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Metabolic syndrome (MetS) represents a complex cluster-
ing of cardiometabolic traits, including hypertension, 

insulin resistance, glucose intolerance, and dyslipidemia, all of 
which increase the risk of developing type 2 diabetes mellitus 
and cardiovascular disease.1 Despite established environmental 
risk factors and genome-wide association study (GWAS) hits 
that link genetic variation to MetS constituents, the molecular 
and cellular events underlying its development remain incom-
pletely understood.2,3

Chronic low-grade inflammation and innate immune sys-
tem overactivation are now recognized causes of type 2 diabe-
tes mellitus and MetS.4,5 In particular, the alternative pathway 
(AP) has received attention for its potential causal role in 
cardiometabolic disease.6 AP activation requires CFB (com-
plement factor B) to bind C3 to form C3B, which opsonises 

pathogens and contributes to the formation of the membrane 
attack complex.6 Thus, CFB is fundamental to pathogen clear-
ance and host cell apoptosis. However, increased circulating 
CFB has been found in patients with type 2 diabetes mellitus,7 
and expression of adipose tissue CFB correlates significantly 
with fasting glucose and circulating lipids.8 Elevated circulat-
ing CFB has also been found to increase the risk of endothelial 
dysfunction9 and coronary heart disease.10

Because of the complex genetic basis of human MetS, the 
spontaneously hypertensive rat (SHR), which exhibits hyper-
tension, insulin resistance, and dyslipidemia, has been exten-
sively studied as a MetS model.11–13

Multiple studies have identified SHR genes associated 
with features of MetS, many of which show conserved pathol-
ogies in humans.14–17
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The rat Cfb gene resides within the major histocompat-
ibility region on chromosome 20p12.18 In SHR, this region 
has been demonstrated to be important in blood pressure 
regulation,19 serum cholesterol, adiposity, and glucose toler-
ance.20,21 In this study, we knocked out Cfb in SHR to test the 
hypothesis that Cfb is necessary for the full expression of car-
diometabolic pathophysiological traits in this model of MetS.

Methods
Detailed methods are available in the online-only Data Supplement.

Rats
Cfb−/− rats were generated using SHR/NCrl rats (Charles River, Margate, 
United Kingdom), by microinjecting Zinc-finger nuclease (ZFN) 
mRNA (Sigma), targeted to exon 6 of Cfb (target sequence: CCCCT 
CGGGCTCCATGaatatcTACATGGTGCTGGATG), into 1-cell stage 
SHR/NCrl embryos that were implanted into pseudopregnant rats. 
Heterozygous progeny, from a founder harboring a 19-base pair dele-
tion in Cfb, were intercrossed to homozygosity. A search for off-target 
events, conducted by whole genome sequencing confirmed the 19-base 
pair deletion. Six additional putative mutations, analyzed by Sanger 
Sequencing, were determined to be false positives (Table S1). Rats 
were housed with free access to food and water. All procedures were 
performed in accordance with UK Home Office regulations.

Statistics
Unpaired t test or 2-way ANOVA (Minitab Express) were used to 
assess differences between genotype and treatment. All results are 
mean±SEM. P<0.05 was considered significant.

Results
Generation of a Cfb Knockout Rat
Using data from a quantitative trait transcript analysis of recom-
binant inbred strains derived from a SHR×Brown Norway (BN-
Lx/Cub) cross,22 we identified Cfb transcript levels as uniquely 
and strongly correlated significantly across the recombinant 
inbred strains for metabolically relevant traits (glucose uptake 
in isolated adipocytes, r2=−0.65, P

(adj)
=0.0003; basal lipogenesis 

in epididymal fat, r2=−0.64, P
(adj)

=0.0002; serum high-density 
lipoprotein cholesterol, r2=−0.64, P

(adj)
=0.0005) and signifi-

cantly differentially expressed in adipose tissue between paren-
tal strains (SHR versus Brown Norway, 1.47-fold P

(adj)
<0.05). 

Overexpression in SHR adipose tissue was confirmed by quanti-
tative polymerase chain reaction by comparing a further insulin 
sensitive/normotensive Wistar Kyoto strain (WKY/NCrl; Figure 
S1A). Cfb was also overexpressed in SHR left ventricle (LV), 
but not liver, compared with WKY (Figure S1A). Cfb over-
expression in SHR was associated with increased AP activity 
compared with WKY (Figure S1B). Analysis of the Cfb gene 
and its adjacent region revealed 14 variants unique to SHR, not 
present in Brown Norway or WKY; 2 variants reside upstream 
of the transcription start site (Figure S1C). To investigate the 
potential causative role of Cfb in the cardiometabolic traits of 
SHR, a 19-base pair deletion in exon 6 of the Cfb gene in the 
SHR germline was made using ZFNs (Figure S1D). Abolition of 
Cfb expression was confirmed by quantitative polymerase chain 
reaction and immunoblot (Figure S1E), and loss of Cfb function 
was confirmed by ablation of serum AP activity (Figure S1F).

Glucose Homeostasis
To test whether Cfb ablation affected glucose homeostasis in 
SHR, oral glucose tolerance and insulin sensitivity (IVITT 

[intravenous insulin tolerance test]) were assessed. Fasting 
plasma glucose concentration in Cfb−/− was significantly 
lower than SHR (Figure 1A; SHR, 4.62±0.10 versus Cfb−/−, 
4.25±0.09; P=0.013). Throughout the oral glucose tolerance, 
blood glucose remained lower, and area under the glucose curve 
was significantly reduced in Cfb−/− compared with SHR; insulin 
concentrations were similar in both groups (Figure 1A and 1B). 
Together with the G:I ratio (ratio of area under the curve of 
plasma glucose concentration to area under the curve of plasma 
insulin concentration; Figure 1C), this indicated an improve-
ment in insulin sensitivity, further demonstrated in IVITTs by a 
significant 48% increase in insulin-stimulated glucose disposal 
(K

ITT
) in Cfb−/− compared with SHR (Figure 1D).

Adipose Tissue Function
To determine whether Cfb affects adipose function, as sug-
gested by our previous quantitative trait transcript analy-
sis and metabolic phenotyping, we measured adipose tissue 
depots masses. Relative wet masses of visceral (epididymal 
adipose tissue [EAT]; mesenteric adipose tissue [MAT]; and 
retroperitoneal adipose tissue) and brown fat (brown adipose 
tissue [BAT]) were significantly reduced in Cfb−/− rats com-
pared with SHR, despite similar total body mass (269±20 
versus 265±31 g; P>0.05; Figure 2A); however, Cfb−/− had 
significantly more relative subcutaneous fat (SAT; Figure 
2A). Overall, total fat mass was similar (SHR, 42.9±1.4 ver-
sus Cfb−/−, 42.8±1.4 g/kg; P>0.05). Stereological analysis 
of EAT showed that Cfb−/− had significantly fewer, similar-
sized adipocytes than SHR (SHR, 4.06±0.21 versus Cfb−/−, 
4.13±0.32×105 μm3 P>0.05; Figure 2B). Further, serum anal-
ysis of circulating lipids and adipokines demonstrated signifi-
cant decreases in levels of cholesterol, triglycerides, and high 
molecular-weight adiponectin (−Δ48%), in Cfb−/− compared 
with SHR; however, circulating total adiponectin and leptin 
were similar (Table S4).

Given the varied metabolic contributions of different fat 
depots found in the Cfb−/− rat, we analyzed transcript abundance 
for markers of oxidation (Cpt1 and Aco1), beigeing (Ucp1 and 
Pgc1a), insulin sensitivity (Slc2a4), lipid metabolism (fatty acid 
synthase [Fasn]), and adipokines (Adipoq and Lep). In EAT, 
Pgc1a, Cpt1, Aco1, and Slc2a4 were significantly increased in 
Cfb−/− compared with SHR (Figure 2C). In SAT, Aco1, Ucp1, 
Fasn, and Adipoq were significantly elevated, whereas Pgc1a 
was reduced, in Cfb−/− compared with SHR (Figure 2D). In 
BAT, Pgc1a and Slc2a4 were significantly increased in Cfb−/− 
compared with SHR, whereas Ucp1 and Fasn were signifi-
cantly decreased (Figure 2E). Lep was significantly reduced in 
all Cfb−/− depots compared with SHR (Figure 2C through 2E).

To determine whether transcript changes were associated 
with altered adipose tissue respiration, we analyzed epididy-
mal adipocyte metabolic rate. Maximal and basal respiratory 
rates were significantly greater in Cfb−/− than in SHR, +Δ1.64, 
and +Δ1.96-fold, respectively (Figure 2; Figure S2A). Further, 
reserve capacity and leak respiration were both significantly 
increased (Figure S2B and S2C). However, ATP-linked respira-
tion and ATP-generation efficiency were similar (Figure S2D 
through S2E). CoxIV protein abundance—a mitochondrial 
marker—was similar in both Cfb−/− and SHR (Figure S2F).

There were no differences in body temperature or activity 
associated with Cfb deletion (Figure S3A and S3B).
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Cardiovascular Analyses
Cfb deletion reduced relative LV mass and cardiomyocyte diam-
eter by 10% compared with SHR; however, relative heart weight 
was similar between genotypes (Figure 3A and 3B; Figure S4A 
and S4B). Telemetrically measured systolic and diastolic blood 
pressures were significantly lower (−Δ7 mm Hg) in Cfb−/− than 
in SHR, and although heart rate was similar, rate pressure prod-
uct was significantly reduced (Figure 3C and 3D; Figure S4C 
through S4F). Serum aldosterone and transcripts for renal renin 
and hepatic angiotensinogen were all significantly reduced in 
Cfb−/− rats (Table S4, Figure S5A and S5B).

Early structural and functional changes in the heart were 
investigated using echocardiography. We confirmed that rela-
tive LV mass was significantly reduced in Cfb−/− compared with 
SHR; however, at this stage, LV wall thickness was not signifi-
cantly different (Table S5). Functionally fractional shortening 
and ejection fraction were significantly increased in Cfb−/− LV 
compared with SHR (Table S5). Given the similar heart rate and 
stroke volume, cardiac output was not significantly different 
(Table S5).

An acute hypertrophic challenge designed to investigate 
whether Cfb deletion conferred protection from cardiac stress, 

independent of blood pressure, showed that the rate pressure 
product was significantly reduced in Cfb−/− hearts in the 24 hours 
after isoproterenol treatment (Figure 3E and 3F; Figure S6A). 
Isoproterenol increased relative heart and LV mass similarly 
(Figure S6B and S6C). Transcripts related to cardiac hypertrophy 
were investigated in LV from isoproterenol and saline-treated 
rats. In saline-treated Cfb−/− rats, Nppa, Actc1, and Camk2d were 
significantly increased compared with SHR (Figure 4A, 4C, and 
4E); whereas Nppb was significantly decreased (Figure 4B). In 
isoproterenol-treated rats, Nppb increased marginally in Cfb−/− 
rats compared with SHR (Figure 4B). Acta1 in isoproterenol-
treated Cfb−/− rats was similar to both saline-treatment groups 
(Figure 4F). The ratio of Actc1:Acta1 was significantly greater in 
Cfb−/− compared with SHR, in saline-treated (317±43 versus 
138±18; P=0.05) and isoproterenol-treated rats (256±37 ver-
sus 53±9; P<0.005). Myh6 and Myh7 expression was similar 
between genotypes (Figure 4D; Figure S7).

Serum Markers of Inflammation
Given the function of Cfb in inflammatory responses, we 
determined the effect of Cfb−/− on Th-1 mediated inflamma-
tion by quantifying serum concentrations of cytokines (Il-2, 

Figure 1. Glucose homeostasis. A, 
Glucose concentration curve during 
oral glucose tolerance (OGTT; inset, 
area under the curve, area under the 
curve (AUC), glucose. B, Plasma insulin 
concentration curve of OGTT (inset; area 
under the curve insulin). C, G:I ratio, 
(AUCglucose:AUCinsulin). D, Insulin-stimulated 
glucose clearance (KITT). Spontaneously 
hypertensive rat (SHR), filled bars/
circles, Cfb−/−, open bars/circles. *P<0.05, 
**P<0.01, ***P<0.005. G:I indicates 
ratio of area under the curve of plasma 
glucose concentration to area under the 
curve of plasma insulin concentration.
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Il-6, Il-10, granulocyte macrophage colony stimulating fac-
tor, Ifn-γ, and Tnfα). We found significant decreases in serum 
concentrations of Il-10 and Ifn-γ in Cfb−/− rats compared 
with SHR. In addition, whereas Il-6 and Tnfα were detected 
in SHR, the cytokines were undetectable in sera from Cfb−/− 
rats. Granulocyte macrophage colony stimulating factor was 
similar in both groups, and in neither group was Il-2 detected 
(Table S4).

Analysis of GWAS Hits and cis-Expression QTLs  
at the Human CFB Locus
To determine whether genetic variants near CFB are associ-
ated with metabolic and cardiovascular disorders relevant 
to MetS (Table S3), we mined the NHGRI GWAS catalog 

(National Human Genome Research Institute) and located 18 
single-nucleotide polymorphisms (SNPs) associated with car-
diometabolic traits ≤1 Mb from CFB (Figure 5; Table S6). Six 
SNPs were found to be associated with type 2 diabetes mel-
litus, MetS, or visceral fat. Six further SNPs were related to 
circulating lipids. The remaining SNPs were associated with 
coronary heart disease and hypertension (Table S6).

We also investigated whether variants at the CFB locus 
are associated with CFB expression by mining GTEx datasets 
(the Genotype-Tissue Expression project) for CFB cis-expres-
sion quantitative trait loci (QTLs). Fifty-three SNPs were 
associated with CFB expression in 4 tissues (Figure 5; Table 
S7). One SNP, rs76846904, close to the HLA-DRB5 gene, is 
highly correlated with CFB gene expression in subcutaneous 

Figure 2. Adipose tissue and adipocyte 
morphometry, gene expression, and 
respiratory capacity. A, Adipose tissue 
wet masses, including subcutaneous 
(SAT), epididymal (EAT), retroperitoneal 
(RAT), mesenteric (MAT), and brown (BAT; 
n=6 per group). B, Epididymal mean cell 
number (n=6 per group). C, EAT, (D) SAT, 
(E) BAT gene expression levels in Cfb−/−, 
normalized to Actb (n=5 per group). F, 
Maximal respiratory rates in primary 
epididymal adipocytes. Spontaneously 
hypertensive rat (SHR), filled bars, Cfb-/-, 
and open bars. Aco1 indicates aconitase 
1; Adipoq, adiponectin; Cpt1, carnitine 
palmitoyltransferase I; Fasn, fatty acid 
synthetase; normalized expression, gene 
of interest normalized to β-actin; Lep, 
leptin; Pgc1a, peroxisome proliferator-
activated receptor gamma coactivator 
1 alpha Slc2a4, solute carrier family 2 
member 4; and Ucp1, uncoupling protein 
1. *P<0.05, **P<0.01, ***P<0.005.
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adipose tissue (effect size, 0.78; P=0.000015) and within 100 
kb of GWAS hits for visceral adiposity, serum cholesterol, and 
coronary heart disease.

The influence of the 18 GWAS SNPs, or any of their proxies 
(a total of 280 SNPs), on gene expression across 9 tissues was 
investigated using the GTEx Portal. Four SNPs were significantly 
associated (false discovery rate<0.05) with CFB expression in tis-
sues of interest (Figure 5; Tables S6 and S7). Two SNPs, correlat-
ing with CFB expression in “adipose subcutaneous” and “artery 
aorta”, respectively, are proxies for rs13196329 and rs2247056, 
which are associated with visceral fat and triglycerides in the 
GWAS catalog (Table, Figure 5). Two further SNPs were signifi-
cantly associated with increased CFB expression in “heart LV” 
and correspond to the same SNP (rs805303) that is associated 
with increased systolic and diastolic blood pressure and hyper-
tension in the GWAS catalog (Table; Figure 5).

Discussion
We tested the hypothesis that Cfb is necessary for the full 
expression of cardiometabolic pathophysiological traits in the 
SHR model of MetS. Through ZFN-mediated gene knockout, 
we showed that the Cfb-deficient (Cfb−/−) SHR has improved 
glucose tolerance and insulin sensitivity, along with favor-
able adipose tissue distribution, adipose oxidative capacity, 

and reduced circulating lipids and proinflammatory cytokines 
compared with parental SHR. Further, Cfb−/− rats had reduced 
blood pressure that was associated with increased ejection 
fraction and fractional shortening and reduced LV mass. The 
human CFB locus—a gene-rich region within the major histo-
compatibility complex—contains several GWAS hits for car-
diometabolic traits, including coronary heart disease, blood 
pressure, MetS, type 2 diabetes mellitus, serum lipids, and 
visceral fat. These colocalize with cis-expression QTLs asso-
ciated with expression of CFB in subcutaneous adipose tissue 
and other tissues, indicating that variation in CFB expression 
may underlie, in part, the GWAS hits at this locus.

Glucose intolerance, insulin resistance, visceral adiposity, 
and dyslipidemia are the key metabolic features of MetS that 
increase the risk of type 2 diabetes mellitus.23 In our study, 
Cfb−/− rats had reduced visceral but increased subcutaneous 
fat. To investigate potential molecular changes associated 
with favorably altered fat distribution and ameliorated glu-
cose homeostasis in Cfb−/− rats, we investigated transcripts 
central to adipose tissue metabolism. Reduced EAT mass in 
Cfb−/− rats was because of reduced adipocyte number rather 
than altered adipocyte volume. Pgc1a, Cpt1, and Aco1 were 
upregulated in Cfb−/− rats, suggestive of increased adipocyte 
oxidative phosphorylation, which we confirmed by Seahorse 

Figure 3. Left ventricle morphometry, blood pressure, and rate pressure product before and after 72-h infusion of isoproterenol or 
saline. A, Left ventricle wet mass and (B) mean left ventricular cardiomyocyte diameter. C, baseline mean systolic blood pressure and 
(D) rate pressure product recorded telemetrically. E, Mean systolic blood pressure and (F) rate pressure product recorded telemetrically 
during infusion of isoproterenol or saline. Black-filled bars, spontaneously hypertensive rat (SHR), saline-treated; stripe-filled bars, SHR, 
isoproterenol-treated; white-filled bars, Cfb-/-, saline-treated; hatch-filled bars, Cfb-/-, isoproterenol-treated. Differences in genotype 
*P<0.05, ***P<0.0005 or treatment †P<0.05, ††P<0.005, †††P<0.0005.
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analysis. Cfb−/− rats exhibited a marked increase in basal and 
maximal respiration and had a 2-fold increased reserve respi-
ratory capacity. Taken together with the reduction in adipocyte 
number, the data suggest that the elevation of mitochondrial 
respiratory capacity may provide an adipose tissue-intrin-
sic mechanism for reduced fat accumulation in Cfb−/− EAT. 
In SAT, increased mass in Cfb−/− rats was associated with 
increased Fasn and reduced Pgc1a expression, consistent 

with the function of Fasn as an insulin-sensitive fatty acid 
synthase, the role of Pgc1a in stimulating fatty acid oxida-
tion, and the known upregulation of FASN in human obesity 
and type 2 diabetes mellitus.24 These changes seemed to over-
ride the increases in Aco1 and Ucp1 expression observed in 
Cfb−/− rats, which would be expected to reduce adipocyte 
mass through increased trichloroacetic acid cycle activity and 
thermogenesis. The redistribution of visceral to subcutaneous 

Figure 4. Gene expression levels in left 
ventricles after 72-h isoproterenol or saline 
treatment. A, Nppa, natriuretic peptide a, (B) 
Nppb, brain natriuretic peptide, (C) Camk2d, 
calcium/calmodulin dependent protein 
kinase II delta Myh6, (D) Myh7, myosin heavy 
polypeptide 7, (E) Actc1, α-cardiac actin, (F) 
Acta1, α-skeletal actin. Black-filled bars, SHR, 
saline-treated; stripe-filled bars, spontaneously 
hypertensive rat (SHR), isoproterenol-treated; 
white-filled bars, Cfb-/-, saline-treated; hatch-
filled bars, Cfb-/-, isoproterenol-treated. 
Differences in genotype *P<0.05, **P<0.005, 
***P<0.0005 or treatment †P<0.05, ††P<0.005, 
†††P<0.0005.
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fat marked changes in gene expression, and adipose respi-
ratory capacity are likely to be the key to improvements in 
whole-body glucose homeostasis and metabolic function in 
Cfb−/− rats. Reduced BAT mass in Cfb−/− rats was associated 
with increased Pgc1a and Slc2a4 and decreased Ucp1 and 
FASN expression. This fat reduction may be consistent with 
increased Pgc1a driving lipolysis although inhibiting fatty 
acid synthesis; however, further experiments in Cfb−/− rats will 
be required to understand the BAT energy-substrate balance 
resulting from Cfb deficiency.

To further investigate altered adipose function in the Cfb−/− 
rat, we quantified Lep and Adipoq transcripts in EAT, SAT, 
and BAT. Although adipose Lep expression was reduced, cir-
culating leptin was comparable in Cfb−/− and SHR. Although 
incompletely explained here, this could be accounted for by dif-
ferences in post-translational processing and release, or periph-
eral metabolism, of leptin. Despite increased Adipoq expression 
in SAT alone, circulating high molecular-weight adiponectin 

was reduced in Cfb−/− rats. Conversely, high molecular-weight 
adiponectin in humans is lower in obese, insulin-resistant com-
pared with lean, insulin-sensitive individuals.25 However, adi-
ponectin deficiency in mice has been shown to have no effect 
on glucose homeostasis on a normal diet.26,27 Further, infusion 
of adiponectin in high-fat fed SHRs only marginally reduced 
insulin levels without affecting energy expenditure or hyperten-
sion.28 Taken together with the observed metabolic improve-
ments, this suggests other mechanisms, besides adiponectin, 
drive insulin sensitization in the Cfb−/− rat.

We also tested the hypothesis that deletion of Cfb in SHR 
would affect the expression of SHR cardiovascular pheno-
types. In this study, we showed that Cfb−/− rats had reduced 
systolic and diastolic blood pressure, reduced LV mass and 
cardiomyocyte diameter, and an abrogated isoproterenol-
induced increase in rate pressure product. These alterations 
represent a marked amelioration in several of the key cardio-
vascular features of MetS manifested in SHR.

Figure 5. Cardiometabolic genome-wide association study (GWAS) hits and cis-eQTLs (quantitative trait loci) located in the human the 
complement factor B (CFB) locus. Eighteen relevant cardiometabolic single-nucleotide polymorphisms (SNPs) located <1 Mb from the 
boundaries of the human CFB gene (upper; red). Twenty-six SNPs were retrieved from the GTEx Portal that were found to be significantly 
associated with CFB expression (P<0.05), blue SNPs are associated with a significant negative effect, whereas red SNPs are associated 
with a significant positive effect. Four SNPs (with 1 overlapping) were determined to be correlated to both CFB expression, as well as 
being GWAS hits for relevant cardiometabolic traits (lower; red/blue). See Table S8 for a list of genes located in the CFB locus. 



Coan et al  Complement Factor B Knockout Rat  631

The reduction in blood pressure was associated with 
reductions in renin–angiotensin system components, suggest-
ing that Cfb may have a direct effect, yet unexplained, on this 
system, mediating blood pressure and subsequently LV mass. 
Although Cfb deletion leads to lower blood pressure in SHR, 
our experiments do not distinguish whether Cfb is responsi-
ble for increasing above or maintaining basal blood pressure. 
Further detailed experiments are required to distinguish these 
2 possible mechanisms.

To gain further insight into the molecular changes caused 
by Cfb deficiency in the heart, we investigated the effect of 
Cfb deletion on cardiomyogenic genes (ie, Nppa, Nppb, 
Myh6, Myh7, Acta1, and Camk2d), which are activated in 
response to stress.29 Our study showed that despite reduced 
LV mass, Camk2d expression was significantly increased in 
saline-treated Cfb−/−. CaMKII (calcium/calmodulin-depen-
dent protein kinase type 2) is proposed to regulate inflamma-
tion (Cfb, Tnfa, and Il-6) and cardiomyogenesis in response 
to hypertension-related pressure overload, β-adrenergic ago-
nists, or myocardial infarction-induced cell injury.30 Thus, Cfb 
may contribute to both cardiac inflammation and hypertrophy 
in response to stress, possibly through regulation of cardio-
myogenic gene expression. For example, we showed complete 
or near complete abrogation in Cfb−/− rats of the isoprotere-
nol-stimulated increase in Acta1 and Nppb expression seen in 
SHR. Further, Nppa expression was increased in both saline- 
and isoproterenol-treated Cfb−/−. Therefore, independent of 
blood pressure, the lack of compensatory Acta1 upregulation 
and the favourable Actc1:Acta1 ratio31 indicate that the Cfb−/− 
LV may be partially protected from compensatory cytoskeletal 
changes associated with LV dysfunction. Equally, abrogation 
of Nppb expression in the presence of isoproterenol indicates 
that the Cfb−/− LV is partly protected from stress. Further, 
upregulation of Nppa in Cfb−/− rats may, in part, contribute 
to the observed reduction in cardiomyocyte diameter and LV 
mass. Taken together, in Cfb−/− rats, upregulation of Nppa and 
abrogation of Acta1 expression in the presence of isoproter-
enol may indicate a blood pressure-independent mechanism 
for preserving LV function.

In addition to glucose metabolism and hypertension, we 
assessed the concentration of circulating lipids and Th-1 cyto-
kines and showed reduced cholesterol and triglycerides, as well 
as reduced proinflammatory cytokines in Cfb−/− rats. Some 
of the metabolic and immune parameters that we measured 
here have also been measured in a Cfb−/− mouse, although no 

cardiovascular measurements have been reported. Like the 
Cfb−/− rat, the Cfb−/− mouse lacks AP activity and has reduced 
Tnfα, Il-6, and Ifn-γ.32,33 Although having some immune 
similarities to the Cfb−/− rat, Cfb−/− mice compared with WT 
mice are more glucose intolerant and have higher circulating 
triglycerides.34 The differences between these 2 models could 
be because of several reasons, including genetic background 
affecting metabolism differently, the use of high-fat diet in 
the mouse studies to elicit a phenotype, and the presence of 2 
protein-coding Cfb transcripts in the mouse, whereas rats and 
humans have only one. On a high-fat diet, Ldlr−/−/Cfb−/− mice 
showed protection against atherosclerosis,35 which is distinct 
from the amelioration in metabolic and cardiovascular pheno-
types that we observed here. However, the 2 studies combined 
strongly encourage further investigation of Cfb as a target for 
protection from the development of cardiovascular disease.

Rat Cfb resides in chromosome 20p12, a region previously 
found to be important in the regulation of blood pressure, glu-
cose homeostasis, and adiposity in SHR.18–21 We propose that 
Cfb, at least in SHR, plays a major part in the development of 
key features of MetS that are linked to 20p12. However, given 
that the SHR.1N congenic that covers 20p12 has a reduction 
of 20 mm Hg, other genes in the region may also contribute.19

The location of human CFB and the syntenic region to 
the rat gene is on human 6p21.33.18 We located 18 SNPs with 
genome-wide significant associations to cardiometabolic 
traits ≤1 Mb from CFB. Several GWAS hits in the region were 
associated with type 2 diabetes mellitus and components of 
MetS. Two SNPs, rs13196329 and rs2247056, were correlated 
with visceral fat, triglycerides, and CFB expression. Further, 
1 SNP, rs805303, was significantly positively correlated with 
systolic and diastolic blood pressure, and hypertension, as 
well as with increased CFB expression. These results suggest 
that CFB expression associated with these SNPs may be caus-
ally linked to accumulation of visceral fat, circulating lipids, 
and development of hypertension in humans.

In addition to altering complement activity, Cfb ablation 
reduced proinflammatory cytokines Ifn-γ, Il-6, and Tnfα 
whose elevated levels are associated with hypertension, obe-
sity, and insulin resistance.36,37 Further, chronic low-grade 
inflammation and overactivation of the innate immune sys-
tem are now recognized causes of type 2 diabetes mellitus,4,5 
with clinical trials for therapeutic targets against inflammatory 
pathways for the treatment of diabetes mellitus and cardiovas-
cular disease currently underway.38

Table. cis-eQTL SNPs Significantly Correlated With CFB Gene Expression and GWAS Hits

SNP identifier
Distance  
From TSS

Nominal  
P Value

P Value 
(FDR)* Slope† Tissue Proxy/GWAS Hit

rs805303 −297084 0.0020 0.0489 0.226 heart left ventricle GWAS hit

rs805301 −295329 0.0020 0.0489 0.226 heart left ventricle proxy to rs805303

rs9264664 −674223 0.0012 0.0263 −0.224 artery aorta proxy to rs2247056

rs2858881
790395 0.0028 0.0408 0.387

adipose 
subcutaneous

proxy to rs13196329

CFB indicates Complement factor b; FDR, false discovery rate; GWAS, genome-wide association study; QTL, quantitative 
trait locus; SNP, single-nucleotide polymorphisms; and TSS, transcription start site.

*P value (FDR), P value after adjustment for false discovery rate.
†Slope of the correlation curve between SNP and CFB expression.
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Compounds that target CFB already exist, and taken together 
with the findings in our study, suggest that CFB has significant 
potential as a novel target for treatment of metabolic disease39,40

This is the first study to report the widespread amelioration 
of metabolic and cardiovascular phenotypes through deletion 
of an alternative complement pathway gene in a model of MetS. 
Cfb deletion improves glucose homeostasis, adipose distribu-
tion and function, lowers blood pressure and reduces cardiac 
hypertrophy, protecting against LV stress. Together with our 
analysis of the human CFB region for cardiometabolic traits, 
we conclude that CFB expression and function may directly or 
indirectly regulate multiple metabolic and cardiovascular pro-
cesses in health and disease in the rat and in humans.

Perspectives
CFB is elevated in human cohorts with type 2 diabetes mellitus 
and cardiovascular disease, although a causal relationship has yet 
to be established. We identified alterations in Cfb expression as a 
possible cause of hypertension and insulin resistance in the SHR. 
Cfb knockout rats have improved glucose homeostasis linked 
to favorable alterations in adipose tissue distribution and func-
tion and reduced blood pressure and LV mass suggesting new 
adipose tissue-intrinsic and blood pressure-independent mecha-
nisms for SHR insulin resistance and cardiac hypertrophy. SNPs 
in human CFB are associated both with hypertension and visceral 
adiposity and with CFB gene expression, suggesting that genetic 
variation in CFB may, in part, explain the genetic associations at 
the human CFB locus. Further studies are required to establish 
whether overexpression of adipose tissue Cfb alone is the prime 
determinant of MetS traits. Clinical trials are presently being 
undertaken to test the therapeutic effects of CFB inhibitors and 
to investigate AP components as causal factors in human diseases 
related to overactivity of the innate immune system. Given the 
findings in this study, CFB may also be a valid therapeutic target 
to treat or prevent progression of human MetS.
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What Is New?
•	Cfb (complement factor B)—an innate immune component—is a deter-

minant of adipose tissue distribution, glucose homeostasis, blood pres-
sure, and left ventricle mass in the spontaneously hypertensive rat.

What Is Relevant?
•	Cfb, directly or indirectly, drives novel adipose tissue-intrinsic and blood 

pressure-independent mechanisms for insulin resistance, hypertension, 
and cardiac hypertrophy in the spontaneously hypertensive rat. Single-
nucleotide polymorphisms associated with cardiometabolic traits and 
CFB gene expression, suggest variation in CFB may, in part, underlie 
these traits in humans.

Summary

Metabolic and cardiovascular components of MetS are improved 
by ablation of the Cfb gene in the spontaneously hypertensive rat. 
At the human CFB locus, 3 single-nucleotide polymorphisms are 
significantly associated with visceral adiposity, hypertension, and 
CFB gene expression.

Novelty and Significance




