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Aging is an inevitable and complex natural phenomenon due to the increase in age.
Cellular senescence means a non-proliferative but viable cellular physiological state.
It is the basis of aging, and it exists in the body at any time point. Idiopathic
pulmonary fibrosis (IPF) is an interstitial fibrous lung disease with unknown etiology,
characterized by irreversible destruction of lung structure and function. Aging is one
of the most critical risk factors for IPF, and extensive epidemiological data confirms IPF
as an aging-related disease. Senescent fibroblasts in IPF show abnormal activation,
telomere shortening, metabolic reprogramming, mitochondrial dysfunction, apoptosis
resistance, autophagy deficiency, and senescence-associated secretory phenotypes
(SASP). These characteristics of senescent fibroblasts establish a close link between
cellular senescence and IPF. The treatment of senescence-related molecules and
pathways is continually emerging, and using senolytics eliminating senescent fibroblasts
is also actively tried as a new therapy for IPF. In this review, we discuss the roles of
aging and cellular senescence in IPF. In particular, we summarize the signaling pathways
through which senescent fibroblasts influence the occurrence and development of IPF.
On this basis, we further talk about the current treatment ideas, hoping this paper can
be used as a helpful reference for future researches.
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IDIOPATHIC PULMONARY FIBROSIS IS AN AGING-RELATED
DISEASE

Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease of unknown etiology,
characterized by massive deposition of extracellular matrix (ECM) in the lung interstitium, leading
to the irreversible and slowly progressive destruction of lung structure and function (Raghu et al.,
2011). Most patients with IPF have a median survival of only 2–4 years, and respiratory failure due
to IPF progression is the most common cause of intensive care unit (ICU) admission and death
for IPF patients (Saydain et al., 2002; Fernández Pérez et al., 2010; Ley et al., 2011). Multiple risk
factors increase IPF disease development risk in a single or coordinated manner (Raghu et al., 2011).
The endogenous risk factors of IPF include genetic background, aging, gender, and pulmonary
microbiology, while the exogenous risk factors include smoking, environmental exposure, and air
pollution, especially the dust or organic solvents exposure in the occupational population (Iwai
et al., 1994; Baumgartner et al., 2000). Comorbidities such as gastroesophageal reflux, obstructive
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sleep apnea, and diabetes mellitus are also risk factors (Raghu
et al., 2011). Among them, aging is one of the most significant
risk factors for IPF.

The risk of interstitial lung disease increases with age. The
risk of IPF illness in the elderly over 70 is 6.9 times higher
than in the people aged over 40 (Choi et al., 2018). With the
advancing age, IPF patients also show more interstitial changes
in chest high-resolution computed tomography (HRCT) (Fell
et al., 2010). Extensive epidemiological data confirms IPF as an
aging-related disease (Hutchinson et al., 2014). The prevalence
of IPF is 4.0 per 100,000 in people aged 18–34 years, and this
rate is 227.2 per 100,000 in people aged 75 years or older,
basing on data recorded in a large American health insurance
database from 1996 to 2000 (Raghu et al., 2006). In Japan,
from 2003 to 2007, the cumulative prevalence and incidence
of IPF are 10.0 and 2.23 per 100,000, respectively, and the
incidence also increases with age (Natsuizaka et al., 2014).
Further, data from IPF patients in the United Kingdom shows
a 35% increase in the incidence of IPF during the study period
from 2000 to 2008, with a total incidence of 744 cases per
100,000 population (Navaratnam et al., 2011). From 2004 to
2010, the cumulative annual prevalence of IPF in American
adults aged 18–64 increases from 13.4 per 100,000 in 2005
to 18.2 per 100,000 in 2010 (Raghu et al., 2016). Thus, the
prevalence and incidence of IPF seem to be on the rise in
recent years, partly due to the improved diagnostic methods
(Raghu et al., 2014).

Researchers have been trying to figure out how the
connections between IPF and aging were established. For one
thing, the respiratory system itself shows signs of aging with years.
Significant increases in peribronchial collagen and progressive
fibrosis are observed in the lungs of natural aging mice (Calabresi
et al., 2007). In asymptomatic elders, imaging findings associated
with interstitial lung disease are more common, rare in younger
populations (Copley et al., 2009). On the other hand, aging is
involved in the occurrence and development of IPF disease.
Previous studies have identified several common characteristics
of aging, and cellular senescence is included as a significant
one (Hayflick and Moorhead, 1961; Hayflick, 1965). Aging
refers to the decline of various physiological functions and
the degeneration of tissues and organs in individuals, which
is gradually formed with physiological age growth. Along
with the timeline getting closer to the end of the lifespan,
the individuals inevitably suffer from this complex natural
phenomenon. Quite differently, cellular senescence describes the
physiological cell state, which is non-proliferative but living.
When the damage to the cells is not extreme enough to initiate
the death program but still severe to a certain extent, the
damaged cells will begin a senescence program and become
senescent (Hayflick and Moorhead, 1961). Aging is based on the
accumulation of senescent cells, but cellular senescence can be
detected no matter the physical age. Apart from aging, cellular
senescence is also involved in a wide range of physiological
activities varying from embryonic development, tissue renovates,
and wound healing to tumor suppression. Perhaps because
of this, the role cellular senescence plays in IPF is more
uncertain than aging.

When compared with the age-matched control group, the
primary fibroblasts isolated from the lung of IPF patients showed
more senescent characteristics, which indicates that cellular
senescence is persistent and intense in IPF patients (Álvarez
et al., 2017). Under normal circumstances, lung fibroblasts only
exist as the mesenchymal cells, located between the epithelial
cells in the alveoli or trachea and the endothelial cells in the
blood vessels. The alveolar epithelial cells can be harmed by
pathogenic microorganisms, dust, drugs, chemicals, oxygen-
free radicals, and other factors (Iwai et al., 1994; Baumgartner
et al., 2000). Once the alveolar epithelial cells are damaged,
while type II alveolar epithelial cells (AEC II) proliferate and
differentiate into many flattened type I alveolar epithelial cells
(AEC I) to repair the injury, lung fibroblasts are also activated.
Activated lung fibroblasts proliferate locally and migrate to the
injured area, then they differentiate into myofibroblasts, produce
a large number of ECM components, and exhibit contractile
function. The accumulated myofibroblasts gradually become
senescent after the normal repair progress of lung injury, thus
reducing fibroblasts’ activation and limiting the progression of
fibrosis. From this point of view, senescent lung fibroblasts
play a protective role, for they stopping the deposition of ECM
with the end of the repair process (Desmoulière et al., 1995).
However, using senolytics removing senescent fibroblasts leads to
decreased pulmonary fibrosis in mice model of IPF (Baker et al.,
2011; Schafer et al., 2017). What’s more, senolytics effectively
improve the lung function in both the IPF mice model and
IPF clinical patients, with well tolerance and security (Schafer
et al., 2017; Justice et al., 2019). This evidence from the other
side indicates the destructive effect of senescent lung fibroblasts,
and the decline in the ability of senescent fibroblasts to degrade
ECM may be one explanation (Schafer et al., 2017). There are
practical reasons for these inconsistent results. In most cases, lung
tissues of IPF patients are obtained through percutaneous lung
biopsy or pneumonectomy for clinicopathological diagnosis.
For ethical reasons, clinicians have to minimize the trauma
to patients in invasive procedures or operations, and there
are few remaining lung tissues that can be used for scientific
researches after meeting diagnostic purposes. Thus in some
relevant studies, para-cancer tissue with normal microscopic
appearance is used as the control group of IPF lung tissue. It is
doubtful whether the concluded results based on those control
are actually effective.

SENESCENT FIBROBLASTS IN
IDIOPATHIC PULMONARY FIBROSIS

Unlike lung epithelial cells, which are more like the sensor to
external injury and stimulation, pulmonary fibroblasts act as the
fibrosis process’s direct executor during the disease. Senescent
fibroblasts in IPF are abnormally activated, accompanied by
telomere shortening, metabolic reprogramming, mitochondrial
dysfunction, apoptosis resistance, insufficient autophagy, and
senescence-associated secretory phenotypes (SASP) (Figure 1).
Most of these characteristics of IPF senescent fibroblasts, in turn,
promote the occurrence and development of IPF. The following
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FIGURE 1 | The characteristics of senescent fibroblasts in IPF.

part will clearly illustrate how senescent fibroblasts affect IPF
through the specific molecular signaling pathways and piece
these fragmented results of experiments together to map a signal
regulating network in senescent fibroblasts (Figure 2).

Activation Abnormity
The most fundamental feature of IPF is the deposition of ECM,
which results from the abnormal activation of lung fibroblasts
(Blokland et al., 2020). The activation of lung fibroblasts
involves a series of cell behaviors changes such as proliferation,
migration, and ECM production. Primary lung fibroblasts
isolated from the lung tissue of IPF patients exhibit a difference
in cellular senescence degrees compared with age-matched
controls. These fibroblasts increase the levels of senescence-
associated β-galactosidase (SA-β-gal), P16, P21, P53, and SASP.
The morphology of the IPF lung fibroblasts is enlarged and flat,
similar to the morphological changes happening in fibroblasts
with replication failure. The doubling time of IPF pulmonary
fibroblasts is slow during cell passage in vitro, demonstrating the
declined proliferation capacity (Ramos et al., 2001; Yanai et al.,
2015). These IPF lung fibroblasts also rapidly accumulate the
activation markers α-smooth muscle actin (α-SMA) in primary
culture, suggesting that these cells are also activated fibroblasts,
but may not be equivalent to the senescent myofibroblasts (Yanai
et al., 2015; Álvarez et al., 2017).

It is still controversial whether senescent fibroblasts in
IPF are equal to senescent myofibroblasts. Some studies
suggest that this problem is essentially a difference in
experimental design, whether the researchers consider the
different expressions of α-SMA protein or other specific
identification of myofibroblast phenotype. Nevertheless, more
importantly, in head and neck squamous cell carcinoma and
esophageal adenocarcinoma, the senescent cancer-related
fibroblasts show the same molecular expression, ultrastructure,
and contractile properties as the typical TGF-β-induced
myofibroblasts. Both cells are α-SMA positive, but RNA
sequencing shows that there are significant differences in
transcriptome between two kinds of fibroblasts, especially genes
related to ECM deposition and tissue remodeling. The senescent
fibroblasts with positive α-SMA do not mean that they have
fibrogenic properties or they are senescent myofibroblasts.
In other words, in IPF, the senescent fibroblasts may only
be activated in several limited aspects (Mellone et al., 2016;

Blokland et al., 2020). The development of omics research and
biological big data analysis gives us the confidence to find this
answer in the future.

Telomere Shortening
When normal human diploid cells are serially cultured in vitro,
cells will stop proliferation after a limited number of divisions,
and this is the earliest description of cellular senescence (Hayflick
and Moorhead, 1961; Hayflick, 1965). Subsequent experiments
afterward show that this halt in proliferation is induced by
telomere shortening. Telomeres are gradually worn down with
the increase of passage times of fibroblasts (Harley et al., 1990),
and the loss of telomere protection directly exposes chromosome
DNA to danger, which may then lead to cellular senescence
through DNA damage checkpoint response (d’Adda di Fagagna
et al., 2003; McDonough et al., 2018). The relationship between
telomere shortening and cellular senescence is always mentioned
in IPF. Lung fibroblasts isolated from IPF patients have shorter
telomere lengths than age-matched controls (Álvarez et al., 2017),
and these cells exhibit accelerated replicative senescence during
the primary culture process (Yanai et al., 2015).

Apart from the number of cell divisions, telomere length is
also affected by telomerase. Telomerase consists of three parts:
telomerase RNA (hTR), telomerase synergistic protein 1 (hTP1),
and telomerase reverse transcriptase (hTRT). Telomerase can
make catalytic reverse transcription and provide the needed
RNA template. Both functions are essential guarantees of normal
telomere length. Multiple mutations of hTRT and hTR gene
have been found in IPF patients, and they all lead the way to
telomere shortening (Armanios et al., 2007; Tsakiri et al., 2007;
Alder et al., 2008; Fingerlin et al., 2013). Among them, V144M,
R865C, and R865H mutants of hTRT are more significant, and
cell experiments determine that V144 and R865 in TRT are
two critical residues required for ensuring normal function of
cell telomerase (Tsang et al., 2012). However, further studies
have shown that hTRT increases the viability of lung fibroblasts,
which is beneficial to fibrosis development (Liu et al., 2007,
2013). Differently, hTRT protects AECII from senescence to
ameliorate pulmonary fibrosis, suggesting the cell-type-specific
role of hTRT in disease (Liu et al., 2019). The performance
of telomerase activator GRN510 in external treatment also
elucidates the existence of cell-type specificity. GRN510 only
shows telomerase activation and cell lifespan prolongation in
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FIGURE 2 | The detail of how senescent fibroblasts affect IPF through the specific molecular signaling pathways. “→” represents “activation”; “a” represents
“inhibition”; “—” represents “association”; “+” represents “disassociation.”

small airway epithelial cells, but not in lung fibroblasts (Le
Saux et al., 2013). However, the shorter telomere length in
a significant proportion of IPF patients can’t be explained
by the mutant gene encoding telomerase (Cronkhite et al.,
2008). This question may be related to the complex mechanism
of telomere maintenance. Telomere elongation requires the
assistance of telomere elongation helicases, and mutations in
the gene RTEL1, an autosomal dominant trait, have also been
detected in IPF patients (Kannengiesser et al., 2015). Besides,
DNA needs to be bound to the telomere binding protein during
telomere formation; thus, the lack of this protein prevents
telomere assembly. In AEC II, the deletion of TRF1, a gene that
encodes telomere binding protein, successfully constructs a mice
model of IPF, showing lung remodeling and pulmonary fibrosis
(Povedano et al., 2015). Nevertheless, the absence of TRF1 in
collagen-expressing cells only causes pulmonary edema other
than fibrosis (Naikawadi et al., 2016). Briefly, telomere shortening
and corresponding senescent phenotypes are shown in IPF
fibroblasts, but conversely, it seems that fibroblast senescence
induced by short telomere does not cause IPF (Yanai et al.,
2015; Naikawadi et al., 2016). The association between telomere
shortening and cell senescence may merely occur in AEC
II, not in pulmonary fibroblasts, showing cell-type specificity
(Povedano et al., 2015; Naikawadi et al., 2016). Interestingly,
more telomere-associated foci (TAFs) independent of telomere
length are detected from lung fibroblasts in IPF mice models than

in normal mice (Schafer et al., 2017). TAFs are the oxidative DNA
damage located in telomeric G-reach repeats (Hewitt et al., 2012),
and their presence suggests that telomeres are still involved in the
fibroblast senescence in IPF through another unknown way.

Metabolic Changes
In primary lung fibroblasts obtained from aged mice, glucose
transporter protein 1 (GLUT1) dependent glycolysis is activated.
By down-regulating the activity of the AMP-activated protein
kinase (AMPK), this glycolytic pathway promotes the protein
expression of α-SMA in cells (Cho et al., 2017). And in
the studies of human metabolomics, lung tissues of IPF
patients also show significant differences in energy metabolism
compared with healthy controls, especially the up-regulation
of the glycolytic pathway (Zhao et al., 2017). This switch
is somewhat similar to the Warburg effect in tumor cells.
Warburg effect refers to the behavior that tumor cells tend
to metabolize glucose into lactic acid through glycolysis under
aerobic conditions, unlike normal cells that generate energy
through aerobic oxidation of glucose. With this abnormal glucose
metabolism behavior, tumor cells evade the normal apoptosis
process and enhance their proliferation and migration ability.
Moreover, in IPF, both the aberrant activation of fibroblasts
and the substantial synthesis of ECM require enhanced
energy generation to meet this biosynthetic requirement
(Selvarajah et al., 2019).
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The increased glycolysis is also the result of multiple signal
transduction and interaction within the senescent fibroblasts.
Hypoxia resulted from the progress of IPF disease will lead
to the disorder of cell energy metabolism, but on the other
hand, hypoxia also up-regulates the expression of hypoxia-
inducible factor-1α (HIF-1α) protein and mRNA. HIF-1α

mediates the overexpression of pyruvate dehydrogenase kinase
1 (PDK1) gene, which in turn activated glycolysis and
increased the activation of lung fibroblasts (Goodwin et al.,
2018). Consistent with the experimental results obtained from
aged mice, up-regulated TGF-β1 signaling in IPF fibroblasts
promotes GLUT1 mRNA expression through the typical
Smad2/3 pathway, activates GLUT1-dependent glycolysis, and
accelerates cell proliferation and production of fibrogenic
mediators (Andrianifahanana et al., 2016). Moreover, at the
fibrogenic regions in IPF patients and IPF mice models,
fibroblasts associated with metabolically active and apoptosis-
resistant show lower AMPK activity (Rangarajan et al., 2018).
In addition, another product of glycolysis, lactic acid, is
also found in the lung tissues of IPF. Lactate activates
latent TGF-β1 by changing the pH value of the internal
environment and then promotes the occurrence of fibrosis
(Kottmann et al., 2012). Conversely, glycolysis inhibition
attenuates both lung fibroblast activation and the growth-
promoting phenotype of IPF fibroblasts (Dias et al., 2019).
Fructose-1, 6-bisphosphate is an intermediate product of
glycolysis, which can decrease the proliferation of fibroblasts
and the cell’s ability to produce ECM, thus halting the
occurrence of pulmonary fibrosis (Xie et al., 2015). Increased
glycolysis is a consequence of cellular senescence, but in
another way, it also promotes pulmonary fibrosis. This
may explain the inhibition effect of pulmonary fibrosis by
AMPK activators such as metformin (Rangarajan et al., 2018;
Kheirollahi et al., 2019).

Apart from glycolysis, metabolic heterogeneity in IPF
fibroblasts also includes changes in bile acid, heme, amino acid,
and lipid metabolism (Zhao et al., 2017). TGF-β1 increases
the production of activated transcription factor 4 (ATF4) in
fibroblasts. ATF4 is the central transcriptional regulator of
amino acid metabolism and provides glucose-derived glycine
to meet the amino acid requirements of cells associated with
enhanced collagen production (Selvarajah et al., 2019). There
is also a metabolic process related to glutamine, a critical
metabolic process in which glutaminase converts glutamine
into glutamic acid and then into the TCA cycle metabolite
α-ketoglutarate (α-KG), mediating the resistance to apoptosis
of fibroblasts (Bai et al., 2019). Also, advanced glycation end
products (AGEs), as products of non-enzymatic reactions of fats
and proteins with various oxidants during the senescent process,
are a group of stable covalent compounds. By acting on the
receptor of AGEs (RAGEs), AGEs also affect fibroblast activation
(Machahua et al., 2016).

Mitochondrial Dysfunction
The mitochondrial dysfunction triggers include transmembrane
potential loss in the mitochondrial inner membrane, down-
regulation of electron transport chain (ETC) function, and

reduction of key metabolites entering mitochondria from
the cytoplasm (Nicolson, 2014). These alterations reduce
mitochondrial oxidative phosphorylation and reduce ATP
production (Nicolson, 2014). They then switch on several
age-related changes, particularly the overproduction of pro-
inflammatory and pro-oxidative signals (Correia-Melo et al.,
2016). An overall decrease in mitochondrial mass and function
are observed in IPF lung fibroblasts than healthy controls
(Álvarez et al., 2017; Caporarello et al., 2019). The declining
mitochondrial mass is associated with an abnormality in
mitochondrial biogenesis and mitophagy. The decreased
mitochondrial function is manifested as increased reactive
oxygen species (ROS) production, decreased mitochondrial
membrane potential, and mitochondrial respiratory chain
complex in senescent fibroblasts (Luo et al., 2013). They both
ultimately drive the senescence phenotypes of the cells and
promote fibrosis progression (Wiley et al., 2016).

Mitophagy, which occurs in normal cells to maintain
mitochondrial homeostasis, is down-regulated in senescent
fibroblasts, leading to decreased PTEN-induced putative
kinase 1 (PINK1) (Sosulski et al., 2015). Inhibited mitophagy
activates the downstream pathway of platelet-derived growth
factor receptor (PDGFR), further amplifying the mitophagy
process (Kobayashi et al., 2016). Besides, levels of peroxisome
proliferator-activated receptor γ coactivator-1α (PGC1α) and
mitochondrial transcription factor A (TFAM) are steadily
inhibited in IPF cells (Hecker et al., 2014; Bernard et al., 2015,
2017; Caporarello et al., 2019). Furthermore, dysfunctional
mitochondria produce large amounts of ROS, including
peroxides, superoxides, and hydroxyl radicals. ROS produced
by lung fibroblasts rapidly and sensitively promotes cell
proliferation and activation in a dose-dependent manner,
and ROS is also endogenous damage to lung epithelial cells
(Murrell et al., 1990; Waghray et al., 2005). The production of
intracellular ROS is related to the decrease of mitochondrial
membrane potential, which could be restored by the deactivation
of the mammalian target of rapamycin (mTOR). mTOR activity
also affects the signal transduction between mitochondria and
nucleus, and the coordinated expression of mitochondrial
and nuclear genes is a necessary condition for maintaining
the normal function of mitochondria (Lerner et al., 2013).
Reactive oxygen-producing enzyme NADPH oxidase 4 (Nox4)
is another source of ROS (Jain et al., 2013; Bernard et al.,
2017). NOX4 regulates the protein abundance of α-SMA
and collagen by controlling the activation of Smad2/3 and
regulated PDGF-induced fibroblast migration (Amara et al.,
2010). What is worse, the antioxidant capacity of the nuclear
factor E2-related factor 2 (Nrf2) is impaired in senescent
fibroblasts, resulting in the Nox4-Nrf2 redox imbalance,
which ultimately promotes the activation of fibroblasts and
the formation of senescence phenotypes (Hecker et al., 2014;
Bernard et al., 2015, 2017).

In addition, signal transduction and transcriptional activator
factor 3 (STAT3) is necessary for the ETC of mitochondrial
complexes I and II to remain activation and is involved in
coordinating intracellular homeostasis (Wegrzyn et al., 2009).
The elevation of superoxide concentration in senescent lung
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fibroblasts continuously promotes the translocation of STAT3
to the nucleus and mitochondria, mediates the metabolic
function of mitochondria, and raises the nuclear transcription
level of senescence phenotypic related genes (Gough et al.,
2009; Waters et al., 2019). Besides, in IPF lung fibroblasts,
the promotion effect on cell activation by TGF-β1 signaling
is accompanied by a decrease in the expression of silent
mating type information regulation2 homolog-3 (SIRT3) gene
(Sosulski et al., 2017). SIRT3 plays a deacetylase role in
mitochondria to regulate mitochondrial health (Bindu et al.,
2017) and plays a key role in repairing mitochondrial
DNA damage and protecting mitochondrial integrity, too
(Cheng et al., 2013). The depletion of endogenous SIRT3 will
increase ROS production and mitochondrial DNA (mtDNA)
damage, leading to the progression of pulmonary fibrosis
(Sundaresan et al., 2015; Bindu et al., 2017). Damaged mtDNA,
which should not be present in the cytoplasm, is released
into the cytoplasm and is sensed by the cyclic GMP-AMP
synthase (cGAS). cGAS catalyzes the production of cyclic
guanosine acid (cGAMP), which activates STING protein
and promotes the senescence of lung fibroblasts (Schuliga
et al., 2020). What is more, superoxide enhances DNA
damage response (DDR), which also amplifies age-related effects
in lung fibroblasts as part of a positive feedback process
(Schuliga et al., 2018).

Apoptosis Resistance
Apoptosis is an autonomously ordered death controlled by
genes and can maintain homeostasis. In the restoration
process of lung injury, the activated fibroblasts show changes
corresponding to apoptosis and gradually disappear at the end
(Desmoulière et al., 1995). Apoptosis of IPF lung fibroblasts is
reduced compared with age-matched controls. However, in IPF,
apoptosis’s stimulation has a higher frequency and level, so the
decreased sensitivity of cells to apoptotic signals is a convincing
explanation (Álvarez et al., 2017). Apoptosis resistance of
senescent fibroblasts is associated with the pathogenesis of IPF
(Cha et al., 2010).

Reduced pro-apoptotic proteins Bak and Bax and increased
anti-apoptotic protein Bcl-2 family proteins are found in IPF
senescent fibroblasts (Moodley et al., 2003; Sanders et al.,
2013). The accumulation of Bcl-2 family proteins, which include
Bcl-2, Bcl-W, and Bcl-XL, contributes to apoptotic stimuli
resistance in senescent cells (Ricci et al., 2013a; Yosef et al.,
2016). Alterations in the expression of pro-apoptotic and anti-
apoptotic genes are associated with histone modification and
DNA methylation (Sanders et al., 2014). In contrast to the Bax
gene, the acetylation of histone H4K16 (H4K16Ac) is significantly
enriched in the Bcl-2 gene while the trimethylation of histone
H4K20 (H4K20Me3) is significantly decreased (Sanders et al.,
2013). These site-specific histone modifications regulate the
expression of the Bcl-2: Bax gene in senescent fibroblasts,
leading to the anti-apoptotic phenotypes (Sanders et al., 2013).
Intracellular TGF-β1 signaling increases the Bcl-2 protein level
by activating JAK2 and STAT3 (Milara et al., 2018). Both
the levels of Bcl-2 and Bax protein in fibroblasts are STAT3-
dependent (Moodley et al., 2003), and inhibition of STAT3

signaling can block this resistance to apoptosis (Pechkovsky et al.,
2012). Further, the mechanical sensitivity signal transduction
pathway up-regulates the expression of the Bcl-2 gene in activated
fibroblasts through activation of the Rho/ROCK pathway,
reducing fibroblast apoptosis reduction, and contributes to the
continuous fibrosis process (Zhou et al., 2013). Cytokines IL-
6 and IL-11 increase the expression of Bcl-2 mRNA in IPF
lung fibroblasts to inhibit apoptosis (Moodley et al., 2003).
The plasminogen activator inhibitor 1 (PAI-1) level in mouse
lung fibroblasts increases significantly with age, accompanied
by a decrease in apoptosis in fibroblasts (Huang et al., 2015;
Marudamuthu et al., 2015).

Also, senescent IPF lung fibroblasts are found to be highly
resistant to Fas ligand-induced (FasL) and TNF-associated
apoptotic ligand-induced (TRAIL) apoptosis. FasL, TRAIL,
and Caveolin-1 (Cav-1) protein abundance is decreased, and
AKT activity is increased in these cells (Hohmann et al.,
2019). TGF-β1 mediates the down-regulation of Cav-1 in
fibroblasts through the MAPK signaling pathway (Sanders
et al., 2015), and Cav-1 loss gives fibroblasts anti-apoptotic
properties (Shivshankar et al., 2012). The eukaryotic elongation
factor 2 kinase (eEF2K) interacts with the MAPK signaling
pathway to activate the apoptosis of lung fibroblasts (Wang
Y. et al., 2018). Increased AKT activity also appears in a
variety of signaling pathways involved in apoptosis resistance.
Activation of the PI3K/AKT/mTOR pathway helps IPF lung
fibroblasts resist apoptosis (Romero et al., 2016). The low
activity of PTEN leads to the inactivation of the transcription
activator FoxO3a through the PTEN/Akt-dependent pathway,
down-regulates the expression of Cav-1 and Fas gene, and
thus gives IPF fibroblasts an obvious anti-apoptotic phenotype
(Nho et al., 2013). In addition, activated AKT results in the
enhancing decoy receptor-3 (DcR3) level in IPF fibroblasts.
Fas is a death receptor in the tumor necrosis factor receptor
superfamily that binds to FasL to induce apoptosis (Cha
et al., 2010), and DcR3 is another tumor necrosis factor
receptor that competitively binds to FasL to protect IPF
fibroblasts from FasL-induced apoptosis (Im et al., 2016).
P53 is also involved in regulating apoptosis and thus affect
the survival advantage of IPF fibroblasts. The p53 protein
level increases in senescent fibroblasts and decreases after
apoptosis is induced by an inhibitor of anti-apoptotic proteins
(Yosef et al., 2016). P53 is responsible for transcription and
activation of apoptosis-related genes, such as PUMA (also
known as BCL-2-binding component 3) and Bax (He et al.,
2013). Human 8-oxoguanine DNA Glycosylase (hOGG1)
protects cells from apoptosis induced by oxidative stress
ahead of the p53 dependent pathway (Youn et al., 2007).
On the other hand, the protein expression of homeodomain
interacting protein kinase 2 (HIPK2) is low in fibroblasts
from IPF patients, and its interaction with p53 weakens the
cells’ ability to make decisions between cell cycle withdrawal
and apoptosis. Restoring the HIPK2 protein level in IPF
cells reduces the chemoresistance (Ricci et al., 2013b). In
senescent fibroblasts, the post-translational modification
of p53 makes p53 preferentially occupy the promoters of
growth inhibition genes, rather than apoptosis regulators
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(Jackson and Pereira-Smith, 2006). Further studies are still
needed to elucidate the role of p53 protein in apoptosis resistance
of senescent cells.

Autophagy Deficiency
Autophagy is responsible for the retrieval of various components
by degrading organelles and macromolecules to provide the
raw material for reconstructing cellular structures, carefully
maintaining the usual fate of fibroblasts (Sosulski et al.,
2015). The cystic autophagosome is formed during the
autophagy process. Meanwhile, p62 mediates the binding
between the ubiquitinated protein and microtubule-associated
protein light chain 3 (LC3), participating in autophagosome
formation (Patel et al., 2012). Generally, autophagy is non-
selective, but in pathological conditions, autophagy can act
as a selective barrier to encapsulate certain intracellular
abnormal components for isolation (Sosulski et al., 2015).
Mitophagy, as a part of selective autophagy, has been
discussed in mitochondrial dysfunction. Autophagy plays
an essential regulatory role in cellular senescence, and autophagy
deficiency is closely related to IPF fibroblast senescence
(Araya et al., 2013). Autophagy is reduced in elderly mice
after lung injury, accompanied by corresponding increases
in oxidative protein and lipofuscin levels. Lung fibroblasts
activated by TGF-β1 are characterized by reduced autophagy flux
(Sosulski et al., 2015).

Autophagy-related biomarkers in lung fibroblasts consist
of apoptotic effector protein Beclin1, LC3, p62, and the
autophagosome number (Patel et al., 2012; Xu et al., 2019). All
of them imply decreased autophagy activity in lung tissues of IPF
patients (Patel et al., 2012). Beclin1, a key regulator of autophagy
in IPF lung fibroblasts, is down-regulated compared with normal
lung fibroblasts (Patel et al., 2012; Ricci et al., 2013a). IL-37
can enhance the beclin1-dependent autophagy pathway in IPF
fibroblasts (Kim et al., 2019). Cellular senescence is conducive to
mediating mTOR-related pathways in lung fibroblasts to reduce
autophagy as an adaptive response to stress (Patel et al., 2012;
Romero et al., 2016). Downstream molecules of mTORC1 include
eEF2K and TFEB (Hait et al., 2006; Wang K. et al., 2018).
eEF2K can phosphorylate and inactivate eEF2 and regulated
the autophagy activity of lung fibroblasts and IPF development
through the MAPK signaling pathway (Wang Y. et al., 2018).
Inhibition of mTOR activation can stimulate autophagy, which
is characterized by increased beclin1 and LC3 levels as well as
autophagosome formation (Chitra et al., 2015).

Autophagy is also involved in the regulation of ECM
formation. Studies have shown that increasing the autophagy
clearance rate to type 1 collagen by lung fibroblasts could
reduce the aggressiveness of IPF fibroblasts (Surolia et al.,
2019). In IPF, TGF-β1 can induce the overproduction of
ECM components such as collagen and fibronectin in lung
fibroblasts. Although TGF-β1 also induces LC3B accumulation
in parallel, this autophagy marker’s content is significantly
decreased in IPF lung fibroblasts (Ghavami et al., 2018).
Changes in the PTEN-Akt-mTOR axis make IPF fibroblasts to
maintain collagen overproduction’s pathological phenotype by
inhibiting autophagy. Decreased expression of Akt gene direct

target FoxO3a inhibits the production of autophagy marker
LC3B on the collagen matrix, thereby inhibiting the autophagy
response of IPF fibroblasts to collagen (Nho and Hergert, 2014;
Im et al., 2015).

Senescence-Associated Secretory
Phenotype
Senescent cells typically secrete a complex set of factors known
as senescence-associated secretory phenotype (SASP), a unique
cellular senescence feature. Elevated transcription levels of these
factors can be synchronously detected in the cells (Schafer et al.,
2017; Álvarez et al., 2017). SASP in IPF senescent fibroblasts
includes proinflammatory cytokines (such as TNF-α, TGF-β, IL-
1β, IL-6, IL-8, IL-10, IL-18), chemokines (such as CXCL1, MCP-
1), growth regulators (such as FGF, CTGF, GM-CSF, M-CSF,
PDGF), matrix metalloproteinases (such as MMP-2, MMP-3,
MMP-9, MMP-10, MMP-12), and leukotrienes (LTs, such as
LTA4, LTB4, LTC4, LTD4) (Kortlever et al., 2006; Acosta et al.,
2008; Rodier et al., 2009; Kojima et al., 2012; Aoshiba et al., 2013;
Demaria et al., 2014; Le et al., 2014; Hayakawa et al., 2015; Jun
and Lau, 2017; Schafer et al., 2017; Álvarez et al., 2017; Wiley
et al., 2019; Zhang et al., 2019; Blokland et al., 2020). Thus,
SASP is essentially a concept that belongs to secretomes, which
cannot be fully described by several biomarkers’ up-regulation or
down-regulation. The composition of SASP changes dynamically
over time; for example, Notch1 activity controls the transition of
secretory components from TGF-β-dependent to inflammatory
factor-dependent (Hoare et al., 2016). SASP turns on the switch
of cell senescence, promotes the senescence of cell itself through
autocrine, and propagates senescence through paracrine.

The SASP activated in senescent cells is a self-amplified
secretory network (Acosta et al., 2008). In IPF senescence
fibroblasts, mitochondrial dysfunction decreases the
NAD+/NADH ratio, while NAD+ metabolism controls
the pro-inflammatory SASP production independently of
senescence-related growth stagnation (Correia-Melo et al.,
2016; Wiley et al., 2016; Nacarelli et al., 2019). IL-1 and TGF-β
can induce Nox4 mRNA expression, suggesting a mechanism
between SASP and DNA damage signals (Hubackova et al.,
2012). In IPF, increased secretion of SASP usually occurs only
after persistent DNA damage signals associated with senescence
rather than transient DNA damage response (DDR) (Rodier
et al., 2009). DDR signal is necessary but not sufficient for
the secretion of SASP. The MAPK pathway, activated by
multiple stimuli, induces SASP production by increasing the
transcriptional activity of NF-κB, which is independent of DDR
(Chien et al., 2011; Freund et al., 2011; Aoshiba et al., 2013;
Ferrand et al., 2015). In addition, connective tissue growth
factor (CTGF) induces fibroblast senescence by mediating ROS
accumulation, leading to the activation of p53 and the induction
of p16INK4a (Jun and Lau, 2017). Although the secretion of
SASP is regulated by the cell cycle arrest associated with the p53
and Rb pathways, inhibition of either p53 or the Rb pathway is
not enough to prevent SASP-induced effects (Freund et al., 2011;
Ferrand et al., 2015). Both JAK inhibitors and mTOR inhibitors
inhibit SASP in fibroblasts (Herranz et al., 2015; Xu et al., 2015).
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Besides, IL-18 promotes lung fibroblast senescence and the
role of SASP in IPF by blocking the Klotho pathway (Zhang
et al., 2019). IL-6 induces normal fibroblast senescence by
establishing a senescence induction circuit involving STAT3 and
insulin-like growth factor-binding protein 5 (IGFBP5) (Kojima
et al., 2012). Inhibition of IL-6 reduces pulmonary fibrosis in
mice (Le et al., 2014).

Senescent fibroblasts also influence the local
microenvironment and the senescence of adjacent cells through
SASP in a paracrine manner and finally aggravate IPF disease
(Acosta et al., 2013; Blokland et al., 2020). When the conditioned
medium obtained from senescent fibroblasts is co-cultured with
alveolar epithelial cells, a higher percent of alveolar epithelial
cells are blocked at the G2/M stage than the control group co-
cultured with blank medium, resulting in reduced proliferation
but increased migration of alveolar epithelial cells (Blokland
et al., 2020). Increased senescence of bone marrow mesenchymal
stem cells (B-Mscs) as an extrapulmonary manifestation of IPF
patients is also associated with this. And senescent B-Mscs in IPF
is capable of inducing the senescence of normal senescent lung
fibroblasts through their paracrine effects (Cárdenes et al., 2018).

TARGETING SENESCENT FIBROBLASTS
IN IDIOPATHIC PULMONARY FIBROSIS

Fibroblast senescence is an important therapeutic target of
IPF (Figure 3). In the previous studies, a large part of the

treatment strategies toward IPF is proposed on the basis
of the premise that specific therapies targeting one selected
senescence-related molecule or pathway in senescent fibroblasts
can reduce the progression of IPF, and there are some
experiments indeed confirm the feasibility of this idea. The
selective cGAS inhibitor RU.521 eliminates the senescence of
IPF fibroblasts induced by ectopic DNA in the cytoplasm
(Schuliga et al., 2020). DNase I, which removes the DNA
released into the cytoplasm by abnormal pathways, leads to
effects similar to RU.521. 5-lipoxygenase (ALOX5) inhibitors
BW-B70C and Zileuton block the synthesis of LTs, which
are proved as part of the SASP. Inhibition of ALOX5
activity modulates the proinflammatory and profibrotic effect
of LTs on senescent IPF fibroblasts (Wiley et al., 2019). In
addition, STA-21, a specific inhibitor of STAT3, reduces the
stress-induced senescence of lung fibroblasts (Waters et al.,
2019). Furthermore, JSI-124, a dual inhibitor of JAK2/STAT3
more effective than a single inhibitor, inhibits the migration,
intracellular autophagy, and senescence of lung fibroblasts
(Milara et al., 2018). What is more, mTOR inhibitor Rapamycin,
antioxidant N-acetylcysteine (NAC), and mitochondrial-targeted
superoxide dismutase mito-TEMPO act on the ROS production
and DDR response in mitochondria to suppress IPF fibroblast
senescence (Schuliga et al., 2018). The non-selective NOX
inhibitor diphenyleneiodonium chloride (DPI) and the specific
NOX1/4 inhibitor GKT137831 also attenuate the senescence
phenotype of lung fibroblasts (Thannickal and Fanburg, 1995;
Hecker et al., 2009, 2014).

FIGURE 3 | The treatment strategies toward senescent fibroblasts in IPF.
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Given that fibroblast senescence in IPF cannot be entirely
attributed to a single cause, these targeted drugs are probably
incapable of achieving satisfactory results due to their limited
effectiveness. Concomitant administration of several drugs is
likely to fall into the dilemma between the chaos caused by
drug interactions and the inability to cover every discovered
signal pathways. Thus, researchers turn to drugs with multiple
effects. Pirfenidone is a pleiotropic molecule approved to be
one of the antifibrotic drugs to IPF. It inhibits the MUC1
phosphorylation and β-catenin activation induced by TGF-
β1 and prevents SMAD binding elements from forming
or activating, thereby combating the fibroblast senescence
in IPF (Ballester et al., 2020). Nintedanib inhibits TGF-β1
signal transduction intracellularly and induces IPF fibroblasts
to autophagy, thereby down-regulating ECM production
(Rangarajan et al., 2016). Metformin, a first-line antidiabetic
drug, regulated the intracellular metabolic pathways, inhibits
the TGF-β1 activated collagen formation, and accelerates
the reversal of established fibrosis in an AMPK-dependent
manner, thereby acts as an effective antifibrosis agent in the
lung (Rangarajan et al., 2018; Kheirollahi et al., 2019). The
anti-cancer drugs ABT263 and ABT737 can alleviate the
senescence of lung fibroblasts by blocking the up-regulation
of Bcl-2 family anti-apoptotic proteins, including Bcl-2,
Bcl-XL, and Bcl-W (Chang et al., 2016; Yosef et al., 2016;
Zhu et al., 2016). Besides, active substances isolated from
edible plants are also research objects. Citrus alkaline extracts
(Feng et al., 2019) and phloretin (Cho et al., 2017) affect
senescent fibroblasts by activating cyclooxygenase-2 (COX-
2) and inhibiting GLUT1, respectively. Quercetin reverses
the apoptosis resistance in IPF fibroblasts by promoting the
transcription of FasL receptor and Cav-1 gene (Hohmann
et al., 2019), while the combination of dasatinib and quercetin
(D+Q) selectively kills senescent fibroblasts to ameliorate
the progression of pulmonary fibrosis in mice (Schafer et al.,
2017). What is even more exciting is that the D+Q performs
well in a small-scale, open-labeled pilot clinical trial (Justice
et al., 2019). The fourteen stable IPF patients selected for this
trial are well tolerated to drugs, and their physical function is
significantly and clinically meaningfully improved. Although
the pulmonary function is unchanged in this pilot study,
the physical elevation achieved by D+Q in IPF patients is
still worthwhile in the face of the latest anti-fibrosis drugs,
Pirfenidone and Nintedanib.

In addition to these drugs mentioned above, there are also
other treatments for senescent fibroblasts in IPF. Stem cell
therapy is one of them. The exocrine body derived from
human amniotic epithelial cells contains many soluble factors
that can regulate inflammation and fibrosis pathways and is
considered a potential treatment for IPF. These isolated stem-
cell-derived extracellular vesicles reduce lung inflammation
and fibrosis in mice by nasal drip (Tan et al., 2018). Gene
therapy targeting non-coding RNA is also a new train of
thought. A non-coding RNA sequence can link with multiple
protein-coding RNA sequences complementarily, thus achieving
precise transcriptional regulation as a therapy. For example,
miRNA-34a is upregulated in lung fibroblasts from elderly

mice (Cui et al., 2017a). Furthermore, in the fibrotic lung
of miRNA-34a-deficient mice, the senescence phenotype of
primary lung fibroblasts is reduced, and the anti-apoptosis
ability is enhanced (Cui et al., 2017b). However, it is not
easy to guarantee the safety and convenience of gene therapy
targeting non-coding RNA in the human body, and there
is still a long way to go from a theoretical proposal to
clinical practice.

CONCLUSION AND PERSPECTIVES

Cellular senescence is characterized by cell cycle arrest,
macromolecular damage, metabolic disorders, and SASP, which
are important aging pathways. IPF is an aging-related interstitial
lung disease of unknown etiology. The pathogenesis of IPF
itself is difficult to be directly and clearly summarized with
several abnormalities. Otherwise, it cannot be called “idiopathic.”
Although the source of the disease is the key to solve the problem,
for IPF patients, intervention in the process of their onset or
progression may be a better choice, at least at this stage. We
must be clear about the role of cellular senescence in IPF. The
related experiments in IPF patients have the problem that the
control group is not suitable, while the IPF mice model induced
by bleomycin also has the problem of heterogeneity and self-
remission. There is no better way to solve the experimental
control group’s problems, but the improvement in animal model
construction can provide more opportunities for senescence-
related research in IPF.

Just as cellular senescence is implicitly multifaceted in IPF,
how senescent fibroblasts function is also multifaceted. Senescent
fibroblasts exhibit abnormal activation, telomere shortening,
metabolic reprogramming, mitochondrial dysfunction, apoptosis
resistance, autophagy deficiency, and SASP secretion, involving
a variety of molecular signaling pathways. However, we have
not yet found a sufficiently unique and universal biomarker
for cellular senescence. The signaling pathways in senescent
fibroblasts are like a dense web, which tightly controls the
IPF disease’s severity. It may not be enough only to untie a
knot on the web.

Under these conditions, the idea of using drugs that precisely
clear senescent cells are gaining ground. In the selection of
senolytics, compounds from nature undoubtedly perform better
for their pleiotropic effects as well as security. When we attempt
to discover new senolytics from a vast array of natural and
human-made compounds, it is also a beneficial idea in our
opinion to find appropriate answers from drugs already on
the market or in clinical trials. As the old saying goes, the
best way to discover a new drug is to start with an old
one. Do drugs that can act on multiple senescence-related
pathways at the same time also hide anti-aging properties?
In the future, more cell experiments and animal experiments
will give us the answer. In addition, just as new pathways are
constantly confirmed in IPF, the signaling network in senescent
fibroblasts we map will also be enriched. We believe that
cellular senescence and senolytics will become new lights in the
treatment of IPF.
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