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Abstract: Accurate image interpretation of Waters’ and Caldwell view radiographs used for sinusi-
tis screening is challenging. Therefore, we developed a deep learning algorithm for diagnosing
frontal, ethmoid, and maxillary sinusitis on both Waters’ and Caldwell views. The datasets were
selected for the training and validation set (n = 1403, sinusitis% = 34.3%) and the test set (n = 132,
sinusitis% = 29.5%) by temporal separation. The algorithm can simultaneously detect and classify
each paranasal sinus using both Waters’ and Caldwell views without manual cropping. Single-
and multi-view models were compared. Our proposed algorithm satisfactorily diagnosed frontal,
ethmoid, and maxillary sinusitis on both Waters’ and Caldwell views (area under the curve (AUC),
0.71 (95% confidence interval, 0.62–0.80), 0.78 (0.72–0.85), and 0.88 (0.84–0.92), respectively). The
one-sided DeLong’s test was used to compare the AUCs, and the Obuchowski–Rockette model was
used to pool the AUCs of the radiologists. The algorithm yielded a higher AUC than radiologists for
ethmoid and maxillary sinusitis (p = 0.012 and 0.013, respectively). The multi-view model also exhib-
ited a higher AUC than the single Waters’ view model for maxillary sinusitis (p = 0.038). Therefore,
our algorithm showed diagnostic performances comparable to radiologists and enhanced the value
of radiography as a first-line imaging modality in assessing multiple sinusitis.

Keywords: machine learning; deep learning; artificial intelligence; paranasal sinusitis; multi-view ra-
diographs

1. Introduction

Sinusitis is an inflammation of the membranes lining the paranasal sinus, which is one
of the most frequently diagnosed diseases in the United States, affecting more than 15% of
its population annually [1]. Sinusitis is diagnosed by evaluation of the patient’s history
and physical examination, because clinical evaluation is usually sufficient to diagnose
sinusitis in most cases and empirical treatments are cheap and safe. However, when
symptoms are recurrent or persistent despite appropriate treatment, imaging of sinusitis
may be required for further evaluation [2,3]. While CT is the imaging modality of choice
for sinusitis, as it provides the highest overall anatomical detail of the paranasal sinuses,
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radiography is still widely used as an imaging modality when sinusitis is suspected because
of its comparatively low cost, low radiation dose exposure, higher availability, and ease
of examination [4,5].

The use of radiographic views such as Waters’ and Caldwell views is a conventional
method for evaluation of the sinonasal area. Waters’ view, also known as the occipitomental
view, is considered the best projection for evaluating maxillary sinuses. Meanwhile, the
Caldwell view, also known as the occipitofrontal view, is applied chiefly for the evalua-
tion of frontal and ethmoid sinuses [6,7]. However, the reliability of radiography in the
evaluation of sinusitis is questionable [8,9]. The reported sensitivity is relatively low for all
sinuses (25–41%) except for maxillary sinusitis (80%) [4]. Because adjacent bony shadows
can overlap the sinuses, the interpretation of radiographs for sinusitis is difficult even for
experienced radiologists, particularly when judging whether thickened mucous membrane
is present [10].

Meanwhile, deep learning algorithms have recently begun to play an increasingly
important role in analyzing medical images [11–15]. Such algorithms have been applied to
various tasks such as lesion segmentation [11], detection [12], classification [13], reconstruc-
tion [14], and natural language processing [15]. In particular, recent studies [16,17] have
demonstrated that deep learning algorithms can accurately classify maxillary sinusitis on
Waters’ view. However, most of these studies of sinusitis based on deep learning have only
focused on maxillary sinusitis with a single Waters’ view. Moreover, every image required
manual cropping, which was time-consuming [16,17].

The purpose of our study was to develop a deep learning algorithm for the diagnosis
of frontal, ethmoid, and maxillary sinusitis using both Waters’ and Caldwell views while
avoiding the need for cropping and to compare its diagnostic performance with that
of radiologists.

2. Materials and Methods
2.1. Dataset and Labeling

The data of 2349 consecutive patients older than 16 years who underwent Waters’-
and Caldwell-view radiography and paranasal CT within a 1-day interval for suspected
sinusitis were retrospectively retrieved from the databases of the Seoul National University
Hospital (SNUH) between January 2013 and October 2016 and the Seoul National Univer-
sity Bundang Hospital (SNUBH) between May 2013 and February 2017 (Figure 1). As the
pneumatization of the paranasal sinuses is completed by 15 years of age, only patients
older than 16 years were included in this study [18,19]. Out of 3070 radiographs, 1152
(37.5%) from 1152 of 1535 patients (75.0%) in this study overlap with those included in our
previous study [16]. While the prior study only covered the diagnosis of maxillary sinusitis
on Waters’ view, the current study expands on the previous work by covering maxillary,
frontal, and ethmoid sinusitis using both Waters’ and Caldwell views.

All studies were labeled by consensus of two radiologists (Y.J.B., an attending neurora-
diologist with 10 years of experience, and Y.K., a board-certified radiologist with 4 years of
experience) based on CT findings according to six types: 0, normal; 1, mucosal thickening
(>4 mm for maxillary sinusitis, and >2 mm for frontal and ethmoid sinusitis); 2, air-fluid
level; 3, total opacification; 4, interpretable but not belonging to any category (e.g., reten-
tion cyst); and 5, uninterpretable (e.g., poor image quality) (Figure 2). Because our model
evaluates three sinuses bilaterally, six labels were recorded for each case.
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Figure 1. Flowchart of clinical datasets for training, validation, and test.
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Figure 2. Representative cases with normal (label 0, a), frontal sinusitis (label 1, b), maxillary si-
nusitis (label 2, c), and ethmoid sinusitis (label 3, d) at each view (Waters’ view: left, Caldwell 
view: middle, corresponding coronal image of CT, right). For frontal (b) and ethmoid sinusitis (d), 
mucosal thickening (label 1) and total opacification (label 3) are not well visualized in Waters’ 
view, whereas Caldwell view provides the best projection for evaluation (arrowheads). In the case 
of maxillary sinusitis (c), Waters’ view provides a better view of the air-fluid level (label 2, arrow-
heads) than Caldwell view. 

After excluding 814 patients with labels 4 and 5, 1535 patients were finally included. 
Of these, the data of 132 patients on whom radiography was performed after June 2016 
were used as the temporal test set. The data of the remaining 1403 patients were randomly 
split into 1265 datasets for training and 138 datasets for validation. 

2.2. Network Architecture 

Figure 2. Representative cases with normal (label 0, a), frontal sinusitis (label 1, b), maxillary
sinusitis (label 2, c), and ethmoid sinusitis (label 3, d) at each view (Waters’ view: left, Caldwell view:
middle, corresponding coronal image of CT, right). For frontal (b) and ethmoid sinusitis (d), mucosal
thickening (label 1) and total opacification (label 3) are not well visualized in Waters’ view, whereas
Caldwell view provides the best projection for evaluation (arrowheads). In the case of maxillary
sinusitis (c), Waters’ view provides a better view of the air-fluid level (label 2, arrowheads) than
Caldwell view.

After excluding 814 patients with labels 4 and 5, 1535 patients were finally included.
Of these, the data of 132 patients on whom radiography was performed after June 2016
were used as the temporal test set. The data of the remaining 1403 patients were randomly
split into 1265 datasets for training and 138 datasets for validation.

2.2. Network Architecture

Two deep convolutional neural networks were implemented with the use of Tensor-
Flow (version 1.13.2) based on Python (version 3.7). Each convolutional neural network
mainly comprised residual blocks aided by the squeeze-and-excitation module (Figure 3).
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maps (CAMs) were extracted at the test stage to support and explain the prediction results 
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The main proposed model was constructed using a multi-view (MV) architecture, 
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accelerated training. To avoid overfitting, training was halted before the validation loss 
increased significantly. 

2.5. Observer Study 

Figure 3. Overview of the proposed network architecture. The network consists of a detector (Mdet), which localizes sinuses
with a bounding box, and a classifier (Mcls), which classifies sinusitis with 4-leveled labels. It combines the information of
both Caldwell and Waters’ views. For the modified model, which uses only the primary view (denoted as single primary
view model), the network path of the second row is removed (vice versa for the single secondary view model, which uses
only the secondary view).

The first network (Mdet) acts as a detector for localizing each sinus area with bounding
boxes. Network Mdet consists of seven residual blocks, wherein the first five blocks are
aided by the squeeze-and-excitation module. The second network (Mcls) classifies each
sinus patch proposed by Mdet using four diagnostic labels. In particular, Mcls is a multi-
view network merging enriched multi-angle information from patches of the primary and
secondary views. Therefore, Mcls has two network paths: one for the primary view and
the other for the secondary view. Each path consists of six residual blocks, followed by a
feature concatenation layer.

2.3. Data Preprocessing

All radiographs were normalized for stable training, and random adjustment to
contrast and brightness with random affine translation was applied for data augmentation.
In particular, for the Mcls network, sinus patches were warped into 448 × 448 pixels via
bilinear interpolation. Given that paranasal sinuses are basically symmetric, the left sinus
patches were flipped horizontally to eliminate directional differences from the right ones.

2.4. Training Settings

L2 loss was used as the loss function of Mdet for coordinate regression. For Mcls, focal
loss was used to alleviate the class imbalance problem. These two loss functions were
minimized by the RMSProp optimizer with a learning rate of 0.001. Mdet and Mcls were
trained separately but were concatenated at the test stage to enable one-click prediction,
which does not require any further operations. Moreover, corresponding class activation
maps (CAMs) were extracted at the test stage to support and explain the prediction results
of Mcls using the Grad-CAM method.

The main proposed model was constructed using a multi-view (MV) architecture,
which simultaneously uses both Waters’ and Caldwell views. Moreover, to confirm the
effect of each view, two modified models that focus on primary and secondary views
separately were also trained (hereafter denoted as single primary view and single secondary
view, respectively).

A single TITAN RTX GPU (Nvidia Corporation, Santa Clara, CA, USA) was used for
accelerated training. To avoid overfitting, training was halted before the validation loss
increased significantly.

2.5. Observer Study

To compare the performance of our algorithm with that of humans, we invited four ra-
diologists as reviewers, and an observer study was conducted. For each case, the reviewers
were asked to score each sinus using the 4-level diagnostic labels described above.
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2.6. Statistical Analysis

To evaluate the performances of the proposed deep learning system and the four re-
viewers, we measured the sensitivity, specificity, positive predictive value, and areas under
the receiver operating characteristic curve (AUC) for statistical metrics, and calculated
the 95% CIs. In addition, Matthews correlation coefficient was calculated to measure the
correlation between the prediction and ground truth label [20].

Before analysis, the labels were dichotomized into a normal set (label 0) and sinusitis
set (labels 1–3). The AUCs were compared using the one-sided DeLong’s test [21]. To
measure the sensitivity and specificity of the deep learning algorithm, three operating
points at the optimal cutoff point, at a sensitivity of 90% (high sensitivity cutoff), and at a
specificity of 90% (high specificity cutoff) were determined from the validation set. The
optimal cutoff point was calculated by the index of the union method [22]. An adaptation
of the single-treatment multiple-reader Obuchowski–Rockette model [23] was used to pool
the AUCs of the radiologists.

Fleiss’ kappa statistics were used to calculate interobserver agreement among the
radiologists. The level of agreement was interpreted as slight if κ was 0.01 to 0.20; fair, 0.21
to 0.40; moderate, 0.41 to 0.60; substantial, 0.61 to 0.80; and almost perfect, 0.81 to 1 [24].
We also investigated the agreement between the probability of sinusitis predicted by the
algorithm and average diagnostic confidence levels rated by the four invited radiologists
using Pearson’s correlation coefficient.

All statistical analyses were performed by using the statistical software R (version 3.6.2,
R Foundation for Statistical Computing, Vienna, Austria). In particular, “RJafroc: Artifi-
cial Intelligence Systems and Observer Performance” (https://cran.r-project.org/web/
packages/RJafroc) library was used to perform single-treatment multiple-reader pooling
to calculate overall sensitivity and specificity. A p-value of <0.05 was considered signifi-
cant. To account for multiple comparisons between the radiologists and the deep learning
algorithm, a Bonferroni correction was applied to each sinus using an adjusted α-level of
0.013 (0.05/4) [25].

3. Results
3.1. Patient Demographics

Table 1 summarizes the patient baseline characteristics. The training and validation
sets included 735 men (52.4%) and 668 women (47.6%), and the test set included 57 men
(43.2%) and 75 women (56.8%). The mean age was 50 ± 19 years for the training and
validation sets and 54 ± 17 years for the test set.

3.2. Performance Comparison of Deep Learning Models

Table 2 summarizes the performance of the deep learning algorithm. The AUCs of the
MV-based deep learning algorithm were higher than those of the single secondary view
for maxillary and ethmoid sinusitis, and they were comparable with those of the single
primary view for frontal, ethmoid, and maxillary sinusitis and the single secondary view
for frontal sinusitis.

In particular, the MV model exhibited better performance than the single primary
view and single secondary view models for maxillary sinusitis (p = 0.038 and <0.001,
respectively). The MV model also outperformed the single secondary view regarding
ethmoid sinusitis (p = 0.004).

3.3. Performance Comparison of Multi-View Model with Radiologists

The MV model demonstrated an AUC greater than that of the radiologists for maxillary
and ethmoid sinusitis (p = 0.013 and p = 0.012, respectively) (Figure 4). The AUC range of
the radiologists was 0.74–0.84 for maxillary sinusitis, 0.63–0.74 for ethmoid sinusitis, and
0.59–0.73 for frontal sinusitis. For maxillary and ethmoid sinusitis, the MV model showed
a higher AUC than that of three of the four radiologists (maxillary, p < 0.001, 0.002, and

https://cran.r-project.org/web/packages/RJafroc
https://cran.r-project.org/web/packages/RJafroc
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0.016; ethmoid, p < 0.001, 0.024, and 0.028, respectively). Regarding frontal sinusitis, the
AUC of the MV model was higher than that of one of the four radiologists (p = 0.032).

Table 1. Patient characteristics and label distribution of training, validation, and temporal test set.

Category Training Set Validation Set Temporal Test Set Total

Number of Patients 1265 138 132 1535
Age (y) † 50 ± 19 49 ± 18 54 ± 17 51 ± 19
Sex
Men 659 (52.1) 76 (55.1) 57 (43.2) 792 (51.6)
Women 606 (47.9) 62 (44.9) 75 (56.8) 743 (48.4)
Frontal Sinusitis ‡

0—normal 2029 (80.2) 212 (76.8) 215 (81.4) 2456 (80.0)
1—mucosal

thickening > 2 mm 286 (11.3) 38 (13.8) 37 (14.0) 361 (11.8)

2—air-fluid level 3 (0.1) 1 (0.4) 0 (0.0) 4 (0.1)
3—total

opacification 212 (8.4) 25 (9.1) 12 (4.5) 249 (8.1)

Ethmoid Sinusitis ‡
0—normal 1589 (62.8) 178 (64.5) 188 (71.2) 1955 (63.7)
1—mucosal

thickening > 2 mm 171 (6.8) 14 (5.1) 20 (7.6) 205 (6.7)

2—air-fluid level 184 (7.3) 18 (6.5) 21 (8.0) 223 (7.3)
3—total

opacification 586 (23.2) 66 (23.9) 35 (13.3) 687 (22.4)

Maxillary Sinusitis ‡
0—normal 1375 (54.3) 149 (54.0) 155 (58.7) 1679 (54.7)
1—mucosal

thickening > 4 mm 738 (29.2) 77 (27.9) 87 (33.0) 902 (29.4)

2—air-fluid level 145 (5.7) 22 (8.0) 5 (1.9) 172 (5.6)
3—total

opacification 272 (10.8) 28 (10.1) 17 (6.4) 317 (10.3)

Note—Except where indicated, data are the numbers of patients, with percentages in parentheses. † Data are the means ± standard
deviation. ‡ Data are the numbers of sinuses, thus doubled by the number of patients.

Table 2. Performance of deep learning model in diagnosing multiple sinusitis at each view.

Single Primary View Single Secondary View Multi-View

Frontal Sinusitis
AUC 0.72 (0.63–0.80) 0.72 (0.65–0.80) 0.71 (0.62–0.80)
p-Value * 0.645 0.685

Ethmoid Sinusitis
AUC 0.79 (0.73–0.85) 0.70 (0.63–0.77) 0.78 (0.72–0.85)
p-Value * 0.566 0.004

Maxillary
Sinusitis

AUC 0.86 (0.81–0.90) 0.76 (0.70–0.81) 0.88 (0.84–0.92)
p-Value * 0.038 <0.001

Note—The numbers in parentheses are 95% confidence intervals. AUC = Area under the receiver operating
characteristic curve. * Compared with multi-view. p-values are calculated with one-sided DeLong’s test.

Table 3 lists the sensitivities and specificities of our algorithm and of radiologists. The
sensitivity range for the radiologists was 72.5–84.4% for maxillary sinusitis, 50.0–61.8%
for ethmoid sinusitis, and 26.5–49.0% for frontal sinusitis. The specificity range of the
radiologists was 65.8–87.1% for maxillary sinusitis, 66.0–82.4% for ethmoid sinusitis, and
74.0–85.6% for frontal sinusitis. Overall, the MV model exhibited superior sensitivity and
specificity relative to the radiologists’ average scores.
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Table 3. Performance of deep learning model and radiologists in diagnosing multiple sinusitis.

Frontal Sinusitis Sensitivity Specificity PPV MCC AUC p-Value †

Deep learning algorithm 0.71 (0.62–0.80)
Optimal Cutoff † 57.1 (42.2–71.2) 82.8 (77.1–87.6) 43.1 (30.8–56.0) 0.36 (0.25–0.46)
Cutoff for High Sensitivity 71.4 (56.7–83.4) 48.8 (42.0–55.7) 24.1 (17.4–31.9) 0.16 (0.04–0.27)
Cutoff for High Specificity 40.8 (27.0–55.8) 90.2 (85.5–93.9) 48.8 (32.9–64.9) 0.33 (0.22–0.44)

Radiologist
1 49.0 (34.4–63.7) 85.6 (80.2–90.0) 43.6 (33.4–54.4) 0.33 (0.22–0.43) 0.69 (0.61–0.77) 0.402
2 26.5 (14.9–41.1) 85.1 (79.6–89.6) 28.9 (18.8–41.7) 0.12 (0.00–0.24) 0.59 (0.51–0.67) 0.032
3 46.9 (32.5–61.7) 74.0 (67.5–79.7) 29.1 (22.0–37.4) 0.18 (0.06–0.29) 0.64 (0.56–0.73) 0.165
4 49.0 (34.4–63.7) 84.7 (79.1–89.2) 42.1 (32.2–52.6) 0.32 (0.20–0.42) 0.73 (0.66–0.82) 0.711
Overall ‡ 42.9 82.4 0.66 (0.56–0.78) 0.477

Ethmoid Sinusitis Sensitivity Specificity PPV MCC AUC p-Value †

Deep learning algorithm 0.78 (0.72–0.85)
Optimal Cutoff † 59.2 (47.3–70.4) 83.5 (77.4–88.5) 59.2 (47.3–70.4) 0.43 (0.32–0.52)
Cutoff for High Sensitivity 78.9 (68.1–87.5) 59.0 (51.7–66.1) 43.8 (35.3–52.5) 0.34 (0.23–0.45)
Cutoff for High Specificity 38.2 (27.2–50.0) 95.2 (91.1–97.8) 76.3 (59.8–88.6) 0.43 (0.33–0.52)

Radiologist
1 61.8 (50.0–72.8) 78.2 (71.6–83.9) 53.4 (45.3–61.3) 0.38 (0.28–0.48) 0.74 (0.68–0.80) 0.170
2 51.3 (39.6–63.0) 75.0 (68.2–81.0) 45.4 (37.4–53.6) 0.25 (0.14–0.36) 0.63 (0.55–0.70) <0.001 *
3 61.8 (50.0–72.8) 66.0 (58.7–72.7) 42.3 (36.0–48.9) 0.25 (0.14–0.36) 0.69 (0.62–0.76) 0.024
4 50.0 (38.3–61.7) 82.4 (76.2–87.6) 53.5 (44.0–62.8) 0.33 (0.22–0.43) 0.69 (0.62–0.76) 0.028
Overall ‡ 56.2 75.4 0.69 (0.61–0.76) 0.012 *

Maxillary Sinusitis Sensitivity Specificity PPV MCC AUC p-Value †

Deep learning algorithm 0.88 (0.84–0.92)
Optimal Cutoff † 80.3 (69.5–88.5) 71.8 (64.8–78.1) 78.6 (69.1–86.2) 0.58 (0.50–0.66)
Cutoff for High Sensitivity 85.3 (77.3–91.4) 72.9 (65.2–79.7) 68.9 (60.4–76.6) 0.57 (0.49–0.65)
Cutoff for High Specificity 63.3 (53.5–72.3) 93.5 (88.5–96.9) 87.3 (78.0–93.8) 0.61 (0.53–0.68)

Radiologist
1 75.2 (66.0–83.0) 87.1 (80.8–91.9) 80.4 (72.9–86.2) 0.63 (0.55–0.70) 0.84 (0.79–0.89) 0.112
2 72.5 (63.1–80.6) 69.7 (61.8–76.8) 62.7 (56.3–68.7) 0.42 (0.31–0.51) 0.74 (0.67–0.80) <0.001 *
3 74.3 (65.1–82.2) 70.3 (62.5–77.4) 63.8 (57.4–69.7) 0.44 (0.34–0.53) 0.78 (0.72–0.84) 0.002 *
4 84.4 (76.2–90.6) 65.8 (57.8–73.2) 63.5 (57.9–68.7) 0.50 (0.40–0.58) 0.81 (0.76–0.86) 0.016
Overall ‡ 76.6 73.2 0.79 (0.73–0.86) 0.013 *

Note—Asterisk (*) indicates significant results. Bold indicates correlation is significant at alpha level corrected by Bonferroni method.
Numbers in parentheses are 95% confidence intervals (CIs). AUC = area under the receiver operating characteristic curve, PPV = positive
predictive value, MCC = Matthews correlation coefficient. Sensitivity and specificity presented in percentage. † Optimal cutoffs and
p-values are calculated with index of union and one-sided DeLong’s test. ‡ Overall sensitivity and specificity are represented with
arithmetic mean value to roughly indicate the performances of the reviewer group. Overall AUC with CI is calculated using the pooling
method of the single-treatment multiple-reader Obuchowski–Rockette model to compare it with the AUC obtained by the standalone deep
learning algorithm.

The interobserver agreement (κ) values among the invited radiologists for diagnosing
maxillary, ethmoid, and frontal sinusitis were 0.49, 0.33, and 0.24, respectively. Scatter
plots of the average of radiologists’ diagnostic confidence levels versus the probabil-
ity of sinusitis predicted by the deep learning algorithm for each sinus are shown in
Supplementary Figure S1. The correlation coefficients between the predicted probability of
the algorithm and confidence levels of radiologists were 0.81, 0.57, and 0.51 for maxillary,
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ethmoid, and frontal sinus, respectively. Confusion matrices of predicted and ground truth
labels in the external test set are shown in Supplementary Figure S2.

The representative images with the CAMs of the single primary view and MV models
are shown in Figure 5. We note that the single primary view model misclassified the image
with the air-fluid level (label 2) as mucosal thickening (label 1). However, the MV model
recognized the air-fluid level and correctly classified the image under label 2. The activated
area in the CAM was expanded for the MV model because no clear area in the maxillary
sinus was detected on the secondary view. Representative images of the primary view
with class activation mapping in normal and sinusitis cases are shown in Supplementary
Figure S3. Class activation mapping showed that activation primarily occurred along the
bony wall of the sinus and the clear area within the sinus. Additional examples showing
false-positive and false-negative cases are shown in Supplementary Figure S4. To validate
the results, we additionally trained the model with the development dataset using 5-fold
cross-validation. The result of the cross-validation model is presented in Supplementary
Table S1 and Supplementary Figure S5.

Diagnostics 2021, 11, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 5. Comparison of the class activation maps (CAMs) of the single primary view and multi-view model. (a) CAM of 
the single primary view model (Waters’ view). (b) Original radiographs showing maxillary sinusitis with air-fluid level 
(upper row, Waters’ view; lower row, Caldwell view) (c), CAM of the multi-view model (upper row, Waters’ view; lower 
row, Caldwell view). Single primary view model (a) misclassified as mucosal thickening because the area above the hori-
zontal fluid line is not recognized. In the case of the multi-view model (c), the prediction is correct as the activated area is 
more expanded on Waters’ view (upper row), while no clear activation is found in the sinus area on the secondary view 
(lower row). 

4. Discussion 
In this study, we developed a deep learning algorithm for diagnosing multiple sites 

of sinusitis on radiographs. Our proposed algorithm detects and classifies each sinus sim-
ultaneously and therefore does not require manual cropping as a preprocessing step. It can 
accurately diagnose multiple sites of sinusitis using both Waters’ and Caldwell views as 
input images. We found that the multi-view model outperforms the single primary and sec-
ondary view models, particularly for maxillary sinusitis. The proposed algorithm also out-
performs results obtained by radiologists, particularly for ethmoid and maxillary sinusitis. 

The diagnostic performance of deep learning in classifying maxillary sinusitis was 
comparable to the two previous studies [16,17], with AUC ranging from 0.88–0.93 [16] and 
0.88–0.94 [17], respectively. While these studies [16,17] have only evaluated maxillary si-
nusitis using Waters’ view, we additionally evaluated the diagnostic performance for 
frontal and ethmoid sinusitis using multi-view radiographs. Although maxillary sinusitis is 
more common than frontal or ethmoid sinusitis, accurate diagnosis of frontal and ethmoid 
sinusitis is also important. The local inflammation or anatomic obstruction of the osti-
omeatal complex interferes the mucociliary clearance and leads to sinusitis development 
[26]. In particular, the anterior ethmoid, which is located close to the ostiomeatal complex, 
plays an important role in the pathophysiology of sinusitis [27]. Furthermore, complications 
of frontal sinusitis can become life-threatening by involving intracranial structures [28]. 

Unlike previous approaches requiring cropping of sinus patches from radiographs 
[16,17], we designed a model comprising a detector (Mdet) and a classifier (Mcls). The Mdet 
network eliminated the manual cropping requirement through automatic detection of the 
sinus area. Meanwhile, to simultaneously use multi-view information from two images, 
Mcls was designed to concatenate two multi-view features. Among the several studies that 

Figure 5. Comparison of the class activation maps (CAMs) of the single primary view and multi-view
model. (a) CAM of the single primary view model (Waters’ view). (b) Original radiographs showing
maxillary sinusitis with air-fluid level (upper row, Waters’ view; lower row, Caldwell view) (c), CAM
of the multi-view model (upper row, Waters’ view; lower row, Caldwell view). Single primary view
model (a) misclassified as mucosal thickening because the area above the horizontal fluid line is not
recognized. In the case of the multi-view model (c), the prediction is correct as the activated area is
more expanded on Waters’ view (upper row), while no clear activation is found in the sinus area on
the secondary view (lower row).

4. Discussion

In this study, we developed a deep learning algorithm for diagnosing multiple sites
of sinusitis on radiographs. Our proposed algorithm detects and classifies each sinus
simultaneously and therefore does not require manual cropping as a preprocessing step. It
can accurately diagnose multiple sites of sinusitis using both Waters’ and Caldwell views
as input images. We found that the multi-view model outperforms the single primary
and secondary view models, particularly for maxillary sinusitis. The proposed algorithm
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also outperforms results obtained by radiologists, particularly for ethmoid and maxillary
sinusitis.

The diagnostic performance of deep learning in classifying maxillary sinusitis was
comparable to the two previous studies [16,17], with AUC ranging from 0.88–0.93 [16] and
0.88–0.94 [17], respectively. While these studies [16,17] have only evaluated maxillary si-
nusitis using Waters’ view, we additionally evaluated the diagnostic performance for frontal
and ethmoid sinusitis using multi-view radiographs. Although maxillary sinusitis is more
common than frontal or ethmoid sinusitis, accurate diagnosis of frontal and ethmoid sinusi-
tis is also important. The local inflammation or anatomic obstruction of the ostiomeatal
complex interferes the mucociliary clearance and leads to sinusitis development [26]. In
particular, the anterior ethmoid, which is located close to the ostiomeatal complex, plays
an important role in the pathophysiology of sinusitis [27]. Furthermore, complications of
frontal sinusitis can become life-threatening by involving intracranial structures [28].

Unlike previous approaches requiring cropping of sinus patches from radiographs [16,17],
we designed a model comprising a detector (Mdet) and a classifier (Mcls). The Mdet network
eliminated the manual cropping requirement through automatic detection of the sinus area.
Meanwhile, to simultaneously use multi-view information from two images, Mcls was designed
to concatenate two multi-view features. Among the several studies that used multi-view
models [29–31], we adapted the model proposed by Kim et al. [29], which merges the features
of the three views of the shoulder radiograph at the fully connected layer with encoded
clinical information.

The interpretation of sinusitis on radiographs relies on the detection of the bony wall
of each sinus and the subsequent assessment of mucosal thickening or accumulation of
mucopus. The sclerotic/erosive bone change or the atelectatic change of a sinus may serve
as an ancillary finding. Each of the skull bones casts multiple superimposed shadows [6],
which are subject to large changes with small changes of the head position. Therefore, each
paranasal radiograph offers its own best visualized structures by minimizing the over-
lapped shadows at different orientations. Our study demonstrated that the performance
of the MV model was comparable with or modestly superior to that of the single primary
view model, indicating that the contribution of the secondary view is small compared to
that of the primary view.

Although acute sinusitis is routinely diagnosed on clinical grounds, the accuracy of
clinical diagnosis for sinusitis remains controversial. One study [32] reported that 34.7%
of patients diagnosed with sinusitis had negative results on CT. A meta-analysis of six
studies revealed that radiographs show moderate sensitivity (73%) and specificity (80%)
when compared with these parameters for sinus puncture, and the analysis suggested that
clinical criteria may exhibit a diagnostic accuracy similar to that of the radiographs [33,34].
Therefore, correlation of both clinical and radiographic findings is important.

In this study, we determined three cutoff values in the validation set following previ-
ous studies [16,35]: the optimal cutoff and 90% high-sensitivity and high-specificity cutoffs.
Considering that radiography is primarily used for the screening of paranasal sinusitis, a
high-sensitivity operating point should be selected. Although many attempts have been
made to reduce the radiation dose of the paranasal sinus CT [36], the estimated effective
dose is still higher than that of radiography, which is important owing to the increased
risk of leukemia and solid cancer [37,38]. Using our MV model may enhance the value of
radiography as a first-line imaging modality in assessing multiple sinusitis with low radia-
tion dose, low cost, higher availability, and ease of examination. The observers showed
moderate, fair, and fair interobserver agreements for maxillary, ethmoid, and frontal si-
nuses, respectively. The relatively low agreement levels for ethmoid and frontal sinuses
demonstrate the need for a decision support system, such as our proposed algorithm. In
particular, the probability of sinusitis predicted by the proposed algorithm and the radiolo-
gists’ confidence levels generally correlated well, with the correlation coefficients ranging
from 0.51 to 0.81. Therefore, the proposed algorithm may aid in overcoming the intrinsic
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low interobserver and intraobserver agreements in radiographs [39] and improving the
diagnostic consistency.

This study has several limitations. First, the data size was relatively small because
we opted to include patients for whom paranasal radiography and CT were performed
within a 1-day interval. In particular, data imbalance of label 2 in the frontal and maxillary
sinusitis dataset exists. However, we believe that the influence of shortage in label 2 cases
to the overall performance is limited because the final task was to predict whether there is
sinusitis or not in each sinus (i.e., dichotomized to label 0 vs. 1–3). Second, the reference
standard used for this study was only CT and did not consider clinical findings. However,
the diagnostic criteria for sinusitis used in this study can be confidently determined on CT,
and this approach results in high reliability, particularly for frontal and ethmoid sinusitis.
Finally, this was a retrospective study and therefore does not precisely represent real-
world scenarios. Further studies are necessary to determine the clinical usefulness of our
algorithm in a prospective setting.

5. Conclusions

Our deep learning algorithm was able to reliably assess frontal, ethmoid, and maxillary
sinusitis on Waters’ and Caldwell view radiographs, and the algorithm outperformed the
radiologists for ethmoid and maxillary sinusitis.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
418/11/2/250/s1, Figure S1: Scatter plots of the average of radiologists’ diagnostic confidence
levels versus the probability of sinusitis predicted by the deep learning algorithm for each sinus;
Figure S2: Confusion matrices of predicted and ground truth labels in external test sets; Figure S3:
Representative cases with the primary view (Waters’ view in this case) with superimposed heatmap
using class activation mapping; Figure S4: Examples of false-positive (a) and false-negative (b) cases;
Figure S5: Confusion matrices of predicted and ground truth labels using 5-fold cross-validation
model; Table S1: Performance of deep learning using 5-fold cross-validation model in diagnosing
multiple sinusitis.
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