
Cellular Interaction Analysis
Characterizing Immunosuppressive
Microenvironment Functions in MM
Tumorigenesis From Precursor
Stages
Zhenhao Liu1,2,3, Siwen Zhang3, Hong Li4, Jiaojiao Guo1,2, Dan Wu5, Wen Zhou1,2* and
Lu Xie3,6*

1Department of Hematology, Xiangya Hospital, Central South University, Changsha, China, 2Key Laboratory of Carcinogenesis
and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, National Health and Family Planning Commission,
Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, China, 3Shanghai-MOST Key
Laboratory of Health and Disease Genomics, Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and
Pharmaceutical Technologies, Shanghai, China, 4Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China, 5Center for Biomedical Informatics, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China,
6Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital,
Central South University, Changsha, China

Cell–cell interaction event (CCEs) dysregulation may relate to the heterogeneity of the
tumor microenvironment (TME) and would affect therapeutic responses and clinical
outcomes. To reveal the alteration of the immune microenvironment in bone marrow
from a healthy state to multiple myeloma (MM), scRNA-seq data of the four states,
including healthy state normal bone marrow (NBM) and three disease states (MGUS,
SMM, and MM), were collected for analysis. With immune microenvironment
reconstruction, the cell types, including NK cells, CD8+ T cells, and CD4+ T cells, with
a higher percentage in disease states were associated with prognosis of MM patients.
Furthermore, CCEs were annotated and dysregulated CCEs were identified. The number
of CCEs were significantly changed between disease states and NBM. The dysregulated
CCEs participated in regulation of immune cell proliferation and immune response, such as
MIF-TNFRSF14 interacted between early B cells and CD8+ T cells. Moreover, CCE genes
related to drug response, including bortezomib and melphalan, provide candidate
therapeutic markers for MM treatment. Furthermore, MM patients were separated into
three risk groups based on the CCE prognostic signature. Immunoregulation-related
differentiation and activation of CD4+ T cells corresponded to the progression status with
moderate risk. These results provide a comprehensive understanding of the critical role of
intercellular communication in the immune microenvironment over the evolution of
premalignant MM, which is related to the tumorigenesis and progression of MM, which
moreover, suggests a way of potential target selection for clinical intervention.
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INTRODUCTION

Multiple myeloma (MM) is a common, genetically
heterogeneous, and incurable cancer (Palumbo and Anderson,
2011). MM is the second largest hematological malignancy
(Hagen and Stiff, 2019), which is mainly characterized by the
malignant proliferation of plasma cells in the bone marrow (BM).
There are two precursor stages of MM, including monoclonal
gammopathy of unknown significance (MGUS) and smoldering
MM (SMM) (Rajkumar, 2019). The proportion of patients in the
MGUS and SMM stages who develop into MM is about 1% and
10% each year (Dhodapkar, 2016). During patient progression
from normal BM (NBM)–MGUS–SMM–MM, early immune
changes are demonstrated (Zavidij et al., 2020). The tumor
microenvironment (TME) can severely impair immunotherapy
efficacy by repressing the immune system (Perrin et al., 2021).
Systematically uncovering the alterations of the immune TME,
especially intercellular communications in immunoregulation,
may improve the efficacy of immunotherapy.

Recent studies on MM reveal the important role of immune
TME. Compared with healthy control samples, MMpatients were
proved to have heterogeneous immune TME (Ledergor et al.,
2018). Poorly characterized disease heterogeneity hampers early
diagnosis of MM and treatment improvement. Natural killer
(NK) cells were found increased in the precursor states of
MM, associated with the changes of the chemokine receptors’
expression (Zavidij et al., 2020). Chemokine receptors are a
important receptor family in cell-to-cell interaction of TME.
Cell communication-related ligand and receptors, including
VEGF, TNF, play crucial roles in the growth, survival, and
dissemination of malignant plasma cells in patients of MM
(Jasrotia et al., 2020). Further studies are needed to uncover
the landscapes of cell interaction alteration from precursor states
to MM, aiming to reveal the molecular mechanism between
disease progression.

In this study, scRNA-seq data of samples in healthy and
precursor disease states to MM, including NBM, MGUS, SMM,
and MM, were integrated to reconstruct the immune
microenvironment related to MM. The percentage of
immune cell types, including NK, CD8+ T, and CD4+

T cells, were analyzed and associated with the prognosis of
MM patients. Cell-to-cell communication events between
immune cells were then annotated. The CCE changes
between different pathological states were analyzed. The
dysregulated CCEs were defined and selected in our work,
their function annotated, and drug relation investigated when
available. Disease state–specific CCE-based interaction
networks were constructed. Finally, a cell interaction–based
prognostic signature was constructed to stratify the MM
patients. The changed cell interaction may result in the
immunosuppressive microenvironment related to tumorigenesis
and progression of MM. Cellular interaction genes could be
candidate markers or drug targets for MM precision treatment.
Our study provides a bioinformatics workflow of analyzing cell-
to-cell interactions in scRNA-seq data for the interpretation of
precision medicine research.

MATERIALS AND METHODS

Data Collection
Aiming to reveal the microenvironment alterations associated
with MM tumorigenesis, scRNA-seq data were collected from
Gene Expression Omnibus (GEO). The GEO data set GSE124310
(Zavidij et al., 2020), including single-cell transcriptome profiles
of samples fromNBM,MGUS, SMM, andMMwere downloaded.
The sequencing libraries were constructed using the 10X
genomics platform. Cellranger (v.2.0.1), the single-cell software
suite from the 10X Genomics platform was used for alignment
and counting analysis with the reference genome (hg38). The
matrix generated by cellranger was downloaded. Further, bulk
RNA-seq data for MM samples from MMRF were downloaded
from the GDC data portal.

Single Cell RNA-Seq Data Analysis
Seurat (Version 3.1.1) (Stuart et al., 2019) was mainly used for
scRNA-seq data integration and downstream analysis. The
quality of cells were then evaluated based on three metrics,
cells with percent. mt < 20%, gene number >200 and <2500,
and genes expressed in fewer than three cells were filtered. The
data was integrated by IntegrateData function to eliminate the
batch effect. Then, 30 principal components (PCs) were used for
dimensional reduction and cell clustering. The resolution
parameter was 0.5. Cluster specific markers were identified by
FindAllMarkers and FindMarkers functions. The R package
SingleR (Aran et al., 2019) was performed for cell type
annotation.

Cell–Cell Interaction Analysis
Aiming to reveal the CCEs among different cell types and
compare the difference between MM and the precursor stages,
cellphoneDB (Version 2.1.5) (Efremova et al., 2020) was applied.
The interaction pairs with p-value < .05 were reserved as
significant CCEs. Fisher’s exact test was performed to identify
CCE enriched cell types. Here, to define dysregulated CCEs in our
work, according to the annotation in cellphoneDB, the expression
of interacting pairs were calculated by formula 1. Then, we
defined the CCE fold change (formula 2), and the CCE with
the absolute value of fold change >0.25 refers to this CCE being
differentially interacted and dysregulated in two pathological
states. Further, the genes in CCE were separated as ligand and
receptor for further functional investigation. The genes annotated
as the “True” receptor in the interacting pair were set as receptors
interacted in the CCE. The “False” one was set as ligand. Ligand-
derived cell types were treated as regulatory cells (source cell
types), and the receptor-derived cell types as regulated cells
(target cell types). Functional enrichment analysis was
performed to reveal the alteration of biological processes and
pathways in target cells.

EXPCCE � Mean(Receptor, Ligand) (1)
FoldChangeCCE � EXPCCE in State1 − EXPCCE in State2

Minium(EXPCCE in State1, EXPCCE in State2)
(2)
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If FoldChangeCCE > 0.25 or EXPCCE in Group2 � 0, the CCE is
upregulated in State1. If FoldChangeCCE < − 0.25 or
EXPCCE in Group1 � 0, the CCE is downregulated in State1.

Immune Cell Infiltration in
Microenvironment
CIBERSORT (Newman et al., 2015) and ImmuCellAI (Miao et al.,
2020) were performed to estimate immune infiltrates with
transcriptome profiles of MM patients. MM samples from
MMRF with tissue source as “Primary Blood Derived
Cancer—Bone Marrow” were analyzed in this study. There are
22 infiltrated immune cell types predicted by CIBERSORT.
Whereas, by ImmuCellAI, 24 immune cell types, mainly
including 18 T cell subtypes, were predicted. The patients are
split into two groups according to the infiltrated proportion of the
immune cells. The number of patients in the smaller group
should be greater than 20% of all patients. The Kaplan–Meier
survival plot (KM-plot) was applied to compare the two cohorts,
and the log-rank p-value are calculated. The infiltrated immune
cells with log-rank p-value < .05 were associated with MM
patients’ progression. Further, univariable Cox regression
analysis was performed to identified progression-related
infiltrated immune cell types, too.

Cancer Drug Response Prediction
The Cancer Treatment Response gene signature DataBase (CTR-
DB) was used for cancer drug response prediction. Genes
involved in cellular communications were used as input. The
AUC >0.7 and the AUC-adjusted p value <.05 were set as the
thresholds for genes that can be used for drug response
prediction. The expression of genes in the response and
nonresponse groups were shown with a box plot. The ROC
was also plotted.

CCE-Based Prognosis Signature
Construction
The genes function in cell interactions were used to constructed
CCE-based prognosis signature. According to the results of
univariable Cox regression analysis, genes with p-value < .05
were identified as significance associated with MM progression
(overall survival, OS). Aiming to establish a robust prognostic
signature, the transcriptome profiles of 763 samples in MMRF
were separated as a training set (457 samples, about 60%) and test
set (306 samples, about 40%). Furthermore, multivariable Cox
regression analyses were performed with significant progression-
related genes in the training set. The Akaike information criterion
(AIC) statistic was used to select a model with function step in R
packages stats. There are seven CCE genes retained in this study.
The risk score was constructed based on the gene expression and
the corresponding regression coefficients as follows:

RiskScore � ∑
7

i�1βipGenei (3)
βi denotes the coefficient of Genei and Genei represents the ith
marker gene in the prognostic model. To graphically exhibit the

prognostic outcomes, samples were separated into three groups,
including the high, moderate, and low risk groups. KM survival
curves were generated then. The signature was validated in the
test set.

Statistical Analysis and Functional
Enrichment Analysis
Functional enrichment analysis was performed with genes by
clusterProfiler (Version 3.10.1) (Yu et al., 2012) in R. Enriched
terms were kept with adjusted p-value <.05. Protein–protein
interactions (PPIs) were annotated by STRING database
(Version 11.0) (Szklarczyk et al., 2019). PPIs with a
combined score ≥0.7 were reserved for next step analysis.
Cytoscape (Version 3.7.2) (Shannon et al., 2003) was used
to construct the CCE-based gene interaction network. Gene set
enrichment analysis (GSEA, Version 4.1.0) was performed to
identify enriched terms in different risk groups. All the
statistical analyses in this study were calculated in R
(Version 4.0.3) and Python (Version 3.7.7). Figures were
plotted by the corresponding R package or by ggplot2
(Version 3.1.1) in R.

RESULTS

Immune Microenvironment Reconstruction
Based on scRNA-Seq
After quality control, there are about 25,000 cells from 32
samples reserved for immune microenvironment (IME)
reconstruction. According to the expression patterns, the
cells were clustered into 16 cell groups (Supplementary
Tables S1, S2). There are 10 cell subtypes (Figures 1A–C).
The proportion of cell subtypes in the samples were compared
to identify the difference in immune environment in the four
states (Figure 1D). Early B cells and plasmacytoid dendritic cells
had significantly high proportions in NBM compared with the
disease status (Wilcox test, p-value < .05). The early B cells
seemed to be gradient increasing in MGUS-SMM-MM while
NK, CD4+ T, and CD8+ T cells were found to have significantly
higher proportion in disease status than in NBM. The CD8+

T cells have a higher proportion in MGUS samples, higher than
SMM and MM, showing a gradual downward trend. The
median proportion of CD8+T cells in MM was higher than
that in NBM.

Infiltrated Immune Cell Proportion Changes
Related to MM Progression
To reveal the role of proportionally changed immune cells in MM
IME, the infiltrated immune cells of MM samples were estimated
with the transcriptome profiles. There are 22 immune cell types
predicted by CIBERSORT (Figure 2A) and 24 immune cell types
predicted by ImmuCellAI. The plasma cells and memory B cells
were found to have higher proportions in MM tissues, consistent
with MM being a bone marrow plasma cell malignancy disease.
The infiltration of 10 cell types resulted in the CIBERSORT
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prediction, including plasma, naive CD4+ T, and activated NK
cells, which are significantly related to the prognosis (Figure 2C,
Supplementary Figure S2). Among the infiltrated immune cell
types predicted by ImmuCellAI, 14 cell types, mainly T cell
subtypes, are significantly related to the prognosis (Figures
2B,D–F, Supplementary Figure S3, Supplementary Table
S3). The cell types with different proportions in MM
precursor states, including B, plasma, dendritic, CD8+T, naive
CD4+T, and activated NK cells, are significantly related to the
prognosis (p-value <.05). Among them, MM patients with the
high infiltrating proportion of CD8+ T cells have a higher survival
probability (p-value < .01), which is consistent with CD8+ T cells
participating in cellular immunity to eliminate tumor cells and
slow down the development of the disease. This suggests that
alternations in the immune microenvironment play an important

role in the occurrence and development of diseases and are
related to the prognosis of patients.

Immunoregulation Alteration in MM and
Precursor Related to Tumorigenesis and
Drug Response
Aiming to reveal the functional roles of immune cells in disease
progression, CCEs between immune cells were annotated. There
are 330 significant interaction events in NBM, 349 in MGUS, 372
in SMM, and 477 in MM (Figure 3A, Supplementary Figure S4,
Supplementary Table S4). Monocytes were found with more
CCEs in the immunemicroenvironment. To clarify whether there
are significant differences in the number of interaction events
under different interaction conditions, a contingency table is set

FIGURE 1 | Diverse cell types in MM and precursor stages delineated by single-cell RNA-seq analysis. The UMAP plot demonstrates cell types (A), main cell
subtypes (B), and cells’ source in the clusters (C). Boxplot of the cells with significant proportion change in the four stages (D).
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up to perform Fisher’s exact test for data involving the number of
CCEs and the number of other CCEs under different pathological
conditions (Figure 3B).

First, we compared the cell interaction events of different cell
types in the IME. The CD8+ T cells were with more CCEs in
MGUS (Figure 3C) than in NBM (p-value < .05), SMM (p-value
< .05), and MM (p-value < .1). It is consistent with the high
proportion of CD8+ T cells (higher median) in the MGUS
samples. Although the difference of the proportion of CD8+

T cells in the three pathological states are not at a significant
level, there is a significant decrease of CCEs. The cell interaction
event alterations may relate to the cell ratio changes. For CD4+

T cells and NK cells with higher cell proportion in pathological

states, no significantly more CCEs were detected. DC cells were
found with more CCEs in SMM, significantly more than MGUS
and MM (p-value < .05).

Next, we analyzed the CCE alteration of the cells treated as the
target cell type. When CD8+ T cells were targeted by early B cells
(EarlyB_CD8T), CCEs in MM, SMM, and NBM are significantly
more than MGUS (Figure 3D). Dysregulated CCEs were
identified (refer to the methods section) then. MIF-TNFRSF14
was differentially interacted both in SMM and MM (Figure 3E),
whereas elevated expression of MIF, a pro-inflammatory cytokine
(Alibashe-Ahmed et al., 2019) and an oncogene (Yao et al., 2021),
was associated with stronger suppression of T-cell proliferation
(Zhang et al., 2017). The TNFRSF14 gene encodes a member of

FIGURE 2 | Infiltrated immune cells in MM associated with patients’ prognosis. Boxplot of the infiltrated immune cells (A); KM-plot of the cells with infiltrated score
predicted by CIBERSORT and ImmuCellAI (B–F).
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the tumor necrosis factor (TNF) receptor superfamily, which
plays a role in the signal transduction pathway that activates
inflammatory and inhibitory T-cell immune response.
TNFRSF14 was identified as a marker for drug response
prediction of melphalan in melanoma (Figures 3F,G,

Supplementary Table S5) (Liu et al., 2021), and melphalan
was used as the first line of therapy for MM patients in
MMRF. The expression of MIF and TNFRSF14 were found
associated with MM patients’ progression from MMRF (KM-
plot, log-rank p-value < .05, Figure 3H). Therefore, the

FIGURE 3 | CCEs in MM and precursor stages annotated with CellPhoneDB. The Circos plot for the CCEs of immune cell interaction in MM TME (A): the outside
and inside circles represent the percentage and the count of CCEs, separately. The three-tiered ring from outside in represents the total CCEs of this cell type, the CCEs
when the cells are regulated cell types, and the CCEs when the cells as regulatory cells. The input for Fisher’s exact test in the analysis (B). The results of Fisher’s exact
test when we calculated the CCEs of each cell types [color bar means log2 (odds ratio)] (C). The results of CCEs in target cells when the target cell interacted with
another cell type (D). Dysregulated CCEs interacted in EarlyB-CD8T (E). The boxplot for TNFRSNF14 in the response and nonresponse groups of melphalan (F) and the
ROC for drug response prediction of melphalan (G) in CTR-DB; The KM-plot of TNFRSNF14 and MIF in GDC MMRF (H).
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dysregulated CCE MIF-TNFRSF14 may imply a drug response
mechanism.

Furthermore, the CCEs, including LCK_CD8 receptor and
CD58_CD2, were found differentially interacted in MM,
specifically. LCK is a proto-oncogene, a member of the Src

family of protein tyrosine kinases (PTK), and the protein
encoded by it is a key signal molecule for the selection and
maturation of developing T cells. CD2 interacts with the
lymphocyte function-related antigen CD58 (LFA-3),
participating in mediation of adhesion between T cells and

FIGURE 4 | PPI network constructed with key ligand and receptor genes of CCEs. The MGUS-specific network (A). The SMM-specific network (B). The MM-
specific network (C). Enriched GO BP terms and KEGG pathways as gain or loss functions in comparison of MM to SMM (D,E), SMM to MGUS (F,G), and MGUS to
NBM (H,I).
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other cell types. CD2 is related to the triggering of T cells, and its
cytoplasmic domain is related to signal transduction functions.
Similarly, there are specific cell interaction events in the
interaction of other cell types (Supplementary Figure S5).

Disease State–Specific Interaction Network
Construction Based on CCE
The receptor and ligand genes involved in cell interactions in the
IME under different pathophysiological conditions were
integrated to construct the progression-related gene interaction
network of NBM–MGUS–SMM–MM (Supplementary Figures
S6–S8). A total of 115 receptor or ligand genes are used to
construct a PPI network. Pathological state–specific ligand and
receptor genes and associated genes were extracted to show the
key interaction relationships while in MGUS, CTLA4 and CD86
were uniquely identified and with a higher degree in the network
(Figure 4A). Binding of the CD86 encoding protein with
cytotoxic T-lymphocyte-associated protein 4 (CTLA4)
negatively regulates T-cell activation and diminishes the

immune response (Tekguc et al., 2021). CD86 is involved in
the regulation of B cell function, playing a role in regulating the
level of IgG produced (Lanier et al., 1995). CD52, an approved
nontherapeutic target for MM (Touzeau et al., 2017), is the
unique gene in SMM immunoregulation (Figure 4B). HGF is
the unique hub gene in the immune-interaction network of MM
(Figure 4C). The HGF, which can regulate cell growth, cell
motility, and morphogenesis in a variety of cell and tissue
types, plays an important role in angiogenesis, tumor
formation, and tissue regeneration.

To clarify the functional alteration related to pathological
state gradient change in NBM–MGUS–SMM–MM, the receptor
genes in differentially interacted CCEs were functionally
annotated and enriched (Figures 4D–I, Supplementary
Figure S9). In the comparison between MM and SMM, the
receptor genes in the upregulated CCEs are significantly
enriched in osteoclast differentiation, B cell receptor
signaling pathway, and lymphocyte activation. Compared
with the upregulated CCE in MGUS, SMM has a higher
enrichment ratio in the hematopoietic cell lineage, and is

FIGURE 5 | Construction of the prognosis model based on the CCE genes in TME. The forest plot of the seven genes in the model (A), KM estimates of OS of MM
patients in the training data set (B) and in the test data set (C). Based on the seven-gene signature, patients were divided into three risk groups according to risk score;
the receiver operating characteristic (ROC) curve for OS survival predictions for the signature in training set and test set (D).
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significantly enriched in positive regulation of lymphocyte
activation and monocyte proliferation. Compared with NBM,
MGUS is significantly enriched in the NF-kappa B signaling
pathway, B cell receptor signaling pathway, viral protein and
cytokine, and its receptor interaction. The osteoclast
differentiation pathway is significantly enriched with a higher
gene ratio in MM than in SMM, MGUS, and NBM. This is
consistent with MM patients with osteolytic changes, such as
bone pain, osteoporosis, pathological fractures, and other
pathological symptoms. The NF-kappa B signaling pathway
has a higher gene ratio in MGUS (NBM < MGUS > SMM >
MM). It plays an important role in the regulation of immune
responses, such as infection, and its dysfunction has an
important relationship with the occurrence of diseases, such
as inflammation and cancer (Hoesel and Schmid, 2013; Vrábel
et al., 2019).

CCE-Based Prognosis Signature
Construction
OS-related genes in MM patients were identified by univariate
Cox regression analysis first. There are 3153 genes (FDR <0.05)
reserved for functional annotation. The significantly enriched
pathways and terms (Supplementary Figure S10), including cell
cycle, DNA replication, mismatch repair, and DNA replication,

were associated with tumorigenesis and progression of cancers.
Genome instability increasing the tendency of genome changes is
a sign of cancer, including MM (Alagpulinsa et al., 2020).

The ligand and receptor genes significantly associated with
MM progression remained. The OS-related CCE genes were used
as input features to construct the model. After feature selection,
seven genes (CD38/ALOX5/TGFBR3/ICAM3/ANXA1/ALCAM/
PECAM1) were finally involved in MM prognostic model
construction (Figure 5A). According to the predicted scoring
of the model, patients can be divided into three groups, including
high, low, and medium risk groups. The OS time of patients in the
three risk groups is significantly different (median OS time is
18.43, 26.17, and 30.00 months, p-value <.001) (Figure 5B).
Whereas, in the test set, the prognosis of the three groups of
patients was significantly different (p-value < .01) (Figure 5C).
Assessment of model accuracy, 3-year AUC for the training set
was 0.735 and the value for the test set was 0.667 (Figure 5D).

GSEA analysis was performed on the three risk groups.
Compared with the medium and low risk groups, the pathways
including cell cycle and P53 signal pathway were significantly
enriched in the high-risk group (Figure 6). The enriched pathways
are similar to prognostic-related pathways. The NOTCH signaling
pathway and complement and coagulation cascades signaling
pathway were with higher enrichment score in the medium risk
group than in the low risk group (Supplementary Figure S11). In

FIGURE 6 | The results of GSEA analysis for comparison of high and low risk groups. Enriched KEGG pathways (A) and GO BP terms (B) in the high risk group.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8446049

Liu et al. Dysregulated Cellular Interaction in MM

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


addition, the activation and differentiation of CD4+ T cells and the
differentiation of T-Helper 2 cells were significantly enriched in
MM, too. The activation of the Notch signaling pathway affects the
biological functions of myeloma cells in MM and promotes the
reprogramming of stromal cells in the BM, supporting the growth
and survival of tumor cells (Colombo et al., 2020). CD4+ T cells in
MM can induce effective antitumor immune responses by
interacting with antigen-presenting cells in the tumor
microenvironment (Haabeth et al., 2020).

DISCUSSION

By profiling transcriptomics data of thousands of cells, scRNA-
seq make it easy to study the cellular heterogeneity of the TME
and the cellular communication alteration. Cellular
communication is critical to coordinating diverse biological
processes, such as development, differentiation, programmed
cell death, and inflammation (Efremova et al., 2020; Jin et al.,
2021). This study aims to investigate how the context-dependent
crosstalk of different cell types enables physiological processes to
proceed from precursor states to MM.

Currently, in our study, the transcriptional level sequencing data
of immune cells from precursor states and MM were collected and
analyzed. The study on cell communication dysregulation in the
IME provides a new perspective for understanding the
pathogenesis development. Cells, including early B, NK, CD8+

T, and CD4+ T cells, had different proportions from samples in
disease states compared with NBM. The changed cell types
participated in cellular immunity and immunoregulation of
IME and were associated with MM progression. We identified
differentially interacted cell types then. CD8+ T cells in MGUS had
significantly more CCEs than in NBM, SMM, and MM, whereas
the proportion of CD8+ T cells in disease states was not significantly
different. Furthermore, the ligand-receptor interacting pair MIF-
TNFRSF14 were identified interacted between early B and CD8+

T cells in SMM and MM. The expression of MIF was associated
with stronger suppression of T-cell proliferation (Zhang et al.,
2017). MIF induces the expression of CD84, which is a regulator of
the immunosuppressive microenvironment in MM (Lewinsky
et al., 2021). The TNFRSF14 is the marker for the drug
response prediction of melphalan (Liu et al., 2021), which was
used in the first line of therapy of MM (Buda et al., 2021). Thus, the
dysregulated CCEs participating in IME regulation in the
tumorigenesis of MM may proceed to the immune cell
proportion change.

Furthermore, the disease state–specific immune interaction
network was extracted to illustrate the mechanism of IME
dysregulation. The unique hub gene HGF is associated with
MM-induced bone disease by promoting osteoclast formation
(Tsubaki et al., 2020). Furthermore, Met and NF-κB inhibitors,
including bortezomib (BTZ), which is usually used for MM
treatment, may also potentially mitigate MM-induced bone
disease in patients expressing high levels of HGF by inhibiting
osteoclast formation (Tsubaki et al., 2020). In summary, the
different interacted CCEs were associated with disease
development and might affect therapeutic responses and

clinical outcomes of MM. A seven-gene MM prognosis
prediction signature based on dysregulated CCE was
constructed, which can be applied successfully for prognostic
stratification in MM. The model exhibits good enough prediction
ability. This suggests again the important role of cellular
interaction in the development of MM. Future studies are
needed to explore the precision treatment of MM patients
stratified by the cellular interaction signature to improve the
prognosis.

In conclusion, our comprehensive characterization of cells at
the single level from different states from
NBM–MGUS–SMM–MM revealed the cell composition nature
and cellular communication pattern in the IME. Alteration of
cellular communications between immune cell types were
associated with the disease phenotype and clinical behavior. It
may be indicative of surveillance for the alteration from NBM to
MM. The IME in precursor states may accelerate tumorigenesis of
MM. The genes involved in cellular communication such as
TNFRSF14 and HGF related to drug response might serve as
therapeutic markers in MM.
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