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ABSTRACT

Chaperones are central players in maintaining the proteostasis in all living cells. Besides highly conserved generic
chaperones that assist protein folding and assembly in the cytosol, additional more specific chaperones have evolved to
ensure the successful trafficking of proteins with extra-cytoplasmic locations. Associated with the distinctive secretion
systems present in bacteria, different dedicated chaperones have been described that not only keep secretory proteins in a
translocation competent state, but often are also involved in substrate targeting to the specific translocation channel.
Recently, a new class of such chaperones has been identified that are involved in the specific recognition of substrates
transported via the type VII secretion pathway in mycobacteria. In this minireview, we provide an overview of the different
bacterial chaperones with a focus on their roles in protein secretion and will discuss in detail the roles of mycobacterial
type VII secretion chaperones in substrate recognition and targeting.
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INTRODUCTION ing with short omnipresent motifs enriched in aromatic and
basic residues (Patzelt et al. 2001). Both DnaK and GroEL are
ATP-dependent chaperones that recognize short extended
hydrophobic sequences, exposed during de novo protein folding,
during stress and during protein translocation across mem-
branes (Rudiger et al. 1997; Houry 2001). While DnaK has been
shown to be involved in the biogenesis of some proteins with
extra-cytoplasmic destinations as well (Collet et al. 2018), addi-
tional chaperones dedicated to the route of export are required
to keep these proteins in a translocation competent state, which
is often a (semi-)unfolded conformation. To export proteins out
of the cytosolic compartment, bacteria have evolved distinct
protein secretion systems (Costa et al. 2015). While several are
present in almost all bacteria and transport a wide range of

Chaperones are an important group of proteins that play key
roles in cellular homeostasis by assisting in protein folding,
multimeric protein assembly, protein trafficking and protein
degradation. In prokaryotes, three highly conserved generic
chaperones, i.e. DnakK, GroEL and trigger factor (TF), are mainly
responsible for preventing misfolding, premature folding and
non-native interactions of cytoplasmic proteins upon their
synthesis in the highly crowded environment of the cytosol
(Sala, Bordes and Genevaux 2014). TF, whose most dominant
substrates have been shown to be beta-barrel outer membrane
proteins in Escherichia coli (Oh et al. 2011), assists the folding
of newly synthesized polypeptides by preferentially interact-
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protein substrates across the cytoplasmic membrane, i.e. the
Sec and the twin-arginine translocation (Tat) system, others are
only present in a more selected group of bacterial species and
only secrete a limited number of proteins. These specialized
secretion systems include the type I to type VI secretion (T1
to T6S) systems that are present in Gram-negative bacteria,
where they are critical for bacterial pathogenesis by secreting
key virulence factors. Secretion across the Gram-negative
diderm cell envelope occurs either in a one-step mechanism
by a translocation channel that spans both the inner and
outer membrane (i.e. in T1S, T3S, T4S and T6S), or a two-step
mechanism, where the Sec and Tat system mediates transport
across the inner membrane, while a separate channel mediates
outer membrane transport (i.e. in T2S and T5S).

Type VII secretion (T7S) systems are related specialized se-
cretion systems present in mycobacteria. This specific group of
bacteria contains highly relevant pathogens, most notable My-
cobacterium tuberculosis, the causative agent of tuberculosis. My-
cobacteria belong to the order of Corynebacteriales, which, in
turn, is part of the large phylum of Actinobacteria, also called
high GC Gram-positive bacteria. A characteristic feature of this
order is the presence of a unique cell envelope that contains my-
colic acids, unusually long fatty acids that can contain up to 100
carbon atoms. It is now widely accepted, amongst others based
on cryo-electron microscopy (EM) imaging (Hoffmann et al. 2008;
Zuber et al. 2008), that the mycolic acids are the main con-
stituents of a second (outer) membrane. This outer membrane
is highly hydrophobic and serves as an efficient permeability
barrier, important for the intracellular life cycle of pathogenic
mycobacteria. Nevertheless, just like other bacterial pathogens,
pathogenic mycobacteria also strictly rely on extracellular pro-
teins for their virulence. It is now clear that T7S is the ma-
jor export route of these extracellular proteins in mycobacte-
ria (Groschel et al. 2016). On the other hand, homologous T7S
gene clusters can also be found in Actinobacteria that lack my-
colic acids and more distantly related systems are present in a
subset of low GC Gram-positive bacteria. Pathogenic mycobac-
teria can have up to five homologous T7S systems, called ESX-1
to ESX-5, that share a set of conserved components, of which
four are assembled into a large, 24 subunit membrane complex
(Houben et al. 2012; Beckham et al. 2017; see Fig. 3). The dimen-
sions of the ESX-5 membrane channel, as observed by negative
stain EM imaging (Beckham et al. 2017) dictates that the complex
can only span the mycobacterial inner membrane. The mecha-
nism of T7S substrate transport across the mycobacterial outer
membrane therefore remains unknown.

An intriguing feature of T7S in mycobacteria is that the five
ESX secretion systems that can be present in a single mycobac-
terial species each secrete their own subset of substrates that
belong to several protein families. This raises the question how
these related substrates are specifically recognized and targeted
to the cognate secretion machinery. In recent years, it has be-
come clear that a set of novel dedicated chaperones play crucial
roles in the secretion of a specific subset of substrates via the
different ESX systems (Daleke et al. 2012; Ekiert and Cox 2014;
Korotkova et al. 2014). Not only are these chaperones probably in-
volved in preventing substrate aggregation, we recently showed
that they are furthermore involved in determining system speci-
ficity (Phan et al. 2017).

In this review, we will provide an overview of generic and spe-
cific bacterial chaperones, focusing on their mode of substrate
recognition and their roles in substrate targeting to the various
export machineries. Subsequently, the (potential) roles of chap-

erones in the recognition and targeting of the different T7S sub-
strate families in mycobacteria will be discussed in detail.

GENERIC SECRETION CHAPERONES

Most secretory proteins are exported either in an unfolded state
via the Sec pathway or in a folded state via the Tat pathway, both
mediating transport across the cytoplasmic membrane. Both Sec
and Tat substrates possess and N-terminal, mildly hydrophobic,
signal sequence that is cleaved upon membrane transport. Tat
substrates are distinguished from Sec substrates by the presence
of a conserved twin-arginine motif within their signal sequence,
which mediates post-translational targeting to the Tat translo-
con (Palmer and Berks 2012). Many Tat substrates contain a co-
factor in their mature structure, which is incorporated during
the folding process in the cytosol. Folding and assembly of these
Tat substrates are assisted both by the three generic molecular
chaperones DnaK, GroEL and TF, and by substrate specific cy-
tosolic chaperones, so called redox enzyme maturation proteins
(REMPs) (Chan et al. 2015). REMPs are additionally involved in
the subsequent targeting of Tat substrates to the Tat translocon
(Chan et al. 2015).

All three generic chaperones are also involved in prevent-
ing folding of the secretory proteins that are exported via the
Sec pathway (Sala, Bordes and Genevaux 2014). However, most
Proteobacteria possess an additional generic chaperone, called
SecB, that interacts with the Sec machinery to facilitate pro-
tein export (Sala, Bordes and Genevaux 2014). SecB is a homote-
trameric chaperone that binds co- and/or post-translationally
to newly synthesized proteins, maintaining them in a translo-
cation competent state for transfer through the narrow Sec
translocon (Chatzi et al. 2013). Crystal structures of tetrameric
SecB reveals multiple binding grooves each potentially allow-
ing the binding of ~20 amino acids-long extended polypeptides
(Sala, Bordes and Genevaux 2014). SecB does not specifically rec-
ognize signal sequences (Gannon, Li and Kumamoto 1989) and
portions of the mature part of substrates are probably wrapped
around the chaperone tetramer (Khisty, Munske and Randall
1995; Crane et al. 2006). It is considered a promiscuous chaper-
one, recognizing short sequences enriched in aromatic and ba-
sic residues (Knoblauch et al. 1999), and is therefore postulated
to be involved in folding of cytosolic proteins as well (Ullers et al.
2004). SecB is involved in targeting of secretory proteins to the
Sec translocon via its specific interaction with SecA, the ATPase
and motor protein of the system (Hartl et al. 1990). The obser-
vation that the interaction sites of SecB with the substrate and
with SecA significantly overlap hints towards a mechanism of
substrate transfer from SecB to the Sec translocon (Crane et al.
2005).

In addition to the transport of secretory proteins, the Sec
translocon is, together with the insertase YidC, involved in
membrane insertion of inner membrane proteins (Luirink
et al. 2012). As membrane proteins have the high tendency to
aggregate due to their hydrophobic nature, they are targeted
in a co-translation fashion by the ribosome associated and
highly conserved Signal Recognition Particle (SRP), consisting
of both protein and RNA (Akopian et al. 2013). SRP binds to
sufficiently hydrophobic sequences as soon as they emerge
from the ribosome and targets the ribosome-nascent chain
complexes to the Sec translocon, through the interaction with
its membrane receptor, the GTPase FtsY.



SPECIFIC SECRETION CHAPERONES

In contrast to the generic chaperones that are able to bind a wide
range of substrates, highly specific chaperones usually interact
with substrates that are secreted by the specialized secretion
systems. The best-described examples of these specific chaper-
ones are those found in T3S that mediate the direct injection of
proteins, referred to as the effector proteins, into host cells. The
translocation of T3S substrates across both the bacterial cell en-
velope and the host membrane is mediated in a one-step mech-
anism using large, needle-like nanomachines (Deng et al. 2017).

T3S mediates the export of three distinctive protein groups
in a highly sequential manner: first the needle subunits (early
substrates) are exported, followed by the pore-forming subunits
that puncture the host membrane (intermediate substrates),
after which the actual effector proteins (late substrates) are
translocated. Each substrate group depends on specific chap-
erones for successful export. Needle subunits interact with a
structurally conserved chaperone pair to prevent premature
self-assembly through their amphipathic C-terminal helix
(Quinaud et al. 2007). Also the hydrophobic pore-forming sub-
strates strictly depend on conserved homodimeric chaperones,
classified as Class II chaperones, to prevent their premature
assembly and degradation (Menard, Sansonetti and Parsot
1994). The Class II chaperone-substrate interface is conserved
and consists of a scaffold containing tetratricopeptide repeat
(TPR) motifs, known for their involvement in protein-protein
interactions, and an N-terminal hydrophilic chaperone binding
domain (CBD) (Lunelli et al. 2009). However, most information on
the mode of substrate binding and, in particular, the role of T3S
chaperones in substrate targeting to the transport machinery
has been obtained for the effector chaperones, referred to as the
Class I chaperones. The majority of these chaperones (the Class
IA chaperones) are highly specific, serving a single substrate.
They are small, usually dimeric, and share very low sequence
identity of ~20%, but show striking structural similarities.

T3S effector substrates typically contain non-cleavable, 15—
20 residue long secretion signals at their N termini, although no
clear consensus sequence for these regions has yet been iden-
tified (Wilharm et al. 2007). C-terminal from this secretion sig-
nal lies the CBD that encompasses 50-100 amino acids. While
the N-terminal secretion signal is sufficient for protein secretion
(Lloyd et al. 2001), the CBD directs substrates to the cognate nee-
dle complex (Cheng, Anderson and Schneewind 1997; Lee and
Galan 2004). T3S chaperones probably interact with this CBD via
extended hydrophobic surface areas (He, Nomura and Whittam
2004). Crystallography analysis of different chaperone-substrate
complexes shows that not only the fold of chaperones, but also
the binding of the CBDs, wrapped around the chaperone dimer,
follows a conserved principle (Stebbins and Galan 2001; Birta-
lan, Phillips and Ghosh 2002; Phan, Austin and Waugh 2005). The
functional significance of the conserved chaperone-CBD struc-
ture is not clear. The chaperone SycO of Yersinia has been shown
to keep its substrate YopO in a translocation competent state, as
it is prone to aggregate, due to its hydrophobic domain that is
essential for its proper localization after translocation into host
cells (Letzelter et al. 2006). However, nuclear magnetic resonance
analysis of the structural and dynamic changes in the Yersinia
effector YopE upon binding of its chaperone SycE revealed that
rather than maintaining an unfolded state in the effector, the
secretion chaperone promotes structuring of the CBD (Rodgers
et al. 2010). This supports the hypothesis that the CBD together
with the chaperone constitutes a three-dimensional targeting
signal (Birtalan, Phillips and Ghosh 2002).
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MYCOBACTERIAL T7S CHAPERONES
T7S substrates

All T7S substrates secreted by the five homologous T7S systems
in mycobacteria can be divided into three protein families, the
Esx, the PE/PPE and the Esp proteins. Esx genes are conserved in
a wide range of bacteria and are also substrates of the T7S-like
systems in low GC Gram-positive bacteria. In contrast, pe/ppe
genes are mainly found in mycolic acid containing bacteria and
Esp proteins are specific for mycobacteria (Houben, Korotkov
and Bitter 2014). Interestingly, in mycobacteria different se-
cretion systems are able to transport members of the Esx and
PE/PPE proteins, while Esp proteins are specifically associated
with the ESX-1 system. The Esx substrates all have a size of
~100 amino acids, whereas the Esp and especially the PE/PPE
proteins greatly vary in length. All Esx proteins and some PE/PPE
and Esp substrates are translated from a bicistronic transcript
(Gey Van Pittius et al. 2001; Gey van Pittius et al. 2006). These
co-transcribed substrates form heterodimers in the cytosol and
are thought to be secreted as (partially) folded heterodimers, as
they are co-dependent on each other for secretion. Examples
of heterodimeric substrates are the ESX-1 dependent het-
erodimers EsxA/EsxB (Renshaw et al. 2005) and EspA/EspC (Lou
et al. 2017), and the ESX-5 dependent PE25/PPE41 (Strong et al.
2006). Although belonging to different protein families both Esx
and PE/PPE pairs show a striking structural resemblance (Fig. 1;
Houben, Korotkov and Bitter 2014). Solved structures of different
Esx pairs show a highly conserved fold, in which dimerization is
mediated by a helix-turn-helix motif of both proteins, oriented
in an antiparallel manner (Fig. 1; Renshaw et al. 2005; Arbing
et al. 2010; Ilghari et al. 2011). The double helix structures cover
almost the complete protein sequences, excluding short flexible
N- and C-termini. This is different for the PE and PPE proteins,
which are named referring to the presence of a conserved

Figure 1. Crystal structures of representative T7S substrates showing conserved
folds and the EspG binding site. Ribbon representations of EsxA/EsxB of M. tu-
berculosis (PDB 3FAV; Poulsen et al. 2014), PE25-PPE41 in complex with their chap-
erone EspGs of M. tuberculosis (PDB 4KXR; Korotkova et al. 2014), and EspB from
Mycobacterium smegmatis (4WJ1; Solomonson et al. 2015). Notably, the C-terminal
11, 12, 8, and 20 residues of EsxA, EsxB, PE25, and PPE41, respectively, and the N-
terminal 6 amino acids of PE25 are disordered in the structures. The structure of
EspB lacks a C-terminal domain of 233 residues. Secretion signal motifs YxxxD/E
(Daleke et al. 2012) are shown in red. N, N-terminus; C, C-terminus.
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proline-glutamic acid (PE) and proline-proline-glutamic acid
(PPE) motif. For these proteins, only the N-terminal ~110 and
~180 amino acids long PE and PPE domains, respectively, are
highly conserved on sequence and structural level (Fig. 1; Strong
et al. 2006; Chen et al. 2017). For the more variable C-terminal
domains (Gey van Pittius et al. 2006) no structural information is
currently available. While the PE domain consists of two alpha
helices, the PPE domain contains five alpha-helices, of which
helix «2 and «3 mediate dimerization with the PE partner,
forming the four-helix bundle similar to Esx pairs (Strong et al.
2006; Chen et al. 2017). The fourth and fifth alpha helix of the PPE
domain form an extending hydrophobic tip. Of the final group
of substrates, the ESX-1 specific Esp proteins, only structural
information is available for monomeric EspB (Fig. 1; Korotkova
et al. 2014; Solomonson et al. 2015). Interestingly, the EspB struc-
ture shows a PE/PPE-dimer like fold, suggesting this protein
is secreted as a monomer. In addition, structural predictions
by Phyre? (Kelley et al. 2015) and SWISS-MODEL of dimeric Esp
substrates, such as EspA/EspC and EspE/EspF, indicate similar
alpha-helical folds as PE/PPE proteins, suggesting this is a
conserved structural feature of all T7S substrate families.

The Esx, PE and Esp substrates all have a conserved secretion
motif, containing a tyrosine residue and a negatively charged
residue separated by 3 random amino acids (YxxxD/E), which
is essential for secretion. This motif is positioned directly C-
terminal to the helix-turn-helix of one of the partner proteins,
for example, in EsxB for EsxA/EsxB, EspC for EspA/EspC and al-
ways in the PE proteins for PE/PPE dimers (Fig. 1; Daleke et al.
2012). The secretion signal is possibly longer than the YxxxD/E
motif, consisting of additional hydrophobic residues that to-
gether with the conserved Y and D/E residues are aligned at
one side of the C-terminal part of alpha helix 2 (Poulsen et al.
2014). Accordingly, the most C-terminal amino acids of EsxB, C-
terminal to the YxxxD/E motif, are required for secretion (Cham-
pion et al. 2006) and are able to interact with the membrane com-
plex associated ATPase EccC, involved in substrate recognition
and transport (Rosenberg et al. 2015; see Fig. 3). Swapping the
C-terminal region containing the secretion signal of two PE sub-
strates of different ESX systems does not affect their secretion
nor system specificity in the model organism Mycobacterium mar-
inum, suggesting this motif is a general secretion signal in T7S
(Daleke et al. 2012).

Possible chaperone roles of specific substrates

While it is still unclear to what extent heterodimeric substrates
remain intact after secretion is completed, it is possible that one
of the proteins, for example, the protein containing the general
secretion motif, acts as the chaperone to facilitate the secretion
of the partner protein. Indeed, whereas for EsxA a distinctive
role in virulence has been described, this is not the case for EsxB,
the protein that contains the general secretion motif (de Jonge
et al. 2007; Smith et al. 2008). EsxA and EsxB have an extensive
hydrophobic contact surface and form a tight (K4 < 11 nM) solu-
ble complex when co-expressed (Renshaw et al. 2002; Renshaw
et al. 2005). Interestingly, while monomeric EsxB is soluble and
relatively unstructured when expressed in Escherichia coli in the
absence of EsxA, monomeric EsxA is highly insoluble when ex-
pressed without EsxB (Renshaw et al. 2002), supporting the hy-
pothesis that EsxB prevents aggregation of EsxA. The unusual
feature of these potential chaperones that they are co-secreted
with their specific substrates could be explained by the hypoth-
esis that they are additionally required to translocate the sub-
strates across the mycobacterial outer membrane.

Another intriguing feature of T7S substrates, particularly of
the ESX-1 system, is that not only paired but also unpaired sub-
strates are co-dependent on each other for secretion, for exam-
ple, the secretion of EspA/EspC in M. tuberculosis is affected by
mutations in esxA/esxB and vice versa (Fortune et al. 2005; Cham-
pion et al. 2009). Although most extensively documented for ESX-
1, also some level of co-dependency has been observed for other
ESX systems (Shah and Briken 2016; Tufariello et al. 2016; Ates
et al. 2018). In particular, a four-gene region, duplicated from the
esx-5 gene locus and encoding two Esx, a PE and a PPE protein,
but also the ESX-5 substrate PPE38 have been shown to be cru-
cial for the ESX-5 dependent secretion of the major subgroup of
PE substrates, the so-called PE_PGRS proteins (Shah and Briken
2016; Ates et al. 2018). While the extend of this co-dependency is
still not clear, the general notion emerges that the Esx substrates
are strictly required for the secretion of the other substrates of
the same system. Together with the fact that the Esx proteins are
amongst the most conserved T7S proteins, this raises the possi-
bility that Esx pairs are involved in facilitating the secretion of
the other substrate families, perhaps by a chaperone-like activ-
ity. As there is still no clear insight into the mechanism of and hi-
erarchy in substrate co-dependency, it complicates not only the
analysis of the role of individual substrates, but also the mecha-
nism of T7S, as a mutation in, for example, specific chaperones
will also affect the secretion of substrates that do not interact
with this chaperone.

EspG, a dedicated chaperone for PE/PPE substrates

Unlike Esx pairs that are usually soluble when co-expressed in
E. coli, most PE/PPE pairs are insoluble when co-expressed un-
der similar conditions, also when their variably C-terminal do-
mains are deleted (Strong et al. 2006). Evidence is accumulating
that a dedicated chaperone, called EspG, is keeping members of
this substrate family in a translocation competent state. Notably,
the name Esp (ESX-1 specific protein) was given to all proteins,
secreted and non-secreted, that were thought to be specific for
the ESX-1 system (Bitter et al. 2009). While EspG was initially also
considered an Esp, we now know that four of the five ESX sys-
tems contain an EspG protein, albeit with very low amino acid
conservation. As also seen for, for example, T3S effector chap-
erones, these EspG proteins are despite this low conservation
highly similar in structure (Fig. 2; Ekiert and Cox 2014; Korotkova
et al. 2014). While initial studies already illustrated the impor-
tance of EspGs in the secretion of several ESX-5 substrates in
the model organism M. marinum (Abdallah et al. 2009), the obser-
vation that the deletion of espG; decreases the stability of the
ESX-1 substrate PPE68 in M. tuberculosis (Bottai et al. 2011) was
the first hint of a specific chaperone-like activity. Subsequently,
EspG chaperones were shown to specifically interact with PE/PPE
pairs that are secreted by the respective secretion system in M.
marinum (Daleke et al. 2012). In addition, co-expression of EspG-
PE/PPE sets in E. coli were shown to increase the solubility of
the cognate PE/PPE substrates (Korotkova et al. 2014). Based on
these data, together with the observation that EspG is strictly
cytoplasmic, it was hypothesized that EspG is required for the
recruitment of the PE/PPE pairs to the cognate membrane em-
bedded secretion complex, after which it dissociates from these
substrates (Daleke et al. 2012). The crystal structure of EspGs in
complex with the PE25/PPE41 dimer subsequently revealed that
the chaperone exclusively binds to the hydrophobic tip of he-
lices o4 and «5 of the PPE domain of PPE41 (Fig. 1; Ekiert and
Cox 2014; Korotkova et al. 2014). The observation that binding of
EspGs does not introduce conformational changes to the PE/PPE



YbaB

Figure 2. Structures of (potential) T7S chaperones. Ribbon representations of the
solved crystal structures of EspGs of M. tuberculosis (selected from PDB 4KXR; Ko-
rotkova et al. 2014), EspGs of M. tuberculosis (4W4I; Ekiert and Cox 2014), and YbaB
from H. influenzae (PDB 1J8B; Lim et al. 2003), and predicted homologous models to
YbaB of EspL (coverage of by 81% by residue 10-109; produced by SWISS-MODEL;
Tian et al. 2016), EspD (coverage of 38% by residue 65-134; produced by Phyre2)
and EspH (coverage of 39% by residue 66-137; produced by Phyre2) of M. tubercu-
losis. Notably, although YbaB and EspL are able to form homodimers (Lim et al.
2003; Tian et al. 2016), this has not been observed for EspH (Phan, van Leeuwen
et al., submitted). We therefore only show the monomeric structures for these
proteins to emphasize the structural resemblance. N, N-terminus; C, C-terminus.

dimer, but increases the solubility of the protein pair (Korotkova
et al. 2014), suggests that EspG prevents self-aggregation via the
hydrophobic tip of the PPE protein. This potential function of
EspG chaperones is similar to that of the T3S effector chaperone
SycE that prevents aggregation of its substrate YopO (Letzelter
et al. 2006).

Based on the observation that EspG proteins specifically in-
teract with PE/PPE pairs of their respective system, EspG was
hypothesized to be involved in determining system specificity
of these substrates. Indeed, we recently showed that the ESX-
1 dependent substrate pair PE35/PPE68.1 could be rerouted to
the ESX-5 system of M. marinum by replacing the EspG; binding
domain of PPE68_1 with the equivalent EspGs binding domain
of the ESX-5 substrate PPE18 (Phan et al. 2017). This domain re-
placement makes the PE35/PPE68_1 protein pair independent of
both EspG; and the ESX-1 membrane complex but instead de-
pendent on EspGs and the ESX-5 complex for secretion. These
findings indicate that EspG not only is required for the solubil-
ity of PE/PPE complexes, but also that it specifically directs these
protein pairs to their respective ESX-system. A similar role in de-
termining system specificity has been observed for the CBD of
T3S effectors (Lee and Galan 2004). The question remains how
the other substrate groups, especially the Esx proteins that lack
a hydrophobic helical tip, are specifically recognized. While their
C-terminal secretion signal could still be involved, another pos-
sibility is that Esx proteins are guided to the cognate secretion
machinery by other substrates of the same system (see Fig. 3).

EccA

The second ESX conserved cytosolic component, which could
potentially execute a chaperone-like activity, is EccA, an AT-
Pase belonging to the AAA+ (ATPases Associated with diverse
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Figure 3. Working model for substrate recognition and targeting in type VII secre-
tion. The three T7S substrate families, the Esp, Esx, and PE/PPE proteins, are gen-
erally exported as heterodimers by the T7S secretion machinery. While dimer-
ization occurs via a conserved four-helix bundle fold, Esp, and PE/PPE proteins
additionally contain highly variable C-terminal domains. Substrate recognition
occurs via a C-terminal secretion motif on one of the dimer subunits (indicated
by a red box). The cytosolic component EspG specifically recognizes a conserved
hydrophobic helical tip in PPE proteins and possibly mediates targeting of PE/PPE
substrates to the cognate membrane channel. Esp substrates also require bind-
ing of dedicated chaperones, possibly to a similar helical tip structure, to prevent
their premature self-assembly. While the core membrane channel consists of
the conserved membrane components EccB, EccC, EccD, and EccE (Houben et al.
2012; Beckham et al. 2017), the fifth conserved membrane component, the pro-
tease MycP, while essential for secretion, is not an integral part of this complex
(van Winden et al. 2016). The three nucleotide binding domains of EccC are likely
involved in energizing translocation of substrates through this channel. In this
model, the T7S membrane complex mediates transport only across the inner
membrane, while a so far unidentified separate channel mediates translocation
across the outer membrane. The observed interaction between the secretion sig-
nal of an Esx pair with EccC in vitro (Champion et al. 2006; Rosenberg et al. 2015)
is indicated by an arrow. Arrows with question marks indicate the potential in-
teractions between the different substrate families, of the other substrates with
EccC and of the postulated specific interaction of PE/PPE pairs with the cytosolic
ATPase EccA. IM, inner membrane; OM, mycobacterial outer membrane.

cellular Activities) protein family. All EccA homologs consist of
two domains with the C-terminal domain containing the typical
AAA+ ATPase characteristics, such as the walker and oligomer-
ization motifs, and the N-terminal domain containing 6 tandem
TPR motifs (Wagner, Evans and Korotkov 2013). Similar to other
AAA+ ATPases, the ATPase domain of EccA; has been shown
to mediate homohexamerization (Luthra et al. 2008). The role of
EccA in secretion remains unclear. While some studies showed
that EccA; and EccAs are required for the secretion of different
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ESX-1 and ESX-5 substrates, respectively (Gao et al. 2004; Abdal-
lah et al. 2006; Bottai et al. 2012; Joshi et al. 2012), other studies
showed that they are dispensable for secretion (Converse and
Cox 2005; Houben et al. 2012). This discrepancy could be ex-
plained by our recent observation that the importance of EccA;
for ESX-1 mediated secretion in M. marinum varies between dif-
ferent growth media (Phan, van Leeuwen et al., in press). In line
with the central role of an AAA+ ATPase in the disassembly the
T6S secretion apparatus (Bonemann et al. 2009), a role of EccA in
the disassembly of the EspG-PE/PPE complex upon targeting to
the T7S membrane complex has been proposed (Ekiert and Cox
2014). This hypothesis is supported by the observation that EccA
proteins are encoded only in ESX gene clusters that also encode
PE and PPE proteins (Houben, Korotkov and Bitter 2014).

Specific chaperones for Esp substrates

As already mentioned, the structure of monomeric EspB shows
striking structural resemblance to PE/PPE pairs, including the
presence of a two-helical hydrophobic tip (Fig. 1; Korotkova
et al. 2015; Solomonson et al. 2015). Interestingly, EspB has been
shown to multimerize upon secretion and forms heptameric
ring-shaped particles upon overexpression in E. coli, as visual-
ized by negative stain EM (Korotkova et al. 2015; Solomonson
et al. 2015). Modeling the solved crystal structure of monomeric
EspB within these EM images produces an arrangement where
the hydrophobic helical tips of EspB are tightly packed. From
this finding, it was postulated that a specific chaperone is re-
quired to prevent premature self-assembly via this hydrophobic
tip, similarly as EspG for PE/PPE substrates. In this respect, the
putative chaperone for EspB could have a comparable function
as the chaperones of T3S pore-forming substrates (see above).

While a dedicated chaperone for EspB has not been identified
yet, stable expression of the substrate pair EspA/EspC in M. tu-
berculosis is dependent on the presence of another ESX-1 associ-
ated protein EspD, that is co-transcribed with the substrate pair
(Chen et al. 2012). This indicates that EspD is a dedicated chap-
erone for EspA/EspC. EspD shows 55% sequence identity with
another small protein, EspH, encoded from a gene sharing an
operon structure with espG; and eccA;. Our recent analysis of
an espH deletion mutant in M. marinum shows an abolished ex-
pression and secretion of EspE/EspF and we could furthermore
show that EspH remains in the mycobacterial cytosol, where
it specifically interacts with EspE (Phan, van Leeuwen et al., in
press). Using Phyre? (Kelley et al. 2015), we discovered that EspH
and EspD are predicted to share structural similarity to YbaB
of Haemophilus influenza and E. coli, a widely-distributed DNA-
binding protein involved in regulation of gene expression (Fig. 2;
Lim et al. 2003; Cooley et al. 2009). However, more recent studies,
showing that YbaB of E. coli interacts and is a target of ClpYQ pro-
teases (Tsai et al. 2017) and enhances heterologous membrane
protein production (Skretas and Georgiou 2010), indicate a more
complex function. Interestingly, a structural study of the ESX-1
associated EspL also revealed a high resemblance to YbaB (Fig. 2;
Tian et al. 2016), making it tempting to speculate that EspL also
functions as a chaperone. It is still unclear though why these
Esp proteins might have a similar fold as a DNA-binding protein.
While YbaB and EspL form homodimers when expressed in E.
coli, we were unable to detect dimerization of EspH upon heterol-
ogous expression in M. marinum (Phan and Houben, unpublished
results). It therefore remains uncertain whether these potential
structurally conserved Esp chaperones function as dimers or as
monomers.

CONCLUSIONS

Chaperones, in general, interact with their substrates either
to ensure their proper folding or to prevent premature folding
and/or assembly to maintain their competence for transloca-
tion. However, while the generic chaperones TF, DnaK, GroEL
and SecB are highly promiscuous in substrate recognition and
bind a wide range of proteins, the chaperones involved in spe-
cialized secretion systems are usually more specific for a sub-
strate subgroup or even a single protein. This difference could
be linked to the observation that secretion via specialized secre-
tion systems often occurs in a highly regulated fashion, requir-
ing specific triggers such as target cell contact, and that differ-
ent substrate classes are secreted in a more hierarchical fashion.
Dedicated chaperones could play a central role in both these pro-
cesses, by regulating the targeting of different substrate classes
to the translocation machinery. For T7S in mycobacteria, the
mechanism of substrate recognition and targeting seems to be
highly complex (Fig. 3). Not only are different substrate families
dependent on each other for secretion, they furthermore rely on
dedicated chaperones for successful export by the cognate se-
cretion machinery. The elucidation of the roles of the different
chaperones in system specific substrate recognition and target-
ing will be instrumental to understand the mechanism of T7S
across the specific mycobacterial cell envelope.
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