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Mechanical circulatory support (MCS) for failing single ventricle (SV) physiology is a

complex and challenging problem, which has not yet been satisfactorily addressed.

Advancements in surgical strategies and techniques along with intensive care

management have substantially improved the outcomes of neonatal palliation for SV

physiology, particularly for hypoplastic left heart syndrome (HLHS). This is associated

with a steady increase in the number of SV patients who are susceptible to develop

heart failure (HF) and would potentially require MCS at a certain stage in their palliation.

We have reviewed the literature regarding the reported modalities of MCS use in the

management of SV patients. This includes analysis of various devices and strategies

used for failing circulation at distinct stages of the SV pathway: after neonatal palliation,

after the superior cavo-pulmonary connection (SCPC), and after total cavo-pulmonary

connection (TCPC).

Keywords: single ventricle, mechanical circulatory support, fontan physiology, ventricular assist devices, VA

ECMO

INTRODUCTION

Fontan and Baudet introduced the concept of single ventricle (SV) palliation in 1968, in a
patient diagnosed with tricuspid atresia, by total right heart bypass achieved with atrio-pulmonary
connection (1). SV palliation is considered for patients with severe congenital heart disease
(CHD) that are not amenable to biventricular repair. The primary aim of SV palliation is to
obtain separation of left and right circulations, which would allow oxygenated blood flow to the
systemic circulation, while deoxygenated blood is directed to the pulmonary circulation, without
contribution from a sub-pulmonary ventricle (2–4). The Fontan palliation, including total cavo-
pulmonary connection (TCPC), produces a unique physiology in which pulmonary blood flow
is driven primarily by the residual force of the systemic ventricle, resulting in an elevation in
systemic venous pressure. Although, there have been substantial improvements in early to mid-
term outcomes owing to the several surgical modifications of the original technique, long-term
morbidities inherently associated with the peculiar Fontan circulation remain a challenge (5–7).
Long-term complications are due to the inevitable systemic venous hypertension and low cardiac
output state, thus there has been a pessimistic view that all “Fontans” will fail at some point. In
a recent analysis of data from multiple children’s hospitals in the United States, approximately
12% of all hospitalizations of children with SV were complicated by heart failure (HF) (8).
Given the shortage of cardiac allografts, it is obvious that cardiac transplantation alone is not a
sustainable solution to address the epidemic of HF associated with SV physiology. Hence, the need
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for alternative options, particularly mechanical circulatory
support (MCS), has been increasingly recognized.

MECHANICAL CIRCULATORY SUPPORT
TYPE

As reported in previous studies (9–11), patients with SV
physiology are subject to drastic alterations of their clinical
condition over time. The concept of MCS in this group of
patients is based on the need to reduce their systemic venous
pressure while augmenting cardiac output. Most patients are
poor transplantation candidates because of a wasted nutritional
status and multiple organ dysfunction. The implantation of a
cardiac assist device may reverse organ dysfunction and replenish
these children but the experience in use of ventricular assist
devices (VADs) in univentricular hearts remains a challenge.
Three main support types are available for assisting failure of SV
physiology: a veno-arterial extracorporeal membrane oxygenator
(VA-ECMO) used for short term cardiac support, a ventricular
assist device (VAD) that may be used for mid and long-term
support, bridge to recovery and typically bridge to transplant, and
the Total Artificial Heart (TAH).Table 1 lists theMCSmodalities
along with their advantages and disadvantages.

VA-ECMO is the most common type of MCS used in
children, not only because it can provide biventricular cardiac
and respiratory support, but also due to lack of alternative
technology suitable for the pediatric population. In the setting of
acute cardiac failure, VA-ECMO support remains an important
option because it can be established immediately and maintained
for a period of duration until correctable factors are identified.
It may be used as bridge to decision or bridge to a more long-
term device or to transplantation. In essence, VA-ECMO is a
closed cardiopulmonary bypass system with the venous drainage
cannula in jugular or femoral vein or right atrium. The blood is
pumped through a membrane oxygenator with heat exchanger
for temperature regulation and returns to the patient via an aortic
cannula in the carotid or femoral artery or ascending aorta.

Recently, technological advancements and experience have
improved the durability and decreased the complication profile
of VADs, with a consequent 10-fold increase in the number
of VAD implantations as reported by the Interagency Registry
for Mechanically Assisted Circulatory Support (INTERMACS)
from 2006 to 2010 (12). In cases of SV with ventricular
dysfunction without respiratory failure, VADs have been shown
to be efficacious compared with VA-ECMO, due to reduced
anticoagulant and transfusion requirements, earlier ventricular

Abbreviations: BHE, Berlin Heart EXCOR; BiVAD, biventricular assist device;

CHD, congenital heart disease; CNS, central nervous system; DKS, Damus-

Kaye Stansel; EDP, end-diastolic pressure; HD, hemodialysis; HF, heart failure;

HLHS, hypoplastic left heart syndrome; IVC, inferior vena cava; mBTs, modified

Blalock-Taussig shunt; MCS, mechanical circulatory support; OHTx, orthotopic

heart transplantation; PLE, protein losing enteropathy; PVR, pulmonary vascular

resistance; RVAD, right ventricular assist device; SCPC, superior cavopulmonary

connection; SV, single ventricle; SVC, superior vena cava; TAH, total artificial

heart; TCPC, total cavopulmonary connection; TPG, transpulmonary gradient;

UVAD, univenticular assist device; VA-ECMO, veno-arterial extracorporeal

membrane oxygenation; VAD, ventricular assist device.

recovery, and decreased cost (13). Additional advantages of a
VAD include the “possibility of extubation, discharge to a semi-
ambulatory high-dependency setting, and allowance of longer
waiting times for an organ” (14). This is crucial for SV patients
who have long transplant waiting times, owing to patient size
as well as a high incidence of pre-formed alloantibodies (14,
15). Since worldwide experience in supporting these patients is
limited, it is unclear which device would afford the best chance
of survival, considering the complex pathophysiology of SV
failure (9).

A short-term MCS employed in many centers are centrifugal
VADs, which have gained popularity as bridge to decision
or toward long-term VADs or to transplantation. They are
relatively easy to implant and can be adapted to all age
groups. The Levitronix CentriMag (Levitronix GmbH, Zurich,
Switzerland) and the RotaFlow from Maquet (Maquet Medical
System, Wayne, New Jersey) are most frequently used in the
United States. They can be supplemented with an oxygenator to
simulate a VA-ECMO and provide renal support with a dialysis
machine (16).

However, the most common VAD used amongst the pediatric
population is the Berlin Heart Excor (BHE) (Berlin Heart Inc,
The Woodlands, TX). The BHE consists of a para-corporeal,
pneumatically driven, polyurethane blood pump (10, 15, 25, 30,
50, 60, and 80ml) (17) with a multilayer flexible membrane
separating blood from the air chamber. Silicon cannulae connect
the blood pump to the patient, and tri-leaflet inflow and outflow
valves prevent blood reflux. All the surfaces in contact with
blood are heparin-coated. Each pump is driven by a pulsatile
electro-pneumatic system. The drive unit (IKUS 2000) has a triple
operational control and pneumatic system, with the availability
of synchronous and asynchronous operating models. In SV
failure, the BHE has been utilized in vast majority of cases
as a univentricular assist device (UVAD), where it supports
the SV exclusively, leaving the systemic-to-pulmonary shunt or
the superior cavo-pulmonary connection (SCPC), or the total
cavo-pulmonary connection (TCPC) as unassisted sources of
pulmonary blood flow. The BHE has been used as “biventricular
support” or a BiVAD in very few cases, where the systemic
and pulmonary circulations have been isolated and supported
individually (18).

The last category of VADs used are intracorporeal devices.
These continuous flow pumps can be differentiated into
axial flow (HeartMate I and II, Thoratec Corp, Pleasanton,
CA) or centrifugal pumps (HeartWare HVAD, HeartWare
Inc, Framingham, MA and HeartMate III, Thoratec Corp,
Pleasanton, CA), with different flow rates and shut off pressure
thresholds. There has been considerable discussion pertaining to
their individual unloading characteristics as well as comparison
with pulsatile flow pumps, when accounting for the mechanism
and timing of SV failure. Horne et al. have described a useful
algorithm for the treatment of SV failure in various age groups,
with respect to the aforementioned devices’ specifications, size of
patient, and underlying mechanism (9).

The remaining MCS device available is the Total Artificial
Heart (TAH) by SynCardia (SynCardia, Tucson, AZ). It
is a pulsatile biventricular support device implanted after
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TABLE 1 | Most common MCS Devices for SV.

Types Advantages Disadvantages Size

VA-ECMO (continuous flow) • Immediate establishment • Finite use

• Anticoagulation and

transfusion

requirement

• Cost of hospital stay

VAD • Possibility of extubation

• Discharge from acute setting

• Allowance of longer waiting time

• Reduced anticoagulant requirement

• Better (than VA-ECMO) ventricular

recovery

• Decreased use of blood products and

cost

• Limitation of patient

body size

Centrifugal VADs (continuous flow)

• CentriMag

• RotaFlow

• Short term MCS

• Relative ease of implantation

• Adaptable to all ages

• Ability to convert into VA-ECMO by

inserting an oxygenator

• Provide renal support with HD

Berlin Heart Excor (BHE) (pulsatile) • Ability to use as UVAD or BiVAD for SV 10–15–25–30–50–60–

80ml

Intracorporeal VAD (continuous flow)

• HeartMate I, II (Axial flow)

• HeartWare, HeartMate III (Centrifugal pumps)

TAH

• SynCardia

• BiV support

• Can be used for SV failure

Unsuitable for smallest

pediatric patient

50cc, 70cc

VA-ECMO, veno-arterial extracorporeal membrane oxygenation; VAD, ventricular assist device; MCS, mechanical circulatory support; HD, hemodialysis; SV, single ventricle; TAH, total

artificial heart; BiV, biventricular support.

cardiectomy, and is available as 70cc pumps or as the
newly manufactured 50cc pumps for smaller patients. Its use
has been advocated by Horne et al. especially in Fontan
failure with increased pulmonary vascular resistance (PVR) ±
ventricular dysfunction (9). Rossano et al. reported the successful
implantation of TAH in a 13 year old patient with failing Fontan
circulation who survived to transplantation (19).

SV patients present a difficult challenge with regards
to optimal configuration of anatomy, unilateral vs. bilateral
support, device selection, and cannulation strategies. It is
therefore reasonable to suggest that the optimal mechanism
for support will vary depending on the etiology of failure.
Because of the extreme variability of patients, cardiac anatomy,
comorbidities, and mechanism of failure, it is necessary to define
ideal management strategies following the three different SV
stages: neonatal palliation including Stage I Norwood, superior
cavo-pulmonary shunt, and following completion of Fontan
circulation.

After Neonatal Palliation
During the neonatal period, it is impossible to create a
Fontan circulation because of an elevated PVR as well as
sizes of the superior vena cava (SVC), inferior vena cava
(IVC), and pulmonary arteries. Therefore, a staged approach
is utilized which allows the body to adapt progressively to the
hemodynamic conditions of each SV stage. Different surgical
procedures are used in the neonatal period based on the

primary type of CHD. This includes pulmonary artery banding

or modified Blalock-Taussig shunt (mBTs) ± Damus-Kaye-

Stansel (DKS) anastomosis otherwise known as stage I Norwood

procedure. Subsequently, the patient may develop acute or

chronic HF. Acute failure should be managed by VA-ECMO

support whereas for chronic failure, the best solution may be

to progress to the second stage of SV pathway to eliminate a
volume-loaded circulation. The use of VA-ECMO support after

neonatal palliation with systemic-to-pulmonary artery shunt

warrants a balance between systemic and pulmonary perfusion

in order to prevent myocardial and systemic ischemia, caused by

excessive runoff into the low-resistance pulmonary bed through
the shunt.

Early reports of VA-ECMO suggest that outcomes for patients

with SV circulation are substantially worse than those with

2-ventricle circulation, and survival to discharge after Stage I

Norwood procedure supported with VA-ECMO was only 31%

(20, 21). Recent literature indicates an improved outcome of

VA- ECMO post Stage I Norwood with a hospital discharge of
50% (22). Laussen et al reviewed 44 patients aged less than 1
year with shunted SV physiology supported with VA-ECMO at
Children’s Hospital Boston between 1996 and 2005, and reported
that the overall survival to discharge in this group of neonates
(48%) is comparable to survival reported for all neonatal and
pediatric cardiac VA-ECMO in the Extracorporeal Life Support
Organization registry (41%) (23).
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Ungerleider et al. have advocated the routine use of centrifugal
short-term VADs for circulatory support following stage I
Norwood for palliation of hypoplastic left heart syndrome
(HLHS) (24). Berlin Heart EXCOR has been used in SV failure
after neonatal palliation in few cases, mostly as univentricular
support with dismal outcome. In 1998, Hetzer et al. reported
of a child with HLHS supported with the BHE after stage
I Norwood, who died of intracerebral hemorrhage (18).
Brancaccio et al. described another child who received a UVAD
BHE following a mBTs, who eventually died of a thrombo-
embolic event in 2013 (25). Lal et al reported a case of
a 14 month old boy with failing SV circulation post-SCPC
who was supported with the Revolution VAD (Sorin Group,
Arvada, CO) connected to BHE cannulae after his SCPC
was taken down and replaced with a mBTs for pulmonary
blood flow. Subsequently the child was successfully transplanted
(26).

Weinstein et al. reviewed the EXCOR Investigational Device
Exemption study database and analyzed outcomes of patients
with SV supported with BHE. Amongst 26 children, 9
were supported after palliative neonatal surgery with BHE,
in which it served as a UVAD in 8 cases and provided
biventricular support in one case, with only one surviving
to orthotopic heart transplantation (OHTx) (27). De Rita
et al. from Newcastle Upon Tyne in UK, analyzed their
experience in patients with two ventricle and SV physiology
supported with BHE as bridge to transplant/recovery. Two
patients were supported after SV palliative neonatal surgery
with BHE, as a UVAD and a BiVAD, respectively, and
both died while on support (28). Pearce et al. reported
a case of a child supported with BHE as a UVAD after
pulmonary artery banding followed by a mBTs for neonatal
SV palliation, who was successfully transplanted (29). Recently,
Gazit et al. advocated the use of BHE cannulas connected
to a centrifugal pump as medium-to-long term support after
neonatal univentricular palliation. The benefit of this technique
is conferred by the improved stability of the BHE cannulae
compared with routine ECMO cannulae placement. Seven
patients were treated with this novel technique with 3 patients
(43%) being discharged home, two after SCPC and one after
OHTx (30).

Figure 1 below illustrates the anatomy following a Norwood-
mBT shunt operation in a HLHS case. Figure 2 is a diagram of
BHE cannulae insertion at this stage, with the inflow cannula
inserted in the RV and outflow cannula inserted in the ascending
aorta, allowing it to function as a UVAD. The mBTs has been
narrowed in order to avoid pulmonary overcirculation.

After Superior Cavo-Pulmonary Shunt
The second operation in the SV pathway involves a superior
cavo-pulmonary connection (SCPC) commonly called the
“Glenn” shunt, where superior systemic venous return is
directed to the pulmonary bed. The main reasons of circulatory
failure at this stage are elevated mean pressure in the SCPC,
significant atrio-ventricular valve regurgitation, younger age,
lower weight, longer bypass time, and re-intubation; whereas,
inter-stage mortality was mainly influenced by moderately

Blalock-Taussig
shunt Ao

SVC

Homograft 

patch

LPA

RV Severe

PV Pulmonary

valve

TV regurgitation

IVC

FIGURE 1 | Anatomy following Norwood-mBTs.

impaired ventricular function, prolonged hospital stay and poor
weight gain (3, 31).

SV patients with SCPC present unique challenges when
considering MCS. Since the SVC is connected to the pulmonary
artery, decompression of the systemic pumping chamber
may not guarantee adequate venous drainage and may
result in ongoing venous hypertension, which encourages
the development of aberrant veno-venous connections and
subsequently worsening cyanosis. Thus the management
of circulatory failure at SCPC palliation is mainly medical
management, either to recovery or as a bridge to OHTx,
with conversion to total cavo-pulmonary circulation or
to biventricular repair on rare occasions and subsequent
central VA-ECMO or VAD support (14, 32). Particularly,
in acute failure it is preferred to use VA-ECMO or VAD,
while the therapeutics options for chronic failure are VAD or
OHTx.

Recent report on the usage of VA-ECMO in SCPC showed
an improved survival to hospital discharge (41%) compared to
earlier data, but there was still a high incidence of neurological
complications (32). There have been several reports of VAD use
with a SCPC palliation as single cases (14, 33, 34). Chu et al.
described a 4-year-old with HLHS who developed refractory HF
after second stage palliation, was supported with a BHE, and died
on postoperative day 13 from bowel necrosis (33). Weinstein
et al. described 26 SV patients with a VAD, of which 12 cases
were supported after SCPC with BHE (11 as a UVAD and 1 as
a BiVAD) and 7 survived to transplantation (27). In addition,
De Rita et al. reported 5 patients who were supported after
SCPC with BHE (all as a UVAD), and 3 survived to transplant
(28). Niebler et al. reported four SV patients palliated with
SCPC and supported with BHE in a UVAD configuration with
three successfully transplanted (35). Shah et al. reported the

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 August 2018 | Volume 5 | Article 115

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Griselli et al. Single Ventricle Mechanical Circulatory Support

FIGURE 2 | Anatomy following Norwood-mBTs with BHE as a UVAD.

implantation of Heartmate II in an adult patient with SCPC who
died on support after 261 days (36).

Recent trends in the management of acute univentricular HF
with SCPC advocate the use of BHE cannulae connected to a
centrifugal pump with an oxygenator and either conversion to a
BHE pulsatile pump or maintenance of a continuous flow pump
and oxygenator and progress to extubation. Alternatively, the
use of an implantable continuous-flow VAD, such as the HVAD
Heartware or Heartmate II, may represent a more suitable option
due to the ability for discharge to home(37, 38). Regardless of the
type of VAD employed, severe hypoxemia related to veno-venous
collaterals remains a challenge during VAD support. Performing
a concomitant Fontan operation at the time of VAD insertion can
alleviate the hypoxemia issue and would provide amore favorable
circulation, if candidates are selected appropriately (39).

Figure 3 illustrates the anatomy following a SCPC and routes
of systemic and pulmonary blood flow. Figure 4 is a diagram of
BHE cannulae insertion with inflow cannula inserted in the RV
and outflow cannula inserted in the ascending aorta in this type
of anatomy to function as an UVAD.

FIGURE 3 | Anatomy following SCPC.

After Fontan Palliation
The inferior systemic venous return is directed to the lung
following TCPC. Aim of this stage is that all systemic venous
blood flows passively through the pulmonary vascular bed
bypassing the SV. The final objective is to achieve normal
volume and pressure workload for the SV and nearly normal
oxygen saturation of the systemic blood. Prerequisites to a
successful TCPC include low PVR and good ventricular function
with low end-diastolic pressure (40). After Fontan palliation,
various complications such as protein losing enteropathy
(PLE) (41), atrial tachyarrhythmias, and progressive ventricular
dysfunction can occur, leading to Fontan failure (3). Specifically,
up to 40% of patients undergoing TCPC experience HF,
and PLE is diagnosed in up to 15% of patients, with a 5-
year mortality rate of 50% (3). The mechanism of Fontan
failure may be an isolated “pure” pump failure with elevated
end-diastolic pressure (L(R)VEDP) with low trans-pulmonary
gradient (TPG), sometimes differentiated as a systolic or diastolic,
or an isolated “Fontan Circulation” failure, that is more
common, and is associated with low L(R)VEDP with high
trans-pulmonary gradient (TPG) or a combination of both
conditions with elevated L(R)VEDP and elevated TPG (9). Most
available conventional interventions are unable to improve the
hemodynamic instability of this group of patients and the OHTx
may represent the only remaining therapeutic treatment to
improve survival and clinical status (42, 43).

Currently, there is no medium or long-term mechanical assist
device as bridge-to-transplant or bridge-to-recovery, which has
been found suitable for the failing Fontan circulation. VA-ECMO
has been used in acute settings in the past, with disappointing
results. Rood et al. reported a survival to discharge of 35% in
patients with Fontan failure supported with VA-ECMO (44).
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FIGURE 4 | Anatomy of BHE following SCPC as a UVAD.

In the Newcastle Upon Tyne group, 4 children with Fontan
failure were supported with VA-ECMO, with three patients
surviving to transplantation and one weaning off, after recovery
of cardiac function (28). The application of a VAD in the Fontan
physiology increases the mean systemic pressure and cardiac
output, while providing active drainage of the pulmonary venous
atrium thereby effectively decreasing the EDP of the systemic
ventricle. Furthermore it increases pulmonary blood flow and
systemic venous return, thus ultimately reducing central venous
pressure.

BHE has been used in Fontan failure as well, though mainly as
a UVAD. In the group described by Weinstein and colleagues,
5 patients with Fontan circulation were supported with BHE
as a UVAD and 3 survived to transplantation (27). Sandica et
al. and Hoganson et al. published 3 cases of Fontan failure
supported with a UVAD BHE and successfully transplanted
(37, 45). Nathan et al. reported the placement of a BiVAD
BHE in a child with failing Fontan circulation as a bridge to
transplantation (46). Similarly, Valeske et al. used a BHE BiVAD
as a total artificial heart for “bridge-to-transplantation” in a 19-
year-old boy with SV anatomy with failing Fontan circulation
and secondary end-stage cardiorespiratory failure (47). Figure 5

FIGURE 5 | Possible cannulation for BHE BiVAD following TCPC.

illustrates this potential BiVAD set up utilizing a BHE. The
inflow cannula is inserted in the extra cardiac Fontan with its
associated outflow cannula in the right pulmonary artery for
pulmonary circulation, while the inflow cannula is in the RV and
outflow cannula in the ascending aorta, for systemic circulatory
support.

Prêtre et al. reported a right ventricular assist device (RVAD)
with BHE in a 27-year-old patient with the primary diagnosis of
tricuspid atresia, extracardiac Fontan and preserved ventricular
function, who was eventually transplanted successfully (48).
VanderPluym et al. described a case of a failing Fontan,
being supported to transplantation with a UVAD BHE after
reconversion to SCPA, in a 3-year-old child (10). Intracorporeal
devices have been used in failing TCPC as well. Axial flow pumps
usage in failing Fontan patients has been reported by Frazier et
al. (HeartMate I in 2005 and HeartMate II in 2015), Morales et al.
and Shah et al. (HeartMate II) whereas reports citing centrifugal
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pumps (HeartWare) were from Miera et al., Niebler et al., and
Arnaoutakis (11, 36, 49–53).

Few other devices have been attempted in the failing Fontan
circulation including the Thoratec Paracorporeal Pulsatile VAD
(Thoratec Corp, Pleasanton, CA), which was used in a case,
reported by Newcomb et al. from Melbourne who survived to
transplantation and in another case, reported by Arnaoutakis et
al. who did not survived to heart transplantation (53, 54). Russo
et al. described a case of a failing Fontan who was successfully
transplanted after been bridged with a centrifugal VAD followed
by Thoratec Intracorporeal Pulsatile VAD (55). An alternative
strategy is the use of TAH as bridge to transplantation (53). So
far, there has been limited experience in this for SV patients, but
we are expecting the number of implants to grow in the future,
considering the availability of smaller pumps and increasing
clinical applications.

DISCUSSION

The management of SV failure is a very difficult task for
surgeons and physicians, as it involves a complex underlying
pathophysiology often confounded by other medical and surgical
issues. The mode, timing, and mechanism of SV failure as well
the patient size are equally important factors in deciding the
management strategy. The algorithm proposed by Horne et al. is
a valid attempt to rationalize the care in SV failure, but frequently
an individualized approach is warranted in view of other factors
(9).

End-organ failure, specifically renal and hepatic, often develop
due to long-standing suboptimal circulation. This constitutes a
considerable problem when dealing with SV physiology and also
plays an important role in candidacy for future transplantation.
The ability to preserve the liver’s synthetic and metabolic
functions is paramount for the success of cardiac transplantation,
especially in patients with Fontan failure.

Short-term device use for initial MCS support is often
necessary in SV patients with acute HF. This is beneficial as
it can be used as a bridge to decision in order to allow full
assessment of each major organ system. However, the associated
substantial neurological risks are an important consideration
(24, 32). Therefore, assessment of the central nervous system
(CNS) is critical prior to implantation of a more durable MCS
in cases where VA-ECMO is used for acute deteriorations.

Although it has been demonstrated that using more than one
modality of MCS does not increase the neurological risk, this
may not be the case with the SV population (53). Thus, it may
be beneficial to employ a more definitive type of MCS from the
beginning in SV patients with chronic HF. This would avoid chest
re-explorations, change of cannulae, and multiple runs of cardio-
pulmonary bypass. The usage of BHE cannulae for centrifugal
VADwith or without an oxygenator is a good initial compromise,
which allow the flexibility to change to pulsatile BHE pumps and
reconversion to non-pulsatile flow if necessary. This approach,
mainly employed in small children, simplifies the surgical issues,
as these cases are already complicated by multiple sternotomies,
presence of allograft or synthetic materials, pacing system, and

risk of bleeding due to concomitant anticoagulation or anti-
platelets treatment. Furthermore, the vast majority of these
complicated patients stay in intensive care units for substantial
period of time. This results in the continuous need for vascular
access for monitoring in the setting of limited available arterial
and venous sites due to possible multiple cardiac catheterizations.

Recently there has been an increasing number of mechanical
devices available for the surgeons, however MCS in SV failure
is centered only on few of those, as reported by the literature
(9, 30, 53). Centrifugal pumps can be used with an oxygenator
as VA-ECMO or without as a VAD, either as a UVAD leaving
the mBTs, the SCPC, or the TCPC as a source of pulmonary
blood flow, or as a BiVAD after recreating a venous reservoir
for systemic venous drainage (9). In the same way, the BHE has
been used as a UVAD in the vast majority of cases or as BiVAD.
The most widely used continuous flow intracorporeal devices are
the HeartMate II axial flow pump and the HeartWare centrifugal
pump.

While in the past, the choice between these devices was mainly
related to the surgeon’s and institution’s preferences, this may
be changing nowadays. Currently, the choice is dependent on
the mode of failure in relation to the mechanism of each device,
particularly considering their unloading characteristics. The TAH
opens an interesting perspective for the future as it can provide
biventricular support with high pump output. Given the ongoing
miniaturization, the TAH system will become available even in
smaller patients. However, it involves extensive surgery, needs
the creation of a venous reservoir for the systemic return, and
can be further complicated by anatomical variation as situs
inversus, dextrocardia, and isomeric hearts. Thus, it is clear that
the MCS support for SV population has not reached the level of
sophistication compared to that for normally structured hearts.
More clinical experience as well as academic studies are necessary
for further improvement in this challenging population.

CONCLUSION

Literature has shown that it is possible to support patients
with SV failure using MCS, however the results of such usage
are mixed, based on the underlying anatomy. Moreover, the
outcomes of MCS in stage I patients are far from optimal.
Although cardiac transplantation represents the ultimate goal
for SV failure patients, the lack of suitable donors remains a
considerable problem. The understanding of the underlying SV
pathophysiology and its interaction with MCS devices continues
to evolve. Together with the development of new devices, we
hope to provide MCS with medium and long-term durability
for these patients, with comparable results to those with two-
ventricle physiology.
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