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Abstract

Muscle Invasive bladder cancer is known to have an abundance of mutations, particularly in

DNA damage response and chromatin modification genes. The role of these mutations in

the development and progression of the disease is not well understood. However, a mutu-

ally exclusive mutation pattern between gene pairs could suggest gene mutations of signifi-

cance. For example, a mutually exclusive mutation pattern could suggest an epistatic

relationship where the outcome of a mutation in one gene would have the same outcome as

a mutation in a different gene. The significance of a mutually exclusive relationship was

determined by establishing a normal distribution of the conditional probabilities for having a

mutation in one gene and not the other as well as the reverse relationship for each gene

pairing. Then these distributions were used to determine the sigma–magnitude of standard

deviation by which the observed value differed from the expected, a value that can also be

interpreted as the ‘p-value’. This approach led to the identification of mutually exclusive

mutation patterns in KDM6A and KMT2D as well as KDM6A and RB1 that suggested the

observed mutation pattern did not happen by chance. Upon further investigation of these

genes and their interactions, a potential similar outcome was identified that supports the

concept of epistasis. Knowledge of these mutational interactions provides a better under-

standing of the mechanisms underlying muscle invasive bladder cancer development, and

may direct therapeutic development exploiting genotoxic chemotherapy and synthetic

lethality in these pathways.

Introduction

Muscle Invasive Bladder Cancer (MIBC) is known to be heterogeneous with divergent differ-

entiation patterns and sensitivities to therapy [1]. Whole-genome studies have identified dif-

ferent subgroups within MIBC, but there is some disagreement on the number of subgroups

that exist [2]. However, they do agree that the subgroups contain either luminal or basal gene

expression patterns [2]. Basal subtypes express proteins that are shared with bladder cancer
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stem cells while luminal subtypes express protein markers of terminal urothelial differentia-

tion. In some studies, the basal and luminal subtypes show distinct responses to chemotherapy

but there is more to uncover about the diagnostic and therapeutic options for MIBC patients

[2].

MIBC is known to have a heavy mutation load when compared to other cancers [3, 4]. The

majority of bladder cancer cases have a mutation in chromatin regulating genes, including his-

tone methylases, demethylases and acetyl transferases, as well as members of the SWI/SNF and

Polycomb repressor complexes [3]. Specific genes in these pathways that have been shown to

be commonly mutated include ARIDIA, KDM6A, EP300, KMT2C, KMT2A, CREBBP, CHD7

and SCAP [3]. Chromatin modification is a mechanism that controls access of proteins to

DNA. DNA repair factors and transcriptional regulators constitute two major classes of DNA

binding proteins that are quite relevant to cancer formation and progression. However, the

biologic and clinical significance of these mutations remains to be defined, representing a

major opportunity for understanding and targeting the molecular events that drive urothelial

carcinogenesis.

MIBC is also known to have an abundance of mutations in DNA damage response (DDR)

genes [3]. The main DDR pathways include homologous recombination, non-homologous

end joining, base excision repair, direct repair, mismatch repair, nucleotide excision repair

and trans lesion synthesis. Mechanisms essential for DDR are systems that integrate DDR with

the cell cycle and systems that organize and regulate DDR activity. The pathways associated

with these mechanisms include chromatin remodelling, checkpoint factors, ubiquitin

response, p53 and chromosome segregation [5]. On top of having very intricate interactions

with these pathways, 56% of DDR proteins interact with proteins involved in a different DDR

pathway [5]. DDR proteins are also known to have the ability to play different roles in different

complexes within the DDR. Furthermore, the complexity of DDR continues to increase as new

roles for known DDR proteins and entirely new DDR proteins are still being discovered [5].

Disruption of DDR genes is a hallmark of cancer and can be exploited therapeutically [6, 7].

One way this is done is by inducing DNA damage by means such as chemotherapy and cancer

cells with hindered DDR processes are overcome by DNA damage. Another way hindered

DDR is exploited is by directly targeting enzymes in DDR pathways that are essential for

tumour survival by synthetic sensitivity or lethality (SSL) [8]. Synthetic lethality occurs when

the combined loss of 2 functions leads to cell death, while the loss of one or the other does not.

Synthetic sensitivity occurs under the same circumstances as synthetic lethality, however,

instead it leads to hindered cell growth or proliferation. When synthetic sensitivity is com-

bined with other cellular stresses it can lead to cell death. In the context of cancer, this means

that one DDR process is hindered in cancer cells and another is targeted as a therapy to cause

synthetic lethality or sensitivity.

Current 1st line systemic therapy for MIBC is cisplatin-based chemotherapy, which appears

to substantially improve survival in a significant minority of patients [9, 10]. Mechanistically,

cisplatin may exploit SSL through hindered DDR by causing inter-strand and intra-strand

crosslinks in DNA [11]. ERCC2, a DDR gene, is involved in the nucleotide excision DNA

repair (NER) pathway that repairs inter-strand and intra-strand cross links [11]. ERCC2 muta-

tions are found in bladder cancer at 10–18%, but are not known to be significantly mutated in

other cancers [11]. When ERCC2 mutations are present in MIBC the overall mutation rate is

tripled, suggesting that this mutation does impact the tumour’s ability to repair DNA damage

[11]. MIBC patients with ERCC2 mutations have been linked to near complete pathological

response to cisplatin based neoadjuvant chemotherapy in some studies [12–14] though not in

others. The precise mechanism that this mutation and therapy pairing suggests has yet to be

confirmed. Additionally, there may be additional similar target-specific therapeutic
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opportunities arising from hindered DDR processes or from dysfunction in other mechanisms

DDR depends on such as chromatin modification or cell cycle checkpoints.

Unfortunately, a significant proportion of MIBC patients cannot tolerate cisplatin, or

acquire resistance to it [15, 16]. Once left without active alternatives, patients in this scenario

now have access to 3 new and active drugs that target either immune checkpoints (i.e, PD1

and PDL1), the Fibroblast Growth Factor Receptor, or the cell surface receptor Nectin4 [17].

Despite this good news, inherent or acquired resistance to systemic therapy is a common prob-

lem for most patients in adult oncology. Thus, a broader menu of systemic therapies is needed.

The high rate of mutations in CM genes and the lack of data regarding their functional signifi-

cance suggests a strategy for discovering new drug targets and a new therapeutic frontier for

bladder cancer.

Given the interconnectivity between DDR, CM and the cell cycle, as well as the abundance

of mutations in genes in these pathways found in various MIBC cases, there are most likely

relationships amongst these genes that can be described by epistasis. An epistatic relationship

pattern would suggest that the outcome of a mutation in one gene would have the same out-

come as a mutation in a different gene and thus display a mutually exclusive relationship

between MIBC cases. The goal of this work is to evaluate statistically significant mutually

exclusive relationships amongst DDR and CM genes in MIBC.

Materials and methods

Data sourcing and mutation pipelines

Clinical and genomic data from muscle invasive bladder cancer samples in The Cancer

Genome Atlas (TCGA) was acquired through the GDC portal using the TCGA biolinks pack-

age and processed in R using R Studio. A total of 407 cases in the TCGA MIBC cohort were

used in this study, where clinical data indicated the stage and histological type of the tumour.

Only samples clearly listed as ‘muscle invasive urothelial carcinoma’ and histological type of

stage 2 (n = 130), 3 (n = 141), or 4 (n = 136) were included.

Mutation impact classifications and false discovery rates

Mutation impact was provided as an attribute of a mutation in the TCGA data, its classifica-

tions included high, moderate, low and modifier. These classifications represent the predicted

impact a mutation will have on a proteins ability to function. Only mutations of high and mod-

erate impact were included in our data analysis because those of low or modifier impact were

not expected to have an impact on protein product. The list of DDR and CM genes was deter-

mined by combining a comprehensive list generated from three different groups [5, 18, 19].

The final step of the data refinement process was to estimate false discovery rate (FDR) for

mutations in a gene for each data subgroup, using a bootstrapping technique, and implement

it. The FDR for mutations in a gene is the rate at which a mutation could be found in a gene

simply by chance. This rate was determined with a bootstrap simulation where the number of

mutations observed in this data set were distributed among bladder genes (20,500 genes) at

random 1 million times, and converged at a rate of 7%. Therefore, genes that were mutated at

a rate of 7% or less could happen by chance and were not included in this analysis.

Mutual exclusion analysis

The degree to which variants were mutually exclusive of one another was calculated using the

conditional probability for each gene pairing, given single gene variant frequency. This process

generated a data matrix of conditional probabilities, referred to as the CP matrix, for each data
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subset. Specifically, by Bayes formula we calculated: P (notA GIVEN B) = P (notA AND B) / P

(B). The relationships were verified in silico by establishing the statistical significance of each

value in the CP matrix. This process was conducted for each data set and required repeatedly

randomly distributing the exact mutations amongst the cases 2000 times. The distributions of

conditional probabilities were then tested for a normal distribution using shapiro-wilks test.

The randomly generated CP distribution for each gene pair will be referred to as the RGCP

distribution, and the mean of that distribution will be referred to as the RGCP expected value.

The RGCP distributions and values were compared to the respective CP value from the CP

matrix derived from the MIBC DNA mutations in the TCGA cohort. Those that showed a sta-

tistical difference suggested the relationship did not happen at random and was in fact being

selected for. Statistically significant relationships that displayed reciprocal exclusivity were

visualized as a network diagram to show the interconnectivity of the mutually exclusive rela-

tionships in the mutation data. The relationships were visualized as 3 groups within the 4 data

sets, viz. those that are outside the distribution (double line), over 2 sigma difference (single

line), and those less than 2 but greater than 1.5 sigma (dotted line).

Results

Sample and variant classification

TCGA has mutation data for MIBC derived from 4 different mutation calling pipelines; Muse,

Mutect2, Somatic Sniper, and Varscan2. Each pipeline caters to different computational and

statistical methods as well as being geared towards detecting different types of mutations. To

allow for the variations between these pipelines in our analysis, we chose to allocate mutation

calls into three subsets: The "least conservative" subset consisted of variants identified by any

pipeline; the "mid conservative" subset consisted of variants that were called by at least two of

the mutation pipelines; and the "most conservative" subset only included variants that were

called by all four of the pipelines. We further subdivided the data within the "least conserva-

tive" subset into variants with predicted high biological impact, and those with high or moder-

ate predicted impact. The goal of this sub-setting was to allow the different pipelines to each

contribute to our analysis, while preventing one from dominating the analysis due to a more

lax variant calling routine.

A summary of the number of cases, genes, and mutations for each data subset, at each step

of pre-processing is presented in Fig 1. Each step in the data refinement process led to a reduc-

tion in the number of mutations and cases in the dataset, with the end result being groups with

predicted high (or moderate, as indicated) impact on DDR and CM gene function, that were

observed at greater than FDR rates. A list of the genes included in each subset is presented as

Table 1; the complete lists of genes, along with detailed information on the total number of

mutations, number of cases with a mutation, and percent of cases with a mutation is presented

as S1 Table. A list of mutations called by each pipeline and sorted by sample barcode is pre-

sented as S2 Table.

An initial statistical analysis showed that the average number of mutations per case varied

by up to 100 mutations, with some striking outliers of over 100-fold the mutation average

(Table 2). The coefficient of variation (CV = standard deviation/mean) for each case was calcu-

lated and a histogram summarizing the range of CV versus sample frequency is presented as

Fig 2. To better understand variation within a specific sample, we chose four samples showing

high CV and two samples showing low CV, and illustrate how each of the four pipelines called

variants in these samples (Fig 3).
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Assessment of mutual exclusivity

To determine whether the relationships between gene pairs are statistically significant and

mutually exclusive, the randomly generated conditional probabilities (RGCP) distributions

were plotted with the RGCP value and conditional probability (CP) value for all gene pairs.

Since each of the selected RGCP distributions are normally distributed, the 68-95-99.7 (empir-

ical) rule applies. The empirical rule means that 68% of the data in the distribution is contained

within 1 standard deviation of the mean (ie. 1 sigma), 95% of the data is contained within 2

standard deviations from the mean (ie. 2 sigma, p-value of 0.05), and 99.7% of the data is con-

tained within 3 standard deviations from the mean (ie. 3 sigma, p-value of 0.003). Since sigma

is a measure of distance from the mean the percentages associated with each sigma value are

easily calculated into p-values (p-value = 1-percentage). For example, the odds of randomly

selecting a point in the data that has a value of 2 sigma or higher is 5% because 95% of the data

has a sigma value of less than 2 sigma. Since data points with 2 sigma or higher only account

for 5% of the data, they would have a p-value of 0.05 (0.05 = = 5%). As sigma increases, the per-

centage of data points contained at that distance decreases and so does the chance of selecting

one at random, therefore the p-value also decreases.

For each gene pairing there are 2 relationships, the probability of having a mutation in one

gene and not the other as well as the reverse relationship. When both relationships show statis-

tical significance at p< = 0.05, we deem them mutually exclusive. Some gene pairings showed

2 sigma or greater for one relationship and 1.5 sigma for the other, these were included in the

analysis, but they are identified by the weaker relationship. For example, if gene1 showed

Fig 1. Pipeline for dataset generation. Pathways show the data selection and trimming process through each of the Lest Conservative, Mid Conservative and

Most Conservative approaches. The number of cases, genes and mutations (mut) in the data at each step of the refinement process are presented in square

boxes.

https://doi.org/10.1371/journal.pone.0259992.g001
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Table 1. Summary of genes found in each of the data subsets.

Least Conservative Pipeline Mid Conservative Pipeline Most Conservative Pipeline

Moderate and High Impact Variants High Impact Variants Moderate and High Impact Variants Moderate and High Impact Variants

ARID1A ARID1A ARID1A ARID1A

ARID2

ASH1L

ASXL2 ASXL2

ATM ATM ATM

ATR

BPTF

BRCA2 BRCA2 BRCA2

CDKN1A CDKN1A CDKN1A

CDKN2A

CHD6

CHD7

CREBBP CREBBP CREBBP CREBBP

EP300 EP300 EP300 EP300

ERCC2 ERCC2 ERCC2

HUWE1

KANSL1

KDM6A KDM6A KDM6A KDM6A

KMT2A KMT2A KMT2A KMT2A

KMT2C KMT2C KMT2C KMT2C

KMT2D KMT2D KMT2D KMT2D

NCOR1 NCOR1

POLQ

RB1 RB1 RB1 RB1

SETD2

SRCAP SRCAP

STAG2 STAG2 STAG2 STAG2

TP53 TP53 TP53 TP53

TRRAP TRRAP TRRAP

UBR5

https://doi.org/10.1371/journal.pone.0259992.t001

Table 2. Statistical profiles of mutation calling pipelines.

Pipeline Name Mutect2 Muse Somatic Sniper Varscan2

Total Cases 412 411 408 412

Total Cases Used (note 1) 407 406 403 407

Total Number of Mutations 134,513 119,159 93,105 116,831

Mean Number of Mutation 329 292 230 286

Mutation Number (per sample) Quartiles 2–123 1–103 1–79 1–102

123–229 103–200 79–147 102–196

229–406 200–347 147–285 196–343

406–4985 347–5077 285–4825 343–4940

Note 1: Revised for samples where the clinical data was rejected, leading to the exclusion of the sample.

https://doi.org/10.1371/journal.pone.0259992.t002
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mutual exclusivity towards not gene2 with =>2sigma and the reverse relationship showed

>1.5sigma, then the relationship will be described as>1.5sigma.

Some pairings such as KDM6A and not EP300 did not show statistical significance, as seen

by a very similar RGCP value (red) and CP value (blue) (Fig 4A). Even though this relationship

demonstrates a high conditional probability (>90%) that may suggest mutual exclusivity, the

result is not statistically significant because there are so few mutations in EP300, and random

sampling shows the majority of cases with KDM6A are not expected to have a mutation in

EP300 (also >90%). As data availability over time increases, this relationship should be further

studied. Other relationships such as KDM6A and not KMT2D showed a statistically significant

relationship, as demonstrated by vastly different RGCP value (red) compared to CP value

(blue) (Fig 4B) despite both genes being heavily mutated. Extending the bootstrapping simula-

tions to up to 2000 samplings allows us to predict a p value as small as 3x10-7. In the case

where both genes are heavily mutated and mutated at random, the conditional probability

Fig 2. Coefficients of variation (CV) for the cases of MIBC represented in the different mutation annotation file (MAF).

https://doi.org/10.1371/journal.pone.0259992.g002
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would likely be low since they would be expected to have a higher correlation. Some gene

pairs, such as KDM6A and RB1, showed statistical significance for having one mutation and

not the other as well as vice versa, demonstrating a statistically significant, bidirectional, mutu-

ally exclusive relationship (Fig 4C and 4D).

Fig 3. Visualization of the overlap in mutation calling between the four pipelines (Muse, Mutect2, SomaticSniper, Varscan2) mutation

calling pipelines in four cases with high CV (a-d), and two cases with low CV. Sample details are: (A) TCGA-XF-A9SL-01A-11D-A391-08,

CV = 1.3, 35 mean / 100 total mutation calls; (B) TCGA-K4-A83P-01A-11D-A34U-08, CV = 0.98, 125 mean /317 total mutation calls; (C)

TCGA-XF-A9SI-01A-11D-A391-08, CV = 0.71, 215 mean / 450 total mutation calls; (D) TCGA-DK-A1AF-01A-11D-A13W-08, CV = 1.00,

45 mean / 120 total mutation calls; (E) TCGA-LT-A8JT-01A-11D-A364-08, CV = 0.026, 90 mean / 100 total mutation calls; (F)

TCGA-DK-A6AW-01A-11D-A30E-08, CV = 0.020, 5000 mean / 5300 total mutation calls.

https://doi.org/10.1371/journal.pone.0259992.g003
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Mutation interaction network construction and analysis

We built four networks using different levels of consensus among the mutation calling pipe-

lines, namely the most, mid, and least conservative groupings, as defined above. For each of

those three groupings, we constructed a network using data that included mutations predicted

to be of high or moderate impact. For the least conservative grouping only, we also generated a

network using only high impact mutations; the other groupings did not have a sufficient num-

ber of high impact mutations for such analysis to be reliably completed. The network gener-

ated using the least conservative approach, supplemented with lines indicating interactions

Fig 4. Representative differences in statistical significance of conditional probability for different gene pairs. The red bar is the mean of the RGCP distribution, and

the blue bar is the value observed in the CP matrix. (A) A relationship where there is no statistically significant difference between RGCP distribution and the observed

value, between the KDM6A mutation and no mutation in EP300. (B) A statistically significant relationship, where RGCP distribution for having KDM6A mutation and no

mutation in KMT2D is significantly different from the observed value. (C and D) A statistically significant, bidirectional relationship, where the presence of an RB1

mutation and absence of a KDM6A mutation, and the (opposite) absence of an RB1 mutation and presence of a KDM6A mutation are both observed at frequencies

significantly different from the predicted RGCP distribution.

https://doi.org/10.1371/journal.pone.0259992.g004
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found in the other networks is presented as Fig 5. Differences and similarities in the four net-

works are summarized below.

Using the least conservative variant calling approach and including mutations predicted to

be of both high and moderate impact includes the most cases and mutations and yielded the

greatest number of mutually exclusive relationships (Fig 5 red lines). The mutually exclusive

relationships between KMT2D and KDM6A, and RB1 and KDM6A showed the most statisti-

cal significance with the CP value entirely separated from the RGCP distribution and large

multiples of sigma (p<0.003).

Limiting the least conservative variant calling approach to mutations predicted to have a

high impact on function greatly reduced the number of variants for analysis, and yielded only

a small number of statistically significant mutually exclusive relationships (Fig 5 blue lines).

KMT2D and KDM6A showed a statistically significant mutually exclusive relationship where

the actual conditional probability was entirely outside the RGCP distribution. Other observed

mutually exclusive relationships included RB1 and KDM6A (>1.5sigma).

The use of the mid conservative variant pool, including mutation variants called by at least

2 mutation pipelines led to similar relationships found in the least conservative group (Fig 5

black lines). The most statistically significant exclusionary relationship was again found

between KMT2D and KDM6A. Mutual exclusion of KDM6A and RB1 (>sigma2) was also

seen in this analysis.

The use of the most conservative variant list offered the least number of significant relation-

ships (Fig 5).

In addition to the recurrent exclusivity observed between KMT2D, KDM6A, and RB1

themselves, these genes showed additional specific exclusivities. KMT2D mutations were also

exclusive with RB1, STAG2, ARID1A and CDKN1A; KDM6A mutations were exclusive with

ARID1A; RB1 mutations were exclusive with KMT2C. In total, we observe 7 mutually exclu-

sive relationships with>2sigma appearing in at least one of the networks.

KDM6A and KMT2D have previously been shown to be members of the same COMPASS

complex family, alternatively called the KMT2D, MLL3/4, ASCOM complex [20]. Further-

more, mutations in either of these genes can lead to the developmental disorder kabuki syn-

drome [21]. To provide further experimental corroboration of their overlapping role in the

context of bladder cancer, we used the TCGA bladder cancer cohort to examine the effects of

mutations in KDM6A and KMT2D on a number of putative downstream targets of the com-

plex. We identified a group of 19 genes that have been proposed to be regulated by KDM6A

and KMT2D [22], and 7 genes were chosen to act as controls. In the control genes, the average

expression did not change by more than 20% (up or down) when comparing either KDM6A

or KMT2D to WT samples. In the experimental gene group, most (11/19) of the genes exam-

ined showed little (<20%) change in both groups; in three cases, we observed modest (<40%)

change in one group, and little (<20%) change in the other. However, in five of the experimen-

tal genes examined (ABCC2, ACOX2, IL7R, ISL1, and NRG1), there was a coordinate observ-

able decrease in expression is both KDM6A and KMT2D samples compared to WT (average

decrease 48%, median decrease 46%), consistent with epigenetic downregulation. These results

identify potential targets of COMPASS complexes in bladder cancer that are affected similarly

by mutations in KDM6A and KMT2D and provides additional support to previous work

showing that KDM6A or KMT2D loss have similar biologic consequences [20, 21].

Discussion

In this study we uncovered statistically significant mutually exclusive relationships that are

unlikely to happen by chance in the abundance of DDR and CM gene mutations in MIBC.
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Fig 5. Summary of mutually exclusive relationships identified in the study. Lines between the identified genes indicate which data subset(s) the

relationships were identified in, as well as the statistical strength of the observations. DDR genes are indicated by square frames, CM genes by oval frames,

and genes overlapping both processes in rectangular frames with round corners. Interactions are shown for: Least High and Moderate Impact Mutations

(red lines), Least High Mutations only (blue lines), Mid High and Moderate Impact Mutations (black lines), and Most High and Moderate Mutations
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The mutually exclusive relationship between KDM6A and KMT2D as well as the one between

KDM6A and RB1 were the least likely to happen by chance and often recurred in the different

subsets of the TCGA data. The mutually exclusive mutation pattern observed between these

gene pairs suggests an epistatic relationship in which the mutation in one gene would have the

same outcome as a mutation in the other gene. Since KDM6A connects KMT2D and RB1

mutations we hypothesize that there is a biological pathway that unites the impact of these

three mutated genes and is important for the biologic fitness of bladder cancer cells.

An alternative explanation of the mutual exclusivity we have observed is that the gene pairs

are synthetically lethal. In this case, exclusivity is driven by intrinsic cellular inviability, rather

than by a loss of selective pressure following loss of one of the gene pair. Future functional

studies in model systems will be necessary to resolve these alternatives.

An earlier study of the MIBC TCGA mutation data showed mutually exclusive relationships

between CDKN2A and TP53, CDKN2A and RB1, CDKN2A and E2F3, TP53 and MDM2,

FGFR3 and E2F3, and FGFR3 and RB1 [3]. Some of the relationships mentioned in the earlier

study were not noted here. One reason for this discrepancy is this study focuses only on DDR

and CM genes, thus excluding some genes in other functional classes, such as FGFR3. Addi-

tionally, other studies value mutually exclusive relationships on the percent of cases in which

they are found, but this study valued mutually exclusive relationships based on the probability

that they would not happen by chance. The current approach should better highlight gene

pairings that show mutual exclusivity due to related function and excluding those that

observed merely by chance.

A number of other groups have worked to develop methods for assessing mutual exclusivity

of genes using publicly available genomic databases [23–25]. While two the studies presented

results derived from specific cancer types, none of these works has presented results specifi-

cally addressing alterations found in bladder cancer.

KMT2D and KDM6A

KMT2D (HGNC:7133, formerly known as MLL4 or ALR and sometimes, confusingly, MLL2)

is a histone lysine methyltransferase that targets Histone 3 lysine 4 (H3K4) for monomethyla-

tion (H3K3me1), a marker of enhancer regions [20]. KMT2D is a TrxG protein and a key

component of the COMPASS family complexes. COMPASS complexes that contain KMT2D

are known as the KMT2D complex (or MLL3/4 Complex or ASCOM). In this complex,

KMT2D provides methyltransferase activity and directly binds to the core component WRAD

(consisting of WDR5, RBBP5, ASHL2 and DPY30). KMT2D plays a major role in enhancer

regulation in mammalian cells, and thus contributes to many important processes such as

development, differentiation, metabolism and tumour suppression [20].

KDM6A (HGNC:12637, formerly known as UTX) is a histone demethylase that targets di

and tri-methylated histone H3 lysine 27 (H3K27me2 and H3K27me3, respectively) [26, 27]. It

is a ubiquitously transcribed tetratricopeptide located on chromosome X, but is not affected by

X-inactivation [28, 29]. This gene is linked to gene expression, embryonic development, and

cellular reprogramming. KDM6A is mutated in various cancers such as breast cancer and

other forms of bladder cancer [28]. In breast cancer, KDM6A was determined to be a central

in the mediation of epithelial-mesenchymal transition (EMT) [28]. However, KDM6A is sug-

gested to play many different roles in the cell as 70% of KDM6A proteins were found to co-

elute with smaller complexes in breast cancer cell lines [30]. Depletion of KDM6A resulted in

(green lines). Statistical significance indifferences between RGCP and mean observed values is presented as: Sigma> 2.7 (double line), Sigma>2 (single

solid line), Sigma>1.5 (dashed line).

https://doi.org/10.1371/journal.pone.0259992.g005
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the silencing of HOX gene clusters by increased methylation of H3K27 in relative areas [26,

27, 31].

The KDM6A and KMT2D relationship showed the most consistent statistical significance

across the different mutation data sets. These genes are connected in various ways such as

being involved in the same CM complex of the COMPASS complex family and being fre-

quently mutated in Non-Muscle Invasive Bladder Cancer (NMIBC). Additionally, mutations

in either of these genes define a developmental disorder known as kabuki syndrome (KS) [21].

Not only is KDM6A associated with the KMT2D complex of the COMPASS complex fam-

ily [20], but it is known to directly bind near the C terminus of KMT2D [28]. KMT2D in dro-

sophila was shown to maintain the H3K4me1 and H3K27ac signature found at enhancers [28].

Data showing loss of KDM6A leads to reduction in H3K4me1 and H3K27ac suggests its role is

to regulate the catalytic activity of KMT2D [28]. Additionally, the absence of KMT2D results

in the destabilization of KDM6A as well as the collapse of the entire KMT2D complex [20].

KDM6A and KMT2D are also found to be heavily mutated in NMIBC, and mutations both

genes were determined to be inactivating [29]. Interestingly, KMT2D and KDM6A mutations

are positively correlated in NMIBC, they show a strong correlation in females (9% indepen-

dent) and show less of a correlation in males (22% independent) [29]. In NMIBC KDM6A is

more frequently mutated than it is in MIBC as well as showing a female gender bias; 74% of

female patients have a mutation in KDM6A while only 42% of males had this mutation [29].

Additionally, UTY, the paralog of KDM6A is also known to be mutated in Non-Muscle Inva-

sive Bladder Cancer (NMIBC) [29]. Of the 5 male patients with a mutation in UTY, 4 of them

also had a mutation in KDM6A [29].

Recently, Lawson et al [32] have reported that the presence of alterations in KMT2D,

KDM6A and a number of other cancer-related genes in microbiopsies of normal urothelium

from the transplant organ donors. The authors hypothesize that this confers a selective advan-

tage to cells harbouring such alterations over surrounding normal epithelium; it will be inter-

esting to see whether these subpopulations of cells are precursors to cancerous lesions that

develop over time.

RB1

RB1 (HGNC:9884) encodes pRB, a commonly mutated tumour suppressor and an important

regulator of the cell cycle Even though its best known role is to regulate E2F, databases suggest

that pRB interacts with over 300 proteins and may play many other roles such as activating

specific genes in response to apoptotic and differentiation signals [33]. Inactivation of pRB

through mutation is known to interfere with cell cycle exit, promoting the cell through the cell

cycle, up-regulating some of E2F target genes, and reducing senescence [33]. Interestingly,

RB1 can also be compromised by mutation of proteins that impact its phosphorylation state

and inactivation of pRB by phosphorylation is not functionally equivalent to the mutation of

RB1 gene [33]. Along with the emerging roles of pRB, there are also emerging implications of

its mutation such as up-regulation of genes needed for proliferation, genome instability, chro-

mosome instability, aneuploidy and even metabolism [33].

The relationship between KDM6A and RB1 was present through the different subsets of the

mutation data but the statistical significance of this relationship varied depending on the data

subset. Under the hypothesis that mutually exclusive mutation patterns indicate the mutations

have the same outcome, this relationship connects RB1 to the one between KDM6A and

KMT2D. However, this relationship is not present in NMIBC since RB1 is not as frequently

mutated in NMIBC as it is in MIBC [29].
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One potential biological connection of RB1 to KDM6A and KMT2D is through the CM

complex formed by KDM6A, KMT2D and other proteins. One of those other proteins is

known as RBBP5 a key component of WRAD, and as the name suggests it binds RB1, prefera-

bly when RB1 is in an underphosphorylated state [34]. Recently, RBBP5 was found to stimulate

WRAD formation, the core component of all COMPASS complexes [35]. Additionally, RBBP5

and ASH2L (another component of WRAD) interface is important for the stimulation of

COMPASS catalytic activity [35]. Furthermore, KDM6A was also found to regulate many RB-

binding proteins in human fibroblast cells [28]. Perhaps within the growing roles of RB1 and

KDM6A, could be the regulation of the KMT2D complex.

Dividing the mutations by the number of calls each variant received causes problems when

trying to assess the specificity and sensitivity of each mutation data set. While each mutation

calling algorithm has its own sensitivity and specificity combining them in a way that leads to

some mutations having different measures of validity leaves the entire data set with variable

validity. Additionally, since the different data sets are in fact subsets of each other, finding the

same relationships in the data is not a validation of the relationships. A better approach would

be to test each mutation calling pipeline individually and consider the least conservative

approach–to look at all the mutations collectively.

Regardless of the potential ways to improve the mathematical analysis of this data, there is a

clear relationship between KMT2D and KDM6A that did not happen by chance and extends

beyond the scope of altered chromatin modification in cancer and into those of known devel-

opmental disorder KS. The reasons for the non-coincidental relationship observed between

KDM6A and RB1 have yet to be confirmed but the results of various studies suggest connec-

tions in more ways than one, but particularly through the critical component of all COMPASS

complexes known as RBBP5. This study puts forward the importance of the COMPASS com-

plex and all its components ranging from its active component KMT2-, to its core WRAD,

and even its associated proteins KDM6A, EP300 and CREBBP, to the development and pro-

gression of MIBC. Almost all these named COMPASS complex components and associated

factors are frequently mutated in MIBC and most of them are commonly mutated in many

other cancers. So perhaps this mechanism of chromatin regulation and its connection to DDR

and the cell cycle impacts more cancers than just MIBC.

Supporting information

S1 Table. Data subset summary. This supplementary table contains a data summary that

breaks down the number of mutations and their DDR and/or CM classification. There is a
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