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Background: The synthetic control model is a powerful tool to quan-
tify the population-level impact of vaccines because it can adjust for 
trends unrelated to vaccination using a composite of control diseases. 
Because vaccine impact studies are often conducted using smaller, 
subnational datasets, we evaluated the performance of synthetic 
control models with sparse time series data. To obtain more robust 
estimates of vaccine impacts from noisy time series, we proposed 
a possible alternative approach, STL+PCA method (seasonal-trend 
decomposition plus principal component analysis), which first 
extracts smoothed trends from the control time series and uses them 
to adjust the outcome.
Methods: Using both the synthetic control and STL+PCA models, 
we estimated the impact of 10-valent pneumococcal conjugate vac-
cine on pneumonia hospitalizations among cases <12 months and 

80+ years of age during 2004–2014 at the subnational level in Brazil. 
We compared the performance of these models using simulation 
analyses.
Results: The synthetic control model was able to adjust for trends 
unrelated to 10-valent pneumococcal conjugate vaccine in larger 
states but not in smaller states. Simulation analyses showed that the 
estimates obtained with the synthetic control approach were biased 
when there were fewer cases, and only 4% of simulations had cred-
ible intervals covering the true estimate. In contrast, the STL+PCA 
analysis had 90% lower bias and had 95% of simulations, with cred-
ible intervals covering the true estimate.
Conclusions: Estimates from the synthetic control model might be 
biased when data are sparse. The STL+PCA model provides more 
accurate evaluations of vaccine impact in smaller populations.
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Evaluating vaccination programs is essential to under-
stand their benefit and to guide appropriate allocations 

of healthcare resources. However, it is challenging to quan-
tify the reduction in disease rates caused by a vaccine at the 
population level because various unrelated factors also affect 
the outcomes of interest. For example, improvements in liv-
ing conditions and access to preventive care may decrease the 
incidence of a disease and exaggerate the effect of a vaccine. 
In contrast, improvements in the capacity of inpatient care ser-
vices and better disease surveillance may increase the num-
ber of hospitalizations and thus mask true vaccine-associated 
declines.1

Several methods have been proposed to control for such 
unrelated trends when assessing the impact of an intervention. 
Most commonly, linear trends (e.g., interrupted time series 
analysis,2 Holt Winter method3) are used to adjust for unre-
lated changes. A limitation of these approaches is that they 
assume that the preintervention trends can be described with a 
limited number of parametric terms and that this trend would 
continue in the postvaccine period. Alternatively, a time series 
of a control disease can be used in a regression model to adjust 
for trends that influence both the disease of interest and the 
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control disease. This approach has the advantage of capturing 
irregular and unexpected trends, and it draws on information 
about the control disease from the postintervention period. 
This approach can be used to isolate the effect of the interven-
tion if the control disease is not influenced by the interven-
tion, if the relationship between the control disease and the 
disease of interest is consistent over time, and if the control 
captures the relevant trends. The synthetic control framework 
builds on this concept but combines several control diseases 
into a single composite and has been used to assess the impact 
of interventions in economics, political science, and website 
analytics.4–6 We have previously demonstrated the utility of 
the synthetic control approach in estimating changes in pneu-
monia hospitalizations associated with the introduction of 
pneumococcal conjugate vaccines.7

When evaluating the effects of interventions using data-
sets with large numbers of cases, the time series of the dis-
ease of interest and the control diseases are measured with 
relatively little noise. With these types of data, the synthetic 
control approach can effectively adjust for unmeasured con-
founding. In practice, however, interventions often need to 
be evaluated using noisy data with few cases. It is not clear 
whether this approach can successfully select an optimal set 
of controls and adjust for shared underlying trends when using 
sparser time series data.

We therefore set out to evaluate the performance of the 
synthetic control approach in such settings.6,8 We first eval-
uated the ability of the method to quantify the impact of a 
10-valent pneumococcal conjugate vaccine (PCV10) on all-
cause pneumonia hospitalizations at subnational levels in Bra-
zil. Based on these analyses, we found that the synthetic control 
approach failed to yield reasonable counterfactual estimates 
when data became sparse. Therefore, we proposed an alter-
native approach to obtain more robust estimates of vaccine 
impacts from sparse time series by first extracting smoothed 
trends from the controls. We evaluated this approach, which 
we called the STL+PCA method (seasonal-trend decompo-
sition plus principal component analysis), using data from 
Brazil and using simulated time series data. We compared the 
performance of STL+PCA with that of the synthetic control 
approach.

METHODS

Hospitalization Data, Down-sampled Data, and 
Simulated Time Series Data

Three types of data were used in this study: (1) national 
and state-level hospitalization data in Brazil, (2) down-sam-
pled data based on the national Brazil data, and (3) simulated 
time series data. Detailed information on these data are pro-
vided in eAppendix 1–3; http://links.lww.com/EDE/B425, 
and the key information for each dataset is highlighted here.

We used a national hospital discharge database from 
Brazil for hospitalizations that occurred between January 

2004 and December 2014.7 Hospitalizations were categorized 
using a single International Classification of Diseases (ICD) 
10 code. There are 27 states in the country, which are grouped 
into five geographic regions: North (seven states), Northeast 
(nine states), Southeast (four states), South (three states), and 
Center-West (four states). Children under 12 months of age 
and adults 80+ years of age were included in the analyses for 
contrast because previous studies of national-level data for 
Brazil demonstrated clear benefits of PCV10 in the infants 
but no benefit in the elderly.7,9 Moreover, there was a strong 
increasing secular trend in pneumonia hospitalizations among 
older adults but not among young children (eFigure 1; http://
links.lww.com/EDE/B425). These different characteristics 
provided an opportunity to evaluate the model performance 
with the presence or absence of the benefits of the vaccine and 
long-term trends in the time series. The Human Investigation 
Committee at Yale School of Medicine determined that this 
research is exempt from review.

To investigate how the performance of various models 
changes depending on the number of cases per unit time, we 
performed down-sampling analysis.10,11 This approach simu-
lated how the national-level time series would behave had 
they been drawn from a smaller population. For example, 
the national population in Brazil is about 200 million, but 
down-sampling analysis allows us to simulate a time series 
of a theoretical population of 20 million (i.e., down-sampling 
rate 10%) or 2 million (i.e., down-sampling rate 1%). Methods 
are described in detail in eAppendix 2; http://links.lww.com/
EDE/B425. In short, we randomly subsampled the time series 
of ICD10 chapters from the national-level data, using the 
binomial distribution with the rates of 10%, 1%, and 0.25%, 
to simulate the population sizes of different regions and states 
in Brazil. This sampling process was repeated 100 times for 
each rate.

We also used simulated monthly time series data, which 
included an outcome and four control diseases, to demon-
strate the performance of various models (eFigure 2; http://
links.lww.com/EDE/B425 and eAppendix 3; http://links.lww.
com/EDE/B425). The length of time series was 120 months, 
and a “vaccine-associated” decline was introduced starting in 
month 85. There was a gradual 20% decline in the number of 
cases in the outcome that occurred between month 85 and the 
end of the time series. Both the outcome and control diseases 
were given an annual seasonality with different amplitude and 
peak timing, and the time series had a u-shaped curve that 
(by design) could not be captured by a standard linear trend 
adjustment. One of the four control diseases was a “perfect” 
control (blue line in eFigure 2; http://links.lww.com/EDE/
B425), which means that the underlying model that generates 
the mean for the control is the same as the outcome, except 
the simulated vaccine impact is set to 0. To evaluate how the 
performance of the statistical models changes depending on 
the number of cases per unit time, we manipulated the average 
number of cases for the outcome at the first time point (i.e., 
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intercept) to be roughly 8000 (100%), 800 (10%), 80 (1%), 
and 20 (0.25%). For each of these sample sizes, we simulated 
100 time series data.

Synthetic Control Model
The synthetic control method has been described previ-

ously.7,12 The model uses a time series of pneumonia hospi-
talizations (ICD10 code: J12–J18) as the outcome and time 
series of the different control diseases as the covariates; the 
method relies on Bayesian variable selection to select a set 
of covariates that jointly explains the outcome best based on 
the prevaccine data (eAppendix 4; http://links.lww.com/EDE/
B425).7,12 The covariates (control diseases) were disease cate-
gories based on groupings of ICD10 chapters, such as disease 
of the circulatory system (I00–I99), skin (L00–L99), mus-
culoskeletal system (M00–M99), and genitourinary system 
(N00–N99).7 The full list of control diseases included in the 
synthetic control model can be found in eTable 1; http://links.
lww.com/EDE/B425. Key assumptions that these control dis-
eases need to satisfy to be valid are (1) they were not affected 
by PCV10 and (2) relationships between the outcome and con-
trol diseases would not change over time had PCV10 not been 
introduced. We therefore excluded respiratory diseases and 
other disease categories that could potentially be influenced 
by PCV10, except for bronchitis/bronchiolitis (J20–J22).7

We fit the synthetic control model to monthly data from 
the prevaccine period and used it to generate a counterfactual 
prediction for the postvaccine period. Further information can 
be found in eAppendix 4; http://links.lww.com/EDE/B425, 
while full details on the synthetic control method are provided 
in Brodersen et al.12 We used the bsts and BoomSpikeSlab 
packages in R version 3.4.3 (Vienne, Austria) for model fit-
ting.13,14 An R script is available on the github repository at 
https://github.com/weinbergerlab/Brazil_state.

Seasonal-trend Decomposition Plus Principal 
Components Analysis Model

To address issues of sparsity in the control variables, we 
propose an alternative approach, the seasonal-trend decom-
position plus principal components analysis model (STL + 
PCA), where we first extract a long-term trend for each con-
trol variable, obtain a “composite” of these trends, and use this 
composite trend as an explanatory variable in the regression 
model to generate the counterfactual (eFigure 3; http://links.
lww.com/EDE/B425). Therefore, this model does not involve 
variable selection.

The first step of the STL+PCA method is to extract 
smoothed trends from the time series of each of the control 
diseases using the seasonal-trend decomposition procedure 
based on locally weighted scatterplot smoothing (STL).15 
The same set of control diseases was used as for the synthetic 
control model (eTable 1; http://links.lww.com/EDE/B425). 
The span of the locally weighted scatterplot window can be 
adjusted to control the smoothness of extracted trends, and 
we selected the optimal span using the deviance information 

criterion (eFigure 4; http://links.lww.com/EDE/B425 and 
eAppendix 5; http://links.lww.com/EDE/B425).16

The second step is to obtain a “composite” trend among 
extracted trends for control diseases and to reduce the dimen-
sionality of the total set of trends for control time series. To 
do so, we performed a PCA with extracted trends.17–20 The 
first principal component “PC1” is a linear combination of 
extracted trends for control diseases with maximum variance, 
which accounted for about 75% to 90% of the total variance in 
the extracted trends for all control diseases.

In the third and final step, we use PC1 as a covariate in 
a regression model for the prevaccine data and generate the 
counterfactual for the postvaccine period. We only included 
PC1 in the model because PC1 explained most of the variance 
(75%–90%), and the rest of the principal components mostly 
captured the remaining noise. More information can be found 
in eAppendix 5; http://links.lww.com/EDE/B425. We vali-
dated the STL+PCA model by performing a cross validation 
analysis with the prevaccine data (eAppendix 6; http://links.
lww.com/EDE/B425). An R script is available on the github 
repository at https://github.com/weinbergerlab/Brazil_state.

Evaluation of the Impact of Vaccine
We fit both the synthetic control and STL+PCA models 

to pneumonia time series from the prevaccine data to estab-
lish a relationship between pneumonia and the covariates. 
We then estimated the number of pneumonia hospitalizations 
that would have occurred without vaccination in the postvac-
cine era (i.e., counterfactual), assuming that the relationships 
between the outcome and covariates were consistent. We cal-
culated the rate ratio (RR) of the observed to the counterfac-
tual pneumonia hospitalizations during the evaluation period. 
RRs less than one suggest that the vaccine has prevented pneu-
monia hospitalizations. The evaluation period was 2013–2014 
for the Brazil data (i.e., 37–60 months following the introduc-
tion of PCV10) and the last two years for the simulated time 
series data (i.e., 13–36 months after the simulated introduc-
tion of the vaccine). Posterior medians and 2.5th and 97.5th 
percentiles were reported as point estimates and 95% credible 
intervals (CIs) of RR, respectively.

RESULTS

Performance of the Models with National and 
State-level Data from Brazil

The time series for all-cause pneumonia hospitaliza-
tions among children under 12 months of age in Brazil showed 
strong seasonality, with peaks occurring in the winter (eFigure 
1A; http://links.lww.com/EDE/B425). Both the synthetic con-
trol and STL+PCA models detected a decline in the number of 
pneumonia hospitalizations after the introduction of PCV10 
in 2010 at the national level in this age group. National-level 
estimates of RR were 0.72 (95% CI = 0.67, 0.77) by the 
synthetic control model and 0.83 (95% CI = 0.71, 0.96) by the 
STL+PCA model. The most common control diseases selected 
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in the synthetic control model were bronchitis/bronchiolitis 
(J20–J22) and malnutrition (E40–E46) for children. The full 
list of posterior inclusion probabilities of control diseases for 
children can be found in eAppendix 7; http://links.lww.com/
EDE/B426. Similarly, both models estimated declines in most 
of the states in this age group (Figure 1A and 1C).

Time series data for the older age group showed a com-
plex pattern; all-cause pneumonia hospitalizations, as well as 
some control diseases, began to increase several years prior 
to the introduction of PCV10 and continued to increase until 
the end of the study period (eFigure 1B; http://links.lww.com/
EDE/B425). At the national level, both models adjusted for this 
unexplained long-term increasing trend and found no changes 
in pneumonia hospitalizations after the introduction of PCV10. 
Estimated national-level RRs were 0.95 (95% CI = 0.82, 1.12) 
by the synthetic control model and 1.02 (95% CI = 0.88, 1.18) 
by the STL+PCA model. The most common control diseases 
selected in the synthetic control model were other septicemia 
(A41) and diseases of the circulatory system (I00–I99) for the 
elderly (eAppendix 8; http://links.lww.com/EDE/B427). When 
repeating the synthetic control analysis of the elderly at the state 
level, 12 states (46%) had RR estimates greater than one, which 
we do not believe is credible in this context. Most of these states 
were found to have relatively few pneumonia hospitalizations 
(Figure 1B). When using the STL+PCA approach, fewer states 
(eight states; 32%) had RRs greater than one. Additionally, the 
mean squared error (MSE, eAppendix 9; http://links.lww.com/
EDE/B425) of state-level RRs compared to the national esti-
mates declined from 0.148 when using the synthetic control 
model to 0.076 when using STL+PCA (Figure 1D).

Performance of the Models with Down-
sampled Brazil Data

To further examine the effect of smaller sample size on 
the accuracy of the estimates from these models while setting 
aside complicated factors affecting real-world data, we con-
ducted a down-sampling analysis of the national time series 
from Brazil. For adults of age 80+ years, estimated RRs gen-
erated by the synthetic control model rapidly diverged from 
the national estimate (the “ground truth”), as we sampled suc-
cessively fewer cases (Figure 2A). When the down-sampling 
rate was 0.25%, only 4% of the down-sampled datasets cov-
ered the national-level RR in their 95% CIs. As a result, MSE 
increased exponentially as the data became sparse (Figure 3), 
which was largely driven by increased bias (eFigure 5; http://
links.lww.com/EDE/B425). With the national data for the 
elderly, the synthetic control model selected three control dis-
eases on average (range: one to nine control diseases). How-
ever, when the down-sampling rate was 0.25%, the synthetic 
control model did not select any control diseases in the final 
model in 47 of the 100 down-sampled datasets (i.e., model 
only had an intercept and seasonal terms), only one control 
disease in 49 datasets, and two control diseases in the remain-
ing four datasets. These results demonstrate that the synthetic 
control model failed to identify an appropriate set of control 
diseases and thus failed to adjust for unmeasured confounding 
in the datasets down-sampled to resemble the smaller states. 
In contrast, the STL+PCA method successfully adjusted for a 
long-term increasing trend and corrected the bias even when 
the data became sparse (Figure  2B). Even when the down-
sampling rate was 0.25%, 95% of the estimated RRs covered 

Figure 1.  Rate ratios estimated by the 
synthetic control model are shown 
in panel A (<12 months of age) and 
B (80+ years of age). Rate ratios esti-
mated by the STL+PCA model are 
shown in panel C (<12 months of 
age) and D (80+ years of age). Esti-
mates of state-level rate ratios by the 
average number of all-cause pneumo-
nia hospitalizations in Brazil. States in 
the North region are represented in 
red, the Northeast region in blue, the 
Southeast region in green, the South 
region in purple, and the Center-West 
region in orange. Rate ratios are the 
cumulative number of observed pneu-
monia hospitalizations divided by the 
cumulative number of counterfactual 
pneumonia hospitalizations during the 
evaluation period. PCA indicates princi-
pal component analysis; SC, synthetic 
control; STL, seasonal-trend decom-
position procedure based on locally 
weighted scatterplot smoothing.
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the national-level RR in their 95% CIs. MSEs remained small 
across all down-sampling rates (Figure 3). When the down-
sampling rate was 0.25%, the STL+PCA model had 90% 
lower MSE than the synthetic control model.

For children less than 12 months of age, where there was 
no strong secular trend, neither model’s performance was dra-
matically affected by sample size (eFigure 6; http://links.lww.
com/EDE/B425). MSEs remained small, regardless of the down-
sampling rate (eFigure 7; http://links.lww.com/EDE/B425). 
However, the average number of control diseases selected in the 
synthetic control model was zero in 88 out of 100 down-sampled 
datasets when the down-sampling rate was 0.25%.

Performance of the Models with Simulated 
Time Series Data

Using simulated data, we first fit a model with a single 
predictor, the “perfect” control, which had the exact same 

trend as the outcome during the prevaccine period, and tested 
whether this model was able to recover the true impact of 
the vaccine (RR = 0.8). Because of this ideal, but not realis-
tic, relationship between the outcome and the predictor, this 
model was expected to generate the best possible counterfac-
tual. RRs yielded by this model tightly lined up around the true 
value, even when the data became sparse (Figure 4A). Next, 
we fit the model which included three controls, but not the 
perfect control, as predictors (“Unsmoothed control model” 
in Figure 4B and eFigure 8; http://links.lww.com/EDE/B425). 
This model failed to converge when the data size was large 
because of a strong collinearity among those controls. As the 
data became sparse, estimated RRs moved away from the null 
and became significantly greater than the true RR (Figure 4B).

The STL+PCA model successfully recovered the 
true RR, even when the number of cases became smaller. 
Although point estimates of RR started to diverge gradually 

Figure 2.  Rate ratios estimated by the synthetic control model (panel A) and the STL+PCA model (panel B). Estimated rate ratios 
for down-sampled datasets (80+ yo, Brazil). Each black dot represents a RR estimated for each down-sampled dataset. Dark gray 
bars associated with these dots represent 95% credible intervals for RRs. The percentages at the top represent the down-sampling 
rates. Black vertical lines represent the null value (RR = 1), and red dashed lines represent national estimates of RR generated by 
each type of the model. RRs are the cumulative number of observed pneumonia hospitalizations divided by the cumulative num-
ber of counterfactual pneumonia hospitalizations during the evaluation period. PCA indicates principal component analysis; RR, 
rate ratio; SC, synthetic control; STL, seasonal-trend decomposition procedure based on locally weighted scatterplot smoothing.
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as data became sparse, 90% and 81% of the estimated RRs 
covered the true RR in their 95% CIs when the data size was 
1% and 0.25%, respectively (Figure  4C). MSEs remained 
small regardless of the number of cases per unit time and were 
comparable to those for the perfect control model (eFigure 8; 
http://links.lww.com/EDE/B425).

DISCUSSION
In this study, we aimed to obtain robust estimates of the 

impact of PCV10 on pneumonia hospitalizations from sparse 
time series data. The synthetic control model was able to suc-
cessfully adjust for underlying trends in the data when the 
control variables had relatively little noise. However, when 
the time series were sparse, the synthetic control model failed 
to adjust for unmeasured confounding and generated biased 
estimates of the impact of PCV10. These biases tended to 
become stronger as sample size decreased. This was particu-
larly a problem when there was a strong secular trend, as was 
observed among the elderly in Brazil. As a possible solution, 
we decomposed the control variables and extracted the long-
term trend, and then used this long-term trend as the control. 
This approach led to decreased bias in the estimates of the 
impact of PCV10.

Both the synthetic control and STL+PCA models 
found a decline in all-cause pneumonia hospitalizations 
among infants following introduction of PCV10, which was 

consistent with previous studies.21–23 Both of our models 
showed no changes in pneumonia hospitalizations after the 
introduction of PCV10 among the elderly in Brazil, while 
some previous studies found reductions among the elderly in 
the United States.21,22 Our previous reanalysis of the US data 
also found no decline in pneumonia in the elderly when using 
the synthetic control method but did find a decline when using 
simple linear trend adjustment.7 Therefore, the differences 
between studies are likely due to differences in how they con-
trol for unmeasured bias and confounding.

When the data did not have a long-term secular trend 
(i.e., among <12-month-old children in our study), the sam-
ple size did not affect the performance of the synthetic con-
trol model (eFigure 6A; http://links.lww.com/EDE/B425). It 
should be noted, however, that this is not because the model 
worked well in the young age group. In fact, similar to the old 
age group, the synthetic control model also failed to select an 
appropriate set of control diseases in this age group. However, 
due to the lack of a secular trend, the intercept-only model was 
able to generate a reasonable counterfactual in this instance. 
We suspected that the variable selection process in the syn-
thetic control model did not work with the sparse data because 
the time series data became noisier, and many control dis-
eases had zero cases or only a few cases per unit time in the 
most heavily down-sampled datasets. To test this hypothesis, 
we introduced the national-level control diseases in the syn-
thetic control model in addition to the down-sampled control 
diseases. This process helped the synthetic control model to 
select an optimal set of control diseases, and as a result, the 
bias in estimated RRs was successfully corrected (eFigure 9; 
http://links.lww.com/EDE/B425). This analysis suggested that 
the problem of the variable selection may be attributed to the 
sparse data for control diseases but not the outcome. Not only 
the number of cases per unit time but also other characteristics 
of the time series change at local scales, such as the degree 
of autocorrelation and random epidemics happening in states. 
These different characteristics, whether due to measurement 
error, localized epidemics, or other issues related to scale, all 
contribute to the “noise” of the control diseases. This noise 
obscured the underlying long-term trend that was captured by 
both the outcome and control diseases and made it difficult to 
assess correlation between the outcome and control diseases. 
Effectively, this results in an “error-in-covariates” situation 
in the regression where the coefficients were biased toward 
zero,24 and thus, the synthetic control model failed to adjust 
for trends using the sparse control time series.

We proposed the STL+PCA model as a possible solu-
tion to the problem of data sparsity. The approach involves 
first extracting trends from the control time series, then using 
these smoothed trends to adjust pneumonia rates. Using both 
simulated and real-world data, we demonstrated that this 
alternative approach helps to reduce the impact of sparseness 
and to decrease bias in the estimates for smaller populations. 
The first step, STL decomposition, makes it easy to identify a 

Figure 3.  Mean squared errors of estimated rate ratios from 
down-sampled datasets (80+ yo). MSE, mean squared error; 
PCA, principal component analysis; STL, seasonal-trend 
decomposition procedure based on locally weighted scatter-
plot smoothing.

http://links.lww.com/EDE/B425
http://links.lww.com/EDE/B425
http://links.lww.com/EDE/B425


Epidemiology  •  Volume 30, Number 1, January 2019	 Estimates of PCV Impact with Sparse Data

© 2018 The Author(s). Published by Wolters Kluwer Health, Inc.	 www.epidem.com  |  67

long-term trend in noisy time series for control diseases. The 
second step, PCA, allows us to find a projection that explains 
the maximum variability of the outcome (i.e., PC1). Users can 
then simply fit a regression with PC1 and generate counterfac-
tual for the postvaccine period. Both seasonal-trend decom-
position and principal components analysis are widely used 
and readily available in the major statistical software. Similar 
to the synthetic control model, users can include all control 
diseases in this STL+PCA model, as long as the chosen con-
trols satisfy the key assumptions (i.e., are not affected by the 
vaccine, and relationships with the outcome would not have 
changed had the vaccine not been introduced). An important 
disadvantage of the STL+PCA model is that it is no longer 
straightforward to interpret relationships between the outcome 

and control diseases, as the original time series for each con-
trol disease is not directly used as a covariate in the model. 
That is problematic if users want to understand associations 
between the outcome and control diseases but is less of a con-
cern if one’s objective is to make a robust counterfactual and 
quantify the impact of vaccine. The choice of the set of con-
trol diseases has a different impact for the synthetic control 
model and STL+PCA model. Adding a noninformative con-
trol disease would have little impact on the synthetic control 
approach because it will not be selected; however, with the 
STL+PCA approach, if the long-term trend of the noninfor-
mative control has a large variance, it could change the rank 
of the principal components and move the relevant trends out 
of the first principal component.

Figure 4.  Rate ratios estimated by the perfect control model (panel A), unsmoothed control model (B), and STL+PCA model (C). 
Estimated rate ratios for simulated time series data. Each black dot represents an RR estimated for each simulated dataset. Dark 
gray bars associated with these dots represent 95% credible intervals for RRs. The percentages at the top represent the sample 
size. Black vertical lines represent the null value (RR = 1), and red dashed lines represent the true value of RR (0.8). RRs are the 
cumulative number of observed pneumonia hospitalizations divided by the cumulative number of counterfactual pneumonia 
hospitalizations during the evaluation period. PCA indicates principal component analysis; RR, rate ratio; STL, seasonal-trend 
decomposition procedure based on locally weighted scatterplot smoothing.
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One might argue that the Bayesian variable selection 
process should be allowed to choose a few appropriate control 
disease trends to be included in the regression model, instead 
of performing PCA and finding the “composite” of the trends. 
However, the model did not converge due to the strong col-
linearity among extracted trends, which made it difficult to 
use the Bayesian variable selection. One might also argue that 
we should omit the STL step and perform PCA with original 
time series for control diseases. This approach, however, did 
not generate a reliable counterfactual when the original data 
were noisier. We found that the STL step, which allowed us to 
isolate long-term trends from seasonality and the remainder 
component, was a key step to generate a robust counterfactual 
for sparse and noisy time series from small populations.

Another possible way to reduce the impact of sparse-
ness is to aggregate monthly data into quarterly data and fit 
the synthetic control model. This simple process increases 
the number of observations per unit time, thereby allowing 
the synthetic control model to create an optimal composite of 
control diseases. This approach worked well with the Brazil 
data (eFigure 10; http://links.lww.com/EDE/B425). However, 
it may not be a good solution when the prevaccine data are 
limited. Using lower resolution time series reduces the number 
of data points, which makes it difficult to establish relation-
ships between the outcome and the synthetic control. Alterna-
tive approaches could involve using a latent variable model 
to explicitly model the observation process, using a spatial 
model to borrow statistical information between adjoining 
localities, or using model stacking approaches.25,26

In conclusion, the STL+PCA method could be an effec-
tive tool to infer the causal impact of vaccines and other 
public health interventions and works well with sparse data. 
This model will enable us to quantify the impact of interven-
tions more accurately, especially for small populations, and 
will allow us to address various public health questions using 
population health data that are readily available.
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