of B-tubules.
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