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Abstract

Habitat loss is the greatest threat to biodiversity in Borneo, and to anticipate and combat its

effects it is important to predict the pattern of loss and its consequences. Borneo is a region

of extremely high biodiversity from which forest is being lost faster than in any other. The lit-

tle-known Sunda clouded leopard (Neofelis diardi) is the top predator in Borneo and is likely

to depend critically on habitat connectivity that is currently being rapidly lost to deforestation.

We modeled the effects of landscape fragmentation on population size, genetic diversity

and population connectivity for the Sunda clouded leopard across the entirety of Borneo.

We modelled the impacts of land use change between the years 2000, 2010 and projected

forwards to 2020. We found substantial reductions across all metrics between 2000 and

2010: the proportion of landscape connected by dispersal fell by approximately 12.5% and

the largest patch size declined by around 15.1%, leading to a predicted 11.4% decline in

clouded leopard numbers. We also predict that these trends will accelerate greatly towards

2020, with the percentage of the landscape being connected by dispersal falling by about

57.8%, the largest patch size falling by around 62.8% and the predicted clouded leopard

population falling by 62.5% between 2010 and 2020. We predicted that these large declines

in clouded leopard population size and connectivity will also substantially reduce the genetic

diversity of the remaining clouded leopard population.

Introduction

To assess the impacts of habitat loss and fragmentation on populations and to develop effective

conservation responses it is necessary to quantify the impacts of landscape change on popula-

tion extent, density and connectivity [1, 2]. However, it is difficult to predict population
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connectivity reliably [2, 3] given that it is scale, species and system dependent [4]. Specifically,

population connectivity is the result of the combined effects of the distribution and density of

the population, composition and configuration of the landscape, and species-specific dispersal

characteristics (including effects of different landscape features on movement, and the effects

of sex and age differences in dispersal), and how these combine to shape the dispersal kernel

[5]. In most populations there is substantial uncertainty about species distributions and densi-

ties [4], how different landscape features affect movement [6], and limited understanding of

species dispersal abilities [7]. These compounding uncertainties limit the confidence that can

be placed in the results of many connectivity analyses.

In addition to major gaps in knowledge about the ecology of organisms and their responses

to landscape conditions, there are significant technical challenges in producing fine-scale, spa-

tially explicit predictions of population connectivity across large areas. Traditional approaches

to connectivity modelling have been based on mapping least cost paths or corridors between a

few “core” habitats or protected areas [8–10], which limits the generality and scope of infer-

ences [5]. For many questions it is better to adopt spatially synoptic modelling in which con-

nectivity is assessed continuously across space, from all locations to all others [11–13]. The

challenge arises because the tools commonly available for least cost path and corridor analysis

have not enabled such synoptic analysis [14]; however, recent technical advances and

improved computational power combine to enable scientists to predict more robustly the

effects of landscape structure and fragmentation on population connectivity in a spatially

synoptic framework. For example, resistant kernel [15–17] and factorial least-cost path

approaches [18–20], coupled with landscape pattern analysis [21–23], provide a framework

within which to predict the location of core habitats, barriers, and movement corridors for a

range of dispersal abilities across vast landscapes [5, 24–26].

Tropical forests are among the most biodiverse habitats on earth, and provide a myriad of

environmental services [27–30]. However, these habitats are being lost at a devastating rate,

with estimates suggesting that approximately 230 million ha of forest were destroyed globally

between 2000–2012 [31]. Of all countries, it was estimated that Indonesia had experienced the

largest increase in the rate of forest loss [31], and that Borneo lost 30.2% of its forest area

between 1973 and 2010 [32].

The Sunda clouded leopard (Neofelis diardi) is the apex carnivore in Borneo, an ecologically

important role that adds urgency to remedying the currently minimal knowledge of its ecol-

ogy, which is based largely on observations in captivity [33], anecdotal reports [34, 35] and a

few recent field studies [36, 37]. However, despite this lack of ecological knowledge, the

clouded leopard is charismatic and attractive to a global public [38] and has the potential to act

as a flagship for wider biodiversity conservation on Borneo.

Brodie, Giordano [9] investigated clouded leopard corridors as part of a multi-species con-

servation approach for Sarawak. However, they employed least cost path and circuit theory to

identify the optimal corridors between chosen pairs of protected areas—a completely different

methodology to the spatially synoptic approaches we adopt (resistant kernel and factorial least

cost path analysis; Cushman, Lewis [14]). Specifically, we address uncertainties in landscape

resistance by convening a panel of experts on the species and combining their opinions. The

use of expert opinion is increasing in conservation, in part due to the increasing urgency of

conservation decision-making, and in particular in situations where empirically derived field

data are limited [39]. We address uncertainties in dispersal ability by modelling across two

levels of dispersal (S1 File), and address uncertainty in species distribution by estimating distri-

bution and density across space as proportional to local habitat suitability as defined by the

expert panel we convened. Finally, we use spatially synoptic approaches to evaluate patterns

and changes in Borneo-wide connectivity for clouded leopards.
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Methods

The analysis encompasses the entire island of Borneo, located in South East Asia and including

territories governed by three countries (Brunei, Indonesia and Malaysia). The extent is just

over 730,000km2.

We produced resistance maps for the years 2000 and 2010 for the island of Borneo based on

the application of expert opinion regarding the relative habitat suitability for clouded leopards

of different land cover classes. The land cover classes were taken from existing land cover

maps produced for 2000 and 2010 [40] and included: water, peat swamp forest, lowland forest,

lower montane forest, plantations/regrowth, lowland mosaic, montane mosaic, lowland open,

montane open, urban and large scale plantation.

Expert elicitation

Experts are commonly defined as individuals who hold information about a given topic and

are deferred to in its interpretation [41]. This knowledge can be acquired in a variety of ways

including training, research, skills and personal experience [42]. We convened a panel of 13

experts selected on the basis of their direct involvement in field research relating to the ecology

and conservation of clouded leopards.

Group approaches to expert elicitation can result in dilution of the full diversity of opinions

through the dominance of one or more members of the group, polarization among subsets of

members, and groupthink [41]. Panel members were therefore contacted individually and

asked to provide a relative habitat suitability estimate for each land cover class. Respondents

were provided with a short questionnaire that included some brief background questions

regarding the duration, type and geographic location of their experience. They were then pre-

sented with a map of land uses in Borneo, along with a list of land use classes (the map, as well

as the full descriptions for each class were taken from Miettinen, Shi [43], the descriptions are

reproduced in Table 1). For each land use class participants were asked (i) whether they had

any direct experience working in that habitat, (ii) to estimate the population density of N. dia-
rdi per 100km2 in that land use class, (iii) the relative habitat suitability of that land use class

for N. diardi on an interval scale of 1–5 with 5 representing the best quality habitat and 1 repre-

senting the lowest quality habitat, (iv) for any additional information that they thought might

be relevant including the sources drawn upon to produce the estimates. Respondents were

asked to provide answers only for those land use classes for which they felt comfortable and

were invited to contact the authors in the event that they felt any elements of the survey were

unclear. Additionally a pilot version of the survey was sent to a subset of respondents for com-

ment prior to the deployment of the final survey.

The number of respondents who felt confident to assess habitat suitability varied between

each land use class ranging from a low of 7 (Peatswamp forest, Lowland open, Large scale plan-

tation) to a high of 12 (Lowland forest, Lower Montane forest). The frequency distributions of

scores allocated to each habitat class are presented in Fig 1. The Intraclass Correlation Coeffi-

cient (ICC) was high (ICC(3,k): 0.96) and in excess of frequently quoted guidelines for interpre-

tation of inter-rater agreement measures (>0.60 good, >0.75 excellent) [44, 45]. This provides

confidence in the level of agreement between experts in assessing habitat suitability.

The habitat suitability score for each land use class was calculated from the mean of the hab-

itat suitability scores provided by each respondent, this follows several similar approaches in

the literature and is appropriate because responses were provided in an interval scale (Table 1)

[6, 15, 46]. The mean habitat suitability scores showed a very tight relationship with the mean

predicted population density for each land use class (R2 = 0.905, S1 File) providing further

confidence in the habitat suitability scores.
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Resistance mapping in 2000 and 2010

The habitat suitability scores were translated into relative resistances by inverting and scaling

from a minimum of 1 to a maximum of 100. This translation assumes that landscape resistance

is directly and inversely proportional to habitat suitability, and has a minimum value of 1 in

the highest quality habitat and a maximum of 100 in the lowest quality habitat. This is a very

common approach that is widely used in connectivity modelling, and habitat suitability is the

most common proxy adopted for landscape resistance [6, 47]. We applied this landscape resis-

tance classification to the land cover maps for the years 2000 and 2010 [40, 43] and then resam-

pled to a 1000m pixel size with bilinear interpolation. The resampling was done to facilitate

Table 1. Table of expert derived habitat suitability scores. The experts showed a high level of agreement in rating habitat suitability with ICC(3,1): 0.66 and ICC(3,k):

0.96. Descriptions of land use classes from [43].

Description Number of

responses

Min

score

Max

score

Standard

deviation

Mean

score

Water

In addition to natural waterbodies, this class also includes, for example, large-scale fisheries and

prawn farming areas.

9 1 2 0.314 1.111

Mangrove

Mangrove area masks were created using visual image interpretation. Pixels classified as forest

within these areas were labeled as mangrove.

8 1 3 0.696 1.625

Peatswamp forest

Forest growing on peat soil. The term ‘forest’ refers to all forests that could not be distinguished

from primary forest in visual image interpretation. Therefore, this class may include also selectively

logged forests and secondary forests that have reached structural characteristics (height, canopy

structure, etc.) similar to primary forest.

7 2 5 1.161 3.286

Lowland forest

Forest growing on mineral soil in elevation up to 750 m above sea level.

12 4 5 0.500 4.500

Lower montane forest

Forest growing on mineral soil in elevation above 750 m, up to 1500 m above sea level.

12 2 5 1.010 4.250

Upper montane forest

Forest growing on mineral soil in elevation above 1500 m above sea level.

10 1 5 1.077 3.200

Plantations / regrowth

Plantations and natural regrowth. This class includes areas from large-scale industrial plantations

and small-holder plantations to dense shrublands and young secondary forests.

9 1 3 0.667 2.000

Lowland mosaic

Sub-pixel size (250 x 250 m) mosaic of closed canopy vegetation and open areas in elevation up to

750 m above sea level. Typically consists of small plantations, agricultural fields, urban areas,

patches of forest and secondary forest. Note that sparse/patchy shrub vegetation, most notably in

peatland areas, falls into this class.

8 2 3 0.331 2.125

Montane mosaic

Same as lowland mosaic, but occurring in elevation above 750 m above sea level.

9 1 5 1.054 2.333

Lowland open

Clearances and other open areas covered by seasonal crops, remnants of original vegetation, sparse

ferns/grass or low shrub. Typically agricultural areas, areas undergoing land cover change or

extremely degraded areas.

7 1 2 0.495 1.429

Montane open

Same as lowland open, but occurring in elevation above 750 m above sea level. In addition, this

class includes some naturally bare areas in high elevation.

9 1 2 0.497 1.444

Urban

Major urban areas.

8 1 1 0.000 1.000

Large scale plantation

Contiguous closed canopy palm plantations larger than 2 km2. Great majority of these areas are

expected to be oil palm, but in some parts of the region (e.g. in Mindanao and in the coastal

peatlands of Sumatra), small-holder coconut plantations cover extensive contiguous areas and are

classified into this class. Note that newly established and young open canopy plantations are

classified into the mosaic or open classes because of mixture of soil and vegetation reflectance.

7 1 2 0.452 1.286

https://doi.org/10.1371/journal.pone.0196974.t001
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connectivity analysis that is extremely computationally demanding and becomes intractable at

fine pixel size over large areas. Cushman and Landguth [48] found that resampling resistance

maps to coarser pixel size with bilinear interpolation has relatively little effect on predicted

gene flow and thus is appropriate in this case to enable connectivity modeling.

Resistance mapping for 2020

Cushman et al. [49] used a multi-scale random forest machine learning modelling approach

[50] to predict deforestation risk across Borneo in 2020 from observed patterns of deforesta-

tion in relation to topography, landcover, human population density, and conservation status

of lands between 2000 and 2010. This deforestation risk map provided the probability that a

pixel that was forested in 2010 would be deforested by 2020. We used this deforestation risk

map to translate the resistance map described above for 2010 to one predicted for 2020. This

was done by multiplying the probability of deforestation by the resistance value for that loca-

tion if it were plantations/regrowth and adding this net predicted change in resistance to the

resistance value for that pixel in 2010. We did this because forest pixels lost to deforestation

were most likely to transition either to plantations or regrowth.

Fig 1. Frequency distributions of survey responses for each land use class on Borneo.

https://doi.org/10.1371/journal.pone.0196974.g001

Simulating impacts of rapid forest loss on Sunda clouded leopards (Neofelis diardi) in Borneo

PLOS ONE | https://doi.org/10.1371/journal.pone.0196974 September 12, 2018 5 / 22

https://doi.org/10.1371/journal.pone.0196974.g001
https://doi.org/10.1371/journal.pone.0196974


Defining source points for dispersers in connectivity modelling

We used the resistance layers for 2000, 2010 and 2020 to seed locations for dispersing clouded

leopards. Given that the resistance surface is an inverted and scaled version of the habitat suit-

ability map, using the resistance surface is equivalent to seeding dispersers based on estimated

habitat suitability. This was done by creating a grid of random values between 0 and 1 of the

same dimension and cell size as the resistance grids and then multiplying this random grid by

the inverse of the resistance value for the 2000 landscape. We chose a threshold value and

selected all pixels with values larger than the threshold to use source points. We selected a

threshold value that would produce 2,954 source points as this plausibly approximates a con-

servative estimate of the effective population size of clouded leopards on Borneo [51]; however,

for the purposes of this analysis the actual number is not strictly important as we report the

relative changes in connectivity and gene flow rather than the absolute values. We used this

same threshold for 2010 and 2020, producing 2,595 and 2,209 source points for these years,

respectively.

Connectivity modelling

Resistant kernel approach. The resistant kernel approach to connectivity modelling is

based on all-directional least-cost dispersal from a defined set of sources [15], selected as

described in the section above. The resistance maps for the three dates provide resistances for

all locations in the study area, in the form of the increased cost of crossing each pixel relative

to the least-cost condition. These costs are used as weights in the dispersal function, such that

the expected density of dispersing individuals in a pixel is down-weighted by the cumulative

cost from the source, following the least-cost route [15]. The initial expected density was set to

1 in each cell containing a source point. The model calculates the expected relative density of

dispersers in each pixel around the source, given the dispersal ability of the species, the nature

of the dispersal function, and the resistance of the landscape [15, 16]. We used UNICOR [17]

to calculate the cumulative resistant kernel density for each resistance map at 125,000 cost

units (125kcu), reflecting a maximum dispersal ability of 125km in ideal habitat, and propor-

tionately less through higher resistance landscape conditions, and at 250,000 cost units

(250kcu).

Dispersal distances are not known for clouded leopards, however, a number of studies have

attempted to describe allometric relationships between maximum dispersal distances and a

range of physiological and life history traits for mammals in general [52, 53]. Bowman esti-

mates that maximum dispersal distance is equal to 40�(home range size0.5) and since clouded

leopards are thought to have home ranges in the region of 16km2 (N. diardi)—40km2 (N. nebu-
losa) we therefore estimate a likely range of dispersal distances from 160 -252km [36, 52, 54,

55]. For this study we therefore selected 125km as a plausible conservative estimate of dispersal

in clouded leopards, and 250kcu as a reasonable upper limit.

Least-cost path approach. In the second form of the connectivity modelling approach we

used UNICOR [17] to produce predicted least-cost path routes from each source point to each

destination point. In this factorial least cost path analysis the source points, described above,

define starting and ending nodes of the least-cost paths between all pairs of individuals [3, 19].

These pair-wise least-cost paths were then combined through summation to produce maps of

the density of the least-cost path network. This predicted least-cost density network was

smoothed by calculating the focal mean with a 10,000m radius to better reflect local gradients

of movement density [19].
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Analysis of resistant kernel maps

In their raw form the resistant kernel density maps depict the expected density of dispersing

individuals. It is necessary to define a threshold kernel density for delineating connected popu-

lations. We defined connected populations as those areas greater than the 10th percentile of the

2000 kernel surface and applied this threshold to all three dates (2000, 2010, 2020) to predict

the extent of connected habitat across the analysis period. Given that any particular threshold

is arbitrary, we decided to explore how patterns of predicted connectivity varied across various

thresholds. We therefore also tested the impact of using both the 5th and 20th percentile of the

2000 kernel surface as thresholds in our analysis; the results of this are presented in S1 File. We

reclassified the kernel density maps into binary form, with the value 1 where the kernel density

probability of dispersal is greater than the percentile threshold and 0 where it is less.

We used FRAGSTATS [21] to calculate the percentage of the landscape, largest patch

index, and number of patches that are predicted to be connected habitat for each year. The

percentage of the landscape that is connected is the simplest metric of landscape composition,

and quantifies how much of the study area is predicted to be connected habitat for each kernel

map. The largest patch index [21] reports the extent, as a proportion of the size of the study

area, of the largest patch of connected habitat. Lastly, we calculated the number of patches of

internally connected habitat for each map, which is a simple measure of habitat subdivision or

fragmentation.

Analysis of factorial least cost path maps

In their raw form the least cost path density maps (produced for 2000, 2010, 2020) depict the

location and strength of connections uniting all pairs of source points in a least-cost network.

As in the kernel analysis, it is necessary to define a threshold least-cost path density for defin-

ing meaningful connections. We chose the same threshold of the 10th percentile of the least

cost path network value distribution for year 2000 and reclassified the least-cost path density

maps into binary with the value 1 where the least cost path density is greater than the threshold

and 0 where it is less (threshold values of 5th and 20th percentile were also tested and are pre-

sented in S1 File). We used FRAGSTATS [21] to calculate the correlation length for the least

cost path density maps. Correlation length provides a measure of the average distance an

organism can move within a patch before encountering the patch boundary from a random

starting point [21]. The correlation length gives a global measure of the connectivity of the

landscape and is a more relevant functional measure of network connectivity than more basic

measures such as patch size, nearest neighbor distance, and percentage of the landscape in

occupied habitat [56]. We chose to omit the other metrics since correlation length is the logical

measure of the extensiveness of this network, and areal measures such as percentage of the

landscape and largest patch index are less well matched to this data structure [57].

CDPOP simulations

Simulation modelling provides explicit control over pattern-process relationships [58] and

enables rigorous attribution of the causes of observed patterns of population size, genetic dif-

ferentiation and diversity [59–61]. By varying functional parameters, environmental character-

ization, and organism attributes, simulation enables scientists to investigate hypotheses about

the relative influence of different factors, their interactions, and organism characteristics, such

as gradients of landscape resistance, population size or dispersal ability. This provides a means

for thorough evaluation of complexes of factors that would be impossible to investigate directly

in the field. In addition, simulations are particularly important in evaluating scenarios of
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future landscape change, such as predicted patterns of deforestation, on landscape resistance

and its effects on future population genetic structure.

We used CDPOP 1.0 [20] to simulate the processes of mating and dispersal as functions of

the spatial patterns of resistance across the three resistance maps corresponding to the 2000,

2010 and 2020 dates at the dispersal distances of 125kcu and 250 kcu. CDPOP is an individual

based, spatially explicit, landscape genetic program that simulates birth, death, mating and dis-

persal of individuals in complex landscapes as probabilistic functions of movement cost

among them. In each of the three landscape resistance maps, we used the same source points

described above in the resistant kernel analysis as locations of individual clouded leopards. We

stipulated the population to have 30 loci, with 10 alleles per locus, initially randomly assigned

among individuals and a mutation rate of 0.0005, which are standard parameters widely used

in landscape genetics simulation modelling We used an inverse square mating and dispersal

probability function, with maximum dispersal cost-weighted distance of 125kcu, matching the

dispersal ability in the resistant kernel analysis. The number of offspring was based on a Pois-

son probability draw with mean of 2. For each of the six resistance scenarios, we ran 10 Monte

Carlo runs in CDPOP to assess stochastic variability. We simulated gene flow among these

locations for 200 non-overlapping generations. Past studies have shown that this is sufficient

time to ensure spatial genetic equilibrium [62]. We extracted several global measures of popu-

lation genetic structure for the full study area at generation 200. These include total number of

alleles in the population, observed and expected heterozygosity. We analyzed the differences in

these global measures of genetic structure between 2000, 2010, and 2020.

sGD prediction of local genetic diversity

We utilized the sGD program [59] to map local total number of alleles and observed heterozy-

gosity. sGD uses a variable radius focal window to calculate locally centered values of a number

of population genetic parameters, such as allelic richness, expected and observed heterozygos-

ity, across spatially structured populations. We calculated the local number of alleles, observed

heterozygosity and expected heterozygosity within local windows with width equal to 1/2 of

the range of significant spatial genetic autocorrelation of the Mantel correlogram across the

average of the 10 runs of CDPOP for each scenario [23, 63].

Several of the approaches used in this study are computationally demanding (e.g the spa-

tially synoptic analysis of least cost paths, and the individual based population genetics models)

and may not be practical for many conservation practitioners. We therefore tested whether it

was possible to take a pragmatic shortcut in estimating landscape scale changes in allelic rich-

ness and heterozygosity by simply using the maps of landscape resistance, path density and

kernel density. We used linear regression (using the lm library in R) to construct linear models

relating these measures of genetic structure to cumulative resistant kernel value, factorial least

cost path density and local average landscape resistance within a focal window of 10,000m

radius to explore the relationship between these genetic attributes and landscape patterns of

population connectivity.

Results

Landscape resistance change between 2000 and 2010 was driven by loss of forest cover along

the edges of forested patches in Kalimantan and by a more diffuse pattern of perforation

and attrition of forest patches in Sarawak and Sabah (Fig 2a and 2b). The change in landscape

resistance predicted between 2010 and 2020 extended and accelerated the pattern observed

between 2000 and 2010. Specifically, in Kalimantan additional forest loss was predicted pri-

marily along the edges of existing forest patches while in Malaysian Borneo we predicted large
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changes in regional resistance as a result of predicted extensive and diffuse forest loss across

broad areas (Fig 2c).

Analysis of resistant kernel maps

Fig 2d, 2e and 2f shows cumulative resistant kernel density of predicted frequency of dispersal

given a 125kcu dispersal threshold for the years 2000, 2010, and 2020. Change in resistant ker-

nel density at the 250kcu threshold is shown in Figure B in S1 File.

The extent of the landscape connected by dispersal changed markedly between 2000 and

2020 (Table 2). The percentage of connected landscape declined by 12.5% between 2000 and

2010; however, this loss accelerated and there was a 57.83% decrease in the extent of the land-

scape connected by dispersal between 2010 and 2020 (Table 2). The relative effect of the

Fig 2. Resistance maps, cumulative resistant kernel surfaces and factorial least cost paths for 2000, 2010, 2020. Landscape resistance maps are

scaled from 1 to 100, cumulative resistant kernel maps and factorial least cost path density maps are scaled from low density in blue to high density in

red.

https://doi.org/10.1371/journal.pone.0196974.g002
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different percentile thresholds and dispersal abilities was much less than that due to landscape

change between dates (S1 File).

Largest patch index followed a similar pattern with the extent of the largest patch of con-

nected habitat as percentage of the landscape falling by 15.1% between 2000 and 2010, and

then 62.75% between 2010 and 2020 (Table 2). As with percentage of the landscape connected

by dispersal, the change in largest patch index between years had a much greater effect than

choice of dispersal threshold or percentile threshold on largest patch index (S1 File).

The number of isolated patches of internally connected habitat increased linearly, from 2 in

2000, to 4 in 2010 and to 6 in 2020 (Table 2) suggesting that large connected patches were bro-

ken up and fragmented. Selecting different kernel percentile thresholds, and dispersal dis-

tances affected the trend in the number of isolated patches, highlighting the complexity of the

impacts of forest fragmentation (S1 File).

Analysis of factorial least cost path maps

Fig 2g, 2h and 2i shows least cost path density for the years 2000, 2010, and 2020. The correla-

tion length of the connected least cost path network decreased by 2.5% between 2000 and

2010 and by 9.7% between (Table 2). Correlation length was also sensitive to choice of per-

centile threshold, declining 9.2% as the threshold was moved from 5th to 10th percentile, and

another 4.6% when moved from 10th to 20th percentile, for the year 2000 connectivity map

(S1 File).

CDPOP simulation results

Over the three CDPOP scenarios (2000, 2010, 2020) there was considerable variation in simu-

lated population size, expected heterozygosity, observed heterozygosity, average mating dis-

tance and average dispersal distance (Fig 3, Table 3). There was relatively little difference

between the 125kcu and 250kcu dispersal scenarios in these population characteristics (Fig 3,

Table 3). In contrast, there was a large difference between the years for each of these parame-

ters. For example, the simulations predicted that after 200 simulated generations the popula-

tion supported by the 2010 landscape was 11.4% and 14.4% smaller than that supported by the

landscape in 2000, for the 125kcu and 250kcu scenarios, respectively. The simulations pre-

dicted that the clouded leopard populations in the 2020 landscape would be 62.6% and 49.8%

smaller than in 2010, for the 125kcu and 250kcu scenarios, respectively.

After 200 generations, there was relatively little predicted change in the equilibrium values

for observed heterozygosity and inbreeding coefficient between the 2000 and 2010 landscapes,

at either dispersal threshold. However, the simulations predicted that the 2020 landscape

would lead to a 48.5% and 36.8% reduction in observed heterozygosity compared to 2010, for

the 125kcu and 250kcu scenarios, respectively (Fig 3, Table 3). This corresponded to increases

in simulated inbreeding coefficient of 130% and 225% respectively (Fig 3, Table 3).

Table 2. Relative change in Fragstats metrics between 2000–2010 and 2010–2020.

Change between 2000 and 2010 Change between 2010 to 2020

Proportion of landscape connected by dispersal -12.46% -57.84%

Largest patch index -15.15% -62.75%

Number of patches +100% -50%

Correlation Length -2.5% -9.7%

https://doi.org/10.1371/journal.pone.0196974.t002
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Relationships between local genetic diversity and landscape connectivity

We explored the relationships between local average number of alleles per locus (Fig 4) and

local heterozygosity (Fig 4) and focal mean landscape resistance, cumulative density of least

cost paths, and cumulative resistant kernel density. Visual inspection of the scatterplots sug-

gested little relationship between allelic richness or heterozygosity and average landscape

resistance within a 10km radius focal window. Cumulative density of least cost paths and

cumulative resistant kernel value evinced curvilinear relationships with both allelic richness

and heterozygosity in local genetic neighborhoods.

Our regression analysis indicated that cumulative resistant kernel density was the dominant

predictor, with an inverse transformation to linearize the relationship for number of alleles

and the heterozygosity at 125kcu dispersal distance. We evaluated all combinations of local

resistance, cumulative least cost path density and cumulative resistant kernel value for both the

average alleles per locus and observed heterozygosity. We selected the single variable model

Fig 3. Changes in the mean population size, inbreeding coefficient, number of alleles in the population and mean

dispersal distance for the years 2000, 2010, and 2020 at a dispersal distances of 125kcu and 250kcu. All values

represent the equilibrium position after a simulated 200 generations of mating under each landscape condition. Each

simulation was run 10 times and the points indicate the mean result and the bars indicate the standard deviation.

https://doi.org/10.1371/journal.pone.0196974.g003

Table 3. Population characteristics at generation 200 from CDPOP simulations, averages and standard deviations across 10 CDPOP runs for each scenario.

Year Dispersal

Ability

Population

size

Expected

Heterozygosity

Observed

Heterozygosity

Inbreeding

Coefficient

Alleles in the

Population

Mating

Distance (km)

Dispersal

Distance (km)

2000 mean 125,000 2377.7 0.888 0.661 0.255 461.7 23804.4 24576.8

stdev 16.0 0.005 0.006 0.005 6.7 578.4 599.6

2010 mean 125,000 2106.9 0.883 0.662 0.250 442.8 24998.9 25580.4

stdev 166.9 0.006 0.045 0.049 15.7 3508.6 4153.2

2020 mean 125,000 789.0 0.792 0.341 0.575 246.5 18547.1 18300.0

stdev 493.4 0.034 0.152 0.159 67.6 5692.8 6626.5

2000 mean 250,000 2552.2 0.887 0.777 0.124 467.6 35058.6 34280.0

stdev 68.8 0.006 0.042 0.044 12.5 4035.2 3675.9

2010 mean 250,000 2184.9 0.879 0.767 0.127 443.7 34693.3 34394.2

stdev 48.1 0.004 0.042 0.048 10.1 3927.6 3831.8

2020 mean 250,000 1097.3 0.824 0.485 0.413 306.4 22413.4 22501.7

stdev 157.4 0.018 0.081 0.091 32.2 2220.0 1634.8

https://doi.org/10.1371/journal.pone.0196974.t003
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Fig 4. Scatterplots and fitted LOWESS splines for relationship between average number of alleles per locus (left column) and

observed heterozygosity (right column) with focal mean landscape resistance within a 10km radius (top row), cumulative

density of least cost paths (middle row), and cumulative resistant kernel density (bottom row).

https://doi.org/10.1371/journal.pone.0196974.g004
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with cumulative resistant kernel value as the only predictor variable, based on the observation

that the single variable resistant kernel model was within 1% of the total deviance explained by

the global model, and that none of the other variables’ single variable models explained more

than about 15% of the deviance. This indicates that neither local landscape resistance nor

cumulative least cost path density are good predictors of genetic diversity in a population. On

the other hand, the resistant kernel models were remarkably good, explaining over 52% of

deviance for both alleles and heterozygosity in the 125kcu dispersal scenario (Fig 5; this rose to

excess of 80% of the deviance for both variables in the 250kcu dispersal distance scenario (S1

File)).

Discussion

Ongoing rapid landscape change on Borneo is reducing the extent and increasing the fragmen-

tation of habitat for forest dependent species, such as the clouded leopard. This reduction in

habitat amount and connectivity has important repercussions for both genetic diversity and

projected population sizes. Our analysis suggested rapidly accelerating reductions in the extent

and connectivity of forest habitats, with large predicted decreases in clouded leopard popula-

tion size, accompanied by increasing inbreeding coefficient and decreasing genetic diversity.

This suggests that shrinkage and fragmentation of habitat across Borneo will not only result in

smaller clouded leopard populations, but also populations that are potentially more vulnerable

to demographic stochasticity and inbreeding depression as well as being less able to adapt to

future environmental change [64]. These trends were robust across dispersal distances (125km

and 250km) and across different percentile thresholds for clouded leopard core areas.

Relationships between genetic diversity and landscape connectivity

This is the first study to model effects of ongoing deforestation on population decline and

changes in population connectivity and genetic diversity of any species at this scale. The spa-

tially synoptic analysis of least cost paths across Borneo in particular was extremely computa-

tionally demanding, requiring the calculation of all least cost paths between all source points

(between 715,806 and 4,114,146 least cost paths for each scenario). In addition, parameterizing

and running an individual based population genetics model such as CDPOP across such a vast

scale and large population size represents a considerable challenge for most practitioners.

Therefore, we tested whether it was possible to take a pragmatic shortcut in estimating land-

scape scale changes in allelic richness and heterozygosity by simply using the maps of land-

scape resistance, path density and kernel density that we had already computed. Our

regression analysis showed that the full model (using all three predictor variables) allowed us

to explain about 60% of the deviance for both allelic richness and heterozygosity. However in

all cases, the single variable model (including only kernel density) was the most parsimonious

solution and explained an almost identical proportion of the deviance. Future studies that are

limited by time or computational power might therefore be able to rely on cumulative resistant

kernel density as a proxy for changes in measures of genetic diversity.

Conservation implications and future research

Despite a recent increase in research effort, the Sunda clouded leopard on Borneo remains elu-

sive and one of the world’s least known felids, and this hampers the development of coherent

conservation actions [51]. Nonetheless, this study highlights the severe impacts of ongoing

fragmentation and loss of forest habitats on Borneo. Our analyses predicted a marked decline

in both the overall area of clouded leopard core areas and a marked reduction in patch sizes

with several patches being lost all together, coupled with dramatic declines in allelic richness
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Fig 5. Scatterplots of (a) average number of alleles per locus and (b) observed heterozygosity in a local

neighborhood of 10km radius relative to the resistant kernel value calculated with a 125kcu dispersal distance.

The fitted regression equation is shown in red overlay, and the equation and deviance explained are displayed below

each scatterplot.

https://doi.org/10.1371/journal.pone.0196974.g005
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and heterozygosity. Future conservation effort should focus on slowing the rate of land use

change in Borneo, while prioritizing conservation in areas that maintain the extent of core

populations and the connectivity between them. Additionally, while a small number of studies

have successfully made local estimates of clouded leopard density [36, 37, 65], future research

should focus on better estimates of clouded leopard abundance and density across Borneo as

well as improving knowledge of the species’ basic ecology (particularly its dispersal) and how it

responds to anthropogenic changes in its environment. This would improve our ability to reli-

ably map both habitat suitability and landscape resistance. We are currently in the process of

refining the models presented in this paper using empirical field data from the relatively well-

studied region of Sabah, however Borneo wide initiatives are also required.

Further implications

The implications of this study extend beyond the conservation of the Sunda clouded leopard.

Firstly, while our models were parameterized specifically for clouded leopards based on expert

opinion they are likely to have relevance to any other medium sized forest dependent mam-

mals on Borneo (such as the sun bear (Helarctos malayanus)) that may have similar dispersal

distances and habitat associations.

Macdonald, Burnham [66] have highlighted the fact that many species (for example felids

and primates) face the same threats in the same locations and may benefit from many of the

same solutions. Building on this notion, [67] and [38] have shown that the clouded leopard

is not only regarded as charismatic by the general public but that it has strong potential to act

as an Ambassador for conservation marketing campaigns. This supports the widespread

approach of protecting patches or corridors that support one or several wide-ranging, often

large-bodied, species on the assumption that conservation of these umbrella species will also

facilitate conservation of smaller or less mobile organisms (e.g. [68, 69] but see [5, 25]). As a

generalization, Beier et al. [70] argued that habitat corridors may more effectively protect

regional biodiversity if they are developed to support the movement of multiple species simul-

taneously, because so many species are threatened by fragmentation, a proposition which

underlies the analyses presented by [9] for a basket of SE Asian species including clouded

leopards.

Constraints and limitations of the approach

Some parts of our model are populated by data derived from expert opinion, and although our

team includes researchers with many years of experience conducting field research on clouded

leopards, maps of habitat suitability derived from expert opinion have been shown to be less

reliable than empirically derived data [71–73]. In this study, the ICC suggests that survey

respondents showed a high level of agreement, however inevitably the results for some land

uses were more certain than others. Frequency distributions for the survey responses are

shown in Fig 1, and these show that while reviewers were reasonably unanimous in their view

that lowland forests represented high quality habitat, they were less consistent in their view

towards peat swamp forest. The comparative uncertainty in these areas could influence the

reliability of our model and highlights the need for greater research in these less understood

habitat types. Reassuringly however, the estimated population density provided by the survey

respondents (1.12 ind. per 100km2) falls within the empirically estimated range of population

density for clouded leopards in the peat swamp forest of Sabangau (0.72 to 4.41 ind. per

100km2)[65]. For this reason it will be important to collect empirical data on population distri-

bution, abundance, genetic diversity and gene flow to verify and improve our predictions.
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Additionally, our method for estimating the landscape resistance in 2020 has inherent

uncertainty. Our method involves multiplying pixel values by the probability of deforestation

in each cell, and thus if we have two pixels that both have a 50% probability of deforestation by

2020, then both cells will be multiplied by 50% whereas in reality we might expect that one cell

might be completely deforested and the other might remain intact. One potential solution to

this inaccuracy would have been to allocate a number of cells for deforestation based on their

probability of loss. Under this approach, however, we would still have no objective way of

knowing which pixel would be deforested. Our approach cannot therefore be used to interpret

fine scale impacts of local land use changes, although the impacts at a wider landscape scale

remain robust. Nonetheless, the present urgency of guiding conservation in Borneo requires

prompt action to address an unfolding biodiversity crisis. Therefore, we believe the govern-

ments of Borneo should work with conservationists, scientists and economists to utilize the

best information currently available to develop proactive strategies to slow the dramatic pace

of forest loss and biodiversity impacts. It was our goal in this paper to help provide some infor-

mation for this effort.

Conclusion

Deforestation is on-going and accelerating across Borneo with immense implications for bio-

diversity. Our analysis is the first to use robust predictions of future landscape change at such a

broad scale to simulate changes in population size, connectivity, gene flow and genetic diver-

sity. Our results suggest large recent declines in clouded leopard population size and genetic

diversity and predict much larger imminent declines as deforestation continues across Borneo,

particularly in Sabah and Sarawak, where the pattern of forest loss is much more damaging

due to its widespread, diffuse nature. Our analyses provide plausible inferences about how

recent and future landscape change may affect clouded leopard populations (and probably

those of other species with similar biology) across Borneo. Additional work using extensive

occurrence, genetic and movement data is needed to verify and improve our predictions.

However, given the immediate and urgent need for effective conservation action in the part of

the world experiencing the most rapid loss of tropical forest, we hope our analyses could be of

immediate utility in identifying (1) population core areas for priority conservation, (2) linkages

between these core areas, (3) relationships between habitat extent, landscape resistance, popu-

lation size, dispersal ability and genetic diversity to help managers and planners anticipate the

effects of a range of alternative conservation scenarios. The tools we have presented here could

be of use in developing and evaluating the specific impacts of alternative scenarios on popula-

tion size, connectivity and genetic diversity.

Supporting information

S1 File. Supporting information for simulating impacts of rapid forest loss on population

size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in

Borneo. Fig A. Plot of the mean respondent scores for habitat suitability vs the mean esti-

mated population density for clouded leopards. The high of R2 = 0.905 shows high consis-

tency in the estimates provided by the panel of experts. Fig B. Comparison of resistant kernel

maps for two potential dispersal distances. 125kcu (as shown in Fig 2 -,A, B, C, and 250kcu,

D, E, F, for years 2000 (A and D), 2010 (B and E) and 2020 (C and F). Fig C. Change in the

percentage of the landscape connected by dispersal for 2000, 2010, and 2020 across varying

thresholds for selection and dispersal distance. Fig D. Change in the extent of the largest

patch of connected habitat as percentage of the landscape across the 5th, 10th and 20th

percentiles of the cumulative kernel surface in year 2000 for 2000, 2010, and 2020 at
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(a) 125kcu and (b) 250kcu dispersal thresholds. Fig E. Change in the number of isolated

patches of connected habitat across the 5th, 10th and 20th percentiles of the cumulative ker-

nel surface in year 2000 for years 2000, 2010, and 2020 at (a) 125kcu and (b) 250kcu dis-

persal thresholds. Fig F. Changes in the correlation length of the factorial least cost path

network across three density thresholds (5th percentile, 10th percentile and 20th percentile

of the least cost path density in 2000), and across the three dates (2000, 2010, 2020). Fig G.

Scatterplots and fitted LOWESS splines for relationship between average number of alleles

per locus and focal mean landscape resistance within a 10km radius (column 1), cumula-

tive density of least cost paths (column 2), and cumulative resistant kernel density (column

3), across the two dispersal distance scenarios (125kcu, row 1; 250kcu, row 2). Fig H. Scat-

terplots and fitted LOWESS splines for relationship between observed heterozygosity and

focal mean landscape resistance within a 10km radius (column 1), cumulative density of

least cost paths (column 2), and cumulative resistant kernel density (column 3), across the

two dispersal distance scenarios (125kcu, row 1; 250kcu, row 2). Fig I. Scatterplots of aver-

age number of alleles per locus in a local neighborhood relative to resistant kernel value

for a) the 125kcu scenario and b) the 250kcu scenario, and heterozygosity of the local

neighborhood relative to resistant kernel value for c) the 125kcu scenario and d) the

250kcu scenario. The fitted regression equation is shown in red overlay, and the equation

and deviance explained are displayed below each scatterplot.

(DOCX)

S2 File. Core Areas and Corridors data for PLOS—LCP and Resistance. This .zip file con-

tains the following shapefiles:

Landscape Resistance map for the year 2000 (“Resistance_2000.tif”)

Landscape Resistance map for the year 2010 (“Resistance_2010.tif”)

Landscape Resistance map for the year 2020 (“Resistance_2020.tif”)

Least Cost Path map for the year 2000 (“LCP_2000.tif”)

Least Cost Path map for the year 2000 (“LCP_2010.tif”)

Least Cost Path map for the year 2000 (“LCP_2020.tif”).

(ZIP)

S3 File. Core Areas and Corridors data for PLOS—Kernels. This .zip file contains the follow-

ing shapefiles:

Resistant kernel map for year 2000 with dispersal threshold of 125kcu (“kernel_2000_125kcu.

tif”)

Resistant kernel map for year 2010 with dispersal threshold of 125kcu (“kernel_2010_125kcu.

tif”)

Resistant kernel map for year 2020 with dispersal threshold of 125kcu (“kernel_2020_125kcu.

tif”)

Resistant kernel map for year 2000 with dispersal threshold of 250kcu (“kernel_2000_250kcu.

tif”)

Resistant kernel map for year 2010 with dispersal threshold of 250kcu (“kernel_2010_250kcu.

tif”)
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Resistant kernel map for year 2020 with dispersal threshold of 250kcu (“kernel_2020_250kcu.

tif”).

(ZIP)
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