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The central nervous system (CNS) is a highly organised structure. Many signalling systems work in concert to ensure that neural
stem cells are appropriately directed to generate progenitor cells, which in turnmature into functional cell types including projection
neurons, interneurons, astrocytes, and oligodendrocytes. Herein we explore the role of the low density lipoprotein (LDL) receptor
family, in particular family members LRP1 and LRP2, in regulating the behaviour of neural stem and progenitor cells during
development and adulthood. The ability of LRP1 and LRP2 to bind a diverse and extensive range of ligands, regulate ligand
endocytosis, recruit nonreceptor tyrosine kinases for direct signal transduction and signal in conjunction with other receptors,
enables them to modulate many crucial neural cell functions.

1. Low Density Lipoprotein Receptor Related
Proteins 1 and 2

The LDL receptor family is a large family of multiligand
receptors. Core family members include the LDL receptor;
very low density lipoprotein (VLDL) receptor [1]; LDL recep-
tor related protein (LRP)1, also known as CD91 and the 𝛼-2-
macroglobulin receptor [2–4]; LRP2, also known as GP330
and Megalin [5]; LRP5 [6]; LRP6 [7]; and LRP8, also known
as the apolipoprotein receptor-2 [8]. Each family member is a
single-pass transmembrane receptor, containing two or more
extracellular cysteine-rich complement type repeats, which
act as ligand binding domains [9].

At 600 kDa, LRP1 and LRP2 are the largest and most
promiscuousmembers of the LDL receptor family. Transcrip-
tion of the Lrp1 gene can be activated by a number of tran-
scription factors including sterol regulatory element binding
protein 2 [10], hypoxia-induced factor 1𝛼 [11], and nitric
oxide-dependent transcription factors [12], but is negatively
regulated by naturally occurring antisense transcripts that are
inversely coded within exons 5 and 6 of the Lrp1 gene [13].
The Lrp1 gene codes for a precursor protein that binds to the
receptor associated protein (RAP), a chaperone that occupies

the ligand binding domains of the precursor [14] to prevent
the binding of other ligands [15], and ensure its correct
folding in the endoplasmic reticulum [16, 17] (Figure 1). RAP
remains bound to the LRP1 precursor and transports it to the
Golgi apparatus. This transport involves the proximal NPXY
motif in the intracellular domain of the protein [18]. In the
trans-Golgi network, the low pH of the secretory pathway
causes protonation of the histidine residues in domain 3 of
RAP [19], triggering its dissociation from the LRP1 precursor
[14, 20]. The protease Furin then cleaves the LRP1 precursor
at the RX(K/R)R consensus sequence, to generate a large
𝛼-chain (515 kDa) and a smaller 𝛽-chain (85 kDa) [21]. The
two fragments remain noncovalently linked on their way
to the cell membrane, where they are embedded as one
functional unit, comprising mature LRP1 (Figure 1). LRP2
is similarly chaperoned by RAP [22] and also contains an
RX(K/R)R consensus sequence, but there is no evidence that
LRP2 undergoes intracellular proteolytic processing prior to
its insertion into the plasma membrane [5].

1.1. Soluble LRP1 and LRP2. Once LRP1 is inserted into the
plasma membrane, the soluble extracellular domain (sLRP1)
can be cleaved from the cell surface by enzymes such as
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Figure 1: LRP1 maturation and structure. This schematic depicts
the LRP1 precursor protein, which is synthesized in the endoplasmic
reticulumand is bound to the chaperone protein, receptor associated
protein (RAP).The LRP1 precursor is transported to the trans-Golgi
network where the low pH causes RAP to dissociate. The protease
Furin cleaves the LRP1 precursor at the RX(K/R)R consensus
sequence to generate a large 𝛼-chain (515 kDa) and a smaller 𝛽-
chain (85 kDa) which are noncovalently linked and shuttled to
the cell membrane, where they are embedded as one functional
unit. The 𝛼-chain contains four ligand-binding domains (red) that
interact with a large number of ligands.The𝛽-chain contains a small
extracellular region, a transmembrane region which anchors the
LRP1 protein within the plasma membrane, as well as two dileucine
(LL, green) motifs and two asparagine-proline-x-tyrosine (NPXY,
blue) motifs, where the distal motif is contiguous with a tyrosine-
x-x-leucine (YXXL, pink) motif which interact with intracellular
adaptor proteins and the endocytotic machinery.

the beta-site APP cleaving enzyme 1 (BACE1) [23] and
metalloproteinase [24] (Figure 2). sLRP1 contains the𝛼-chain
and a 55 kDa fragment of the𝛽-chain [25] and can be detected
in plasma and cerebral spinal fluid [26, 27]. Similarly, soluble
fragments of LRP2 have been shown to be released from
cultured choroid plexus epithelial cells and can be detected
in cerebral spinal fluid [28]. LRP1 and LRP2 can also undergo

intramembrane proteolysis mediated by 𝛾-secretase, in either
the plasma or endosomal membrane [29], to liberate an
intracellular fragment which reportedly enters the nucleus
[30, 31] (Figure 2(a)). The physiological function of soluble
LRP fragments in normal neural cell development is poorly
understood, but they have the potential to bind LRP ligands
and prevent them from binding to full-length LRPs or, in the
case of the intracellular domain, modulate gene transcrip-
tion.

1.2. LRP1 and LRP2 as Mediators of Endocytosis. While
the proteolytic processing of these receptors is becoming
increasingly well understood, LRP1 and LRP2 remain best
known for their role in mediating endocytosis (Figure 2(b)).
Following ligand binding tomature LRP1 in the plasmamem-
brane, it was originally believed that the two NPXY motifs
of the cytoplasmic domain interacted with the endocytotic
machinery to mediate rapid clathrin-dependant endocytosis
of the receptor-ligand complex, as has been previously shown
for other members of this receptor family [32]. However
for LRP1, the YXXL motif and the distal dileucine motif
independently mediate endocytosis, and the NPXY motifs
are not required [33]. The rate of endocytosis is regulated
by cAMP-dependent protein kinase A, which constitutively
phosphorylates LRP1, predominantly at serine 76 of the
cytoplasmic tail [34].

Like LRP1, LRP2 has two intracellular NPXY domains
[5]; however unlike LRP1, the distal NPXY motif of LRP2
has been shown to interact with the phosphotyrosine-binding
domain of Disabled-2 [35], a clathrin-associated sorting
protein, to mediate endocytosis [29, 36, 37]. Interestingly,
endocytosis does not occur during mitosis, due to the
phosphorylation of Disabled-2, which removes it from the
cell surface, so that it no longer colocalizes with clathrin and
cannot mediate this process [38]. LRP2-directed endocytosis
may still occur via clathrin-independent pathways, instead
relying on the small GTPase Arf6 and caveolin 1 [39, 40].
Furthermore, LRP1- and LRP2-mediated endocytosis can be
influenced by the expression of miR199a and miR199b family
members, which regulate the expression of a number of genes
critical for clathrin-dependent and clathrin-independent
endocytosis [41]. Following endocytosis, the extracellular
beta-propeller regions of LRP1 and LRP2 facilitate ligand
dissociation [42], so that the ligands and receptors can be
differentially sorted in early endosomes.

Themechanisms regulating the recycling of LRP1 back to
the plasma membrane are not fully characterised and may
vary between cell types.However, it is known that this process
requires binding of the adaptor protein sorting nexin 17 to the
first NPXY domain of LRP1 in early endosomes [43, 44], so
that LRP1 is recycled back to the cell surface in approximately
30 minutes [45]. In early endosomes, the first NPXY domain
of LRP2 instead binds the phosphotyrosine-binding domain
of autosomal recessive hypercholesterolemia (ARH) [46],
a clathrin-associated sorting protein that couples LRP2 to
the dynein motor complex [47] and transports it from the
sorting endosomes to the endocytic recycling compartment
[29]. The constitutive phosphorylation of LRP2 by GSK3𝛽 is
also involved in directing LRP2 to the endocytic recycling
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Figure 2: Signalling mechanisms employed by LRP1. (a) The extracellular domain of LRP1 can be shed following cleavage by beta-site APP
cleaving enzyme 1 (BACE1) and metalloproteinases (MP) producing a soluble form of LRP1 (sLRP1).The intracellular domain can be cleaved
by 𝛾-secretase and is thought to translocate to the nucleus to influence gene transcription. (b) Ligand binding to LRP1 can result in receptor
and ligand internalisation. Once internalised, the ligand/receptor complex can be processed in a multitude of ways, including degradation by
lysosomes or resecretion via transcytotic and recycling vesicles. Note that while they are depicted together, ligand and receptor/s are trafficked
independently. (c) Specific regions on the intracellular region of LRP1 interact with adaptor proteins such asDisabled-1 (Dab1), which interacts
with the NPXYmotifs and can recruit nonreceptor tyrosine kinases such as Src and Abl allowing signal transduction. (d) Activation of LRP1
by specific ligands can transactivate other receptors such as tropomyosin receptor kinase A (TrkA), which can then activate downstream
signalling pathways to regulate cell function.

compartment, from which it is slowly recycled to the plasma
membrane [48].

But what happens to the internalised ligand? LRP1 and
LRP2 have been shown to bind upwards of 40 different
ligands, many of which are structurally and functionally
unrelated, and the list is always evolving [49].They both have
four LDL receptor homology regions which are the extra-
cellular ligand-binding domains [50, 51] and bind common
ligands including tissue-type plasminogen activator [52–55],
apolipoprotein E, lactoferrin [17, 52], and metallothioneins
I and II [56]; however not all ligands have been shown
to bind both receptors. 𝛼2-Macroglobulin is a high affinity
ligand for LRP1 [57, 58], and like prion protein has only been
demonstrated to bind to LRP1 [59], while transthyretin [60]
and the complex of vitamin D with the vitamin D binding
protein have only been shown to bind LRP2 [61]. Once
endocytosed, ligands may be degraded in lysosomes, rese-
creted from recycling endosomes, or trafficked in transcytotic
vesicles from the apical to the basolateral membrane (or vice
versa) before being secreted [62] (Figure 2(b)).

1.3. LRP1 and LRP2 Intracellular Signal Transduction. The
true complexity of LRP1 and LRP2 signalling lies in the
fact that these receptors not only trigger endocytosis but

also influence signal transduction. Upon ligand binding, the
NPXY motifs can function as a docking sites for intra-
cellular adaptor proteins. LRP1 can bind cytosolic ligands
in a phosphorylation-dependent manner, via two dileucine
motifs and one YXXL motif in the intracellular domain. For
example, the adaptor proteins Disabled-1 and FE65 can bind
to the NPXY motifs of LRP1, to recruit and activate nonre-
ceptor tyrosine kinases such as Src and Abl [63] (Figure 2(c)),
allowing the receptor to transduce an intracellular signal or
form signalling hubs through the binding of coreceptors [49]
(Figure 2(d)). A number of coreceptors of LRP1 have been
identified, including platelet-derived growth factor receptor
(PDGFR) 𝛽 [64, 65], tropomyosin-related kinase receptor A
[66], amyloid precursor protein [67], and insulin-like growth
factor 1 receptor [68].These associations increase the number
of intracellular pathways by which distinct LRP ligands may
elicit their effects.

2. LRPs as Regulators of Nervous
System Development

Despite the large number of common ligands and the struc-
tural similarities that exist between LRP1 and LRP2, the two
genes are not functionally redundant during development.
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Both Lrp1 and Lrp2 single knockout mice have severe
developmental phenotypes. Lrp1 knockout blastocysts fail to
implant and therefore do not develop into embryos [69]. Lrp2
knockout mice are mostly embryonic lethal, presenting with
defects including a cleft palate, failure to form an olfactory
bulb, and fusion of the forebrain hemispheres, resulting in a
single ventricle (holoprosencephaly) [70]. The small number
of Lrp2 knockout mice that survive until birth experience
severe vitamin D3 deficiency, as the reabsorption of vitamin
D and the vitamin D binding protein from the kidney prox-
imal tubule is LRP2-dependant, but die of respiratory failure
[61, 70]. Human mutations in Lrp2 are known to cause facio-
oculo-acoustico-renal syndrome/Donnai-Barrow syndrome,
an autosomal recessive disorder associated with disrupted
brain formation, including agenesis of the corpus callosum
[71].

The very early developmental defect observed in the Lrp1
knockout mouse, and the gross neural phenotype of the Lrp2
knockout mouse, do not allow us to investigate the impor-
tance of these receptors for the functioning of individual
neural cell types. However, a variety of expression studies
performed alongside knockdown and conditional knockout
approaches demonstrate that both receptors mediate ligand
endocytosis and intracellular signalling in a number of
immature neural cell types. LRP1 is more widely expressed
in the CNS than LRP2, being detected in mature neurons,
particularly those of the entorhinal cortex, hippocampus [72]
and cerebellum [73], and all CNS glia [74]. In contrast, LRP2
expression is restricted to the apical surface of the neural tube
and subsequently to the forebrain, optic stalk, and otic vesicle
during development [75, 76]. In the CNS of adult mice, LRP2
is predominantly expressed by cells of the choroid plexus
[77] and ependymal cells [78] but has also been detected in
oligodendrocytes of the spinal cord [79]. The expression pat-
terns of LRP1 and LRP2 are largely spatially and temporally
distinct, reflecting their different roles in CNS regulation.

3. LRP1 and LRP2 as Regulators of
Neural Stem Cell Function

3.1. Neural Stem Cells in the Developing and Adult CNS.
The early neural tube is a pseudostratified epithelium com-
posed of neuroepithelial precursor cells. These early neural
stem cells divide symmetrically, expanding their population,
before switching to include asymmetric divisions that gener-
ate neuroblasts. This switch coincides with a change in gene
expression, as the neuroepithelial precursor cells transition
into radial glial stem cells, which comprise two molecularly
distinct subgroups in the developing human brain, corre-
sponding to those in the outer subventricular zone and
those in the ventricular zone [80]. Following neuroblast
generation, radial glia switch to glial generation starting with
the production of oligodendrocyte progenitor cells (OPCs)
and concluding with the production of astrocytic precursors
[81]. Towards the end of development a subset of radial glial
stem cells adopt amore astrocytic gene expression profile and
give rise to the adult neural stem cells [82].

In adulthood neural stem cells reside in two key niches,
the subventricular zone of the lateral ventricles and the

dentate gyrus of the hippocampus, where they proliferate to
generate intermediate progenitor cells and ultimately neurob-
lasts [83]. Neural stem cells in the subventricular zone also
produce a small number ofOPCs under normal physiological
conditions [84].The behaviour of neural stem cells (and their
intermediate progenitors) is highly controlled by mitogenic
andmorphogenic signalling.While key ligands and receptors
for these pathways are well described, the role of LRP1 and
LRP2 in these pathways has only recently been elucidated.

3.2. LRPs as Regulators of Cell Fate Specification. LRP1 and
LRP2 have both been shown to facilitate the internalisation
of the potent morphogen, sonic hedgehog [85–87], a finding
that has provided insight into the significant neurodevel-
opmental defects observed in patients and mice lacking
normal functioning Lrp2 [70, 71, 75]. LRP2 is expressed by
neuroepithelial cells, on the apical side of the neural plate,
as early as E7.5 in the mouse. After neural tube closure at
E9.5, LRP2 expression becomes increasingly restricted to the
midline, ultimately being localized to the clathrin-coated pit
regions of the apical cell membrane, clustered at the base
of the primary cilium (a cellular organelle essential to sonic
hedgehog signalling) [88] and in the subapical endosomes
of the radial glia [89]. At E8 sonic hedgehog is produced by
cells of the axial mesoderm (the notochord and prechordal
plate) and by E8.5 its expression expands to include the radial
glia at the ventral midline of the rostral diencephalon. This
expansion does not occur in Lrp2 knockout embryos, as LRP2
is required for the radial glia to bind and sequester sonic
hedgehog as it diffuses, regulating morphogen presentation
to the neural stem cells [89].

Once sonic hedgehog is bound to LRP2 it can also bind
its receptor patched-1, and the complex undergoes clathrin-
mediated endocytosis [89]. All components can then be
found within early endosomes and recycling endosomes but
do not appear to be targeted to the lysosome for degra-
dation. The internalisation of patched-1 by LRP2 results in
activation of the effector smoothened, leading to changes
in gene transcription mediated by the Gli transcription
factors. Therefore, in the absence of LRP2, radial glia show
reduced expression of the sonic hedgehog target genes gli1
and six3 [89]. The loss of sonic hedgehog and Gli3-mediated
transcriptional repression has secondary consequences for
neural development, including aberrant bone morphogenic
protein 4 expression in the dorsal forebrain [75, 89, 90] and
disrupted fibroblast growth factor 8 and noggin expression
[89]. These data indicate that LRP2 regulates the patched-1-
dependent internalisation and trafficking of sonic hedgehog
[89], which is necessary for neural stem cell specification and
ventral forebrain patterning.

Later in development, the expression of LRP2 by spinal
cord radial glial is also necessary for glial cell specification.
Lrp2 knockoutmice completely lack oligodendrocyte-lineage
cells and produce very few astrocytes in the spinal cord [91].
OPC specification from radial glia in the ventral spinal cord
is also directed by sonic hedgehog signalling [92–96], and so
the lack of spinal cord oligodendrocytes may be explained by
a mechanism similar to that detailed above. However OPCs
can be generated from cultured neuroepithelial precursors
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derived from sonic hedgehog and smoothened knockout mice
[97, 98], indicating that LRP2 must also interact with other
signalling pathways such as basic fibroblast growth factor and
insulin-like growth factor I [99], to promote OPC generation
from neural stem cells. The decreased number of astrocytes
observed in Lrp2 knockout mice is also interesting. LRP2 is
expressed by vimentin-positive cells in the E15 ventral spinal
cord [79] that most likely correspond to immature astrocytes
[84, 100, 101]. While LRP2 may play a role in regulating the
behaviour of astrocytic precursors, it is more likely that the
observed phenotype is the result of LRP2 being required for
astrocyte specification by radial glia, as this immature glial
population is not generated in Lrp2 knockout mice. Despite
these observations that strongly implicate LRP2 in glial cell
specification during neural development, the ligands and
signalling mechanisms are unknown.

LRP1 appears to fulfill a similar role in regulating glial
generation in the brain. LRP1 is expressed by cells within
the embryonic ventricular zone and the early postnatal sub-
ventricular zone [102]. While the role of LRP1 in regulating
neural stem cell function in vivo is poorly understood, in
vitro studies suggest that LRP1 can regulate OPC production.
Neural stem cells can be harvested from the cortex of
embryonic mice and grown as a suspension culture termed
neurospheres. When differentiated, neurospheres generate
neurons, astrocytes, and oligodendrocytes. However, neuro-
spheres lacking Lrp1 generate normal numbers of neurons,
but significantly fewer O4-positive oligodendrocytes [102].
These data may reflect a requirement of LRP1 signalling in
neural stem cells for OPC specification but could equally
result if LRP1 is necessary for the proliferation or differen-
tiation of OPCs (see OPC section below).

3.3. LRPs as Regulators of Neural Stem Cell Proliferation.
In the subventricular zone of the adult mouse brain, LRP2
is expressed by ependymal cells underlying the neurogenic
niche [78, 103]. The importance of LRP2 expression for
neural stem and progenitor cell proliferation was examined
in Lrp2267/267 mutant mice, which produce a truncated form
of LRP2 [104]. Lrp2267/267 mice have ∼25% fewer proliferating
cells in the subventricular zone relative to control mice
and a proportional reduction in the number of newborn
neurons entering the olfactory bulb [78]. The absence of
functional LRP2 from the neurogenic niche was accom-
panied by increased bone morphogenic proteins 2 and
4, increased phosphorylation of the downstream effectors
SMAD1, SMAD5, and SMAD8, and increased activation of
the downstream target, inhibitor of DNA binding 3 [78].
It is known that LRP2 can act as an endocytic receptor,
sequestering and clearing bone morphogenic protein 4 [75].
However this does not appear to be the mechanism at play
here. A ventricular infusion of noggin, the potent bone
morphogenic protein 4 antagonist [105], certainly decreases
neurogenesis but does so in favour of oligodendrogenesis
[106], and this fate-switch is not consistent with the pheno-
type of the Lrp2267/267 mouse [78].

The ability of LRPs to regulate proliferation may be more
widespread amongst immature neural cell populations, as

LRP1 also regulates the proliferation of cerebellar granular
neuron precursors. Cerebellar granular neuron precursors
are a temporary cell population that proliferate in the external
germinal zone of the developing cerebellum, producing
granule neurons from birth until ∼P15 in the mouse [107].
This cell population is highly responsive to the promitotic
effects of sonic hedgehog [108–110]. However, the effect of
sonic hedgehog is negatively regulated by an interaction
between LRP1 and protease nexin 1, also known as SER-
PINE2. Protease nexin 1 complexes with its target proteases
and binds to LRP1 on the surface of cultured cerebellar
granule neuron precursors [111]. Once endocytosed, protease
nexin 1 antagonizes sonic hedgehog signalling, reducing the
proliferation of cerebellar granule neurons. This regulation
is critical for normal cerebellar development, as the absence
of protease nexin 1 in vivo delays cerebellar granule neuron
precursor differentiation and increases the overall size of the
cerebellum [111]. We would predict that conditionally remov-
ing Lrp1 from cerebellar granule neuron precursors would
have the same effect.

4. LRPs as Regulators of Neuroblast Function

Neuroblast generation and their subsequent migration into
the developing cortex has been well characterised [112].
Postmitotic neuroblasts that are generated in the cortical ven-
tricular zone are destined to form cortical projection neurons
[113]. They undergo radial migration out of the germinal
zone, moving along the apical processes of radial glia. The
final laminar position of a newborn neuron is determined
by its birth date, with late-born neuroblasts migrating past
early-born neurons, to seed progressively more superficial
layers of the cortex [114]. In contrast, cortical interneurons are
generated from radial glial cells within the ventricular zones
of the medial ganglionic eminence, the caudal ganglionic
eminence and the preoptic area, and undergo both radial and
tangential migration to populate each of the cortical layers
[115–117].

Neuroblasts born in the two neurogenic niches of the
adult brain also have vastly different migratory requirements.
Those born in the hippocampus are destined to be dentate
granule neurons, and send axons from the dentate gyrus
to CA3 of the hippocampus [118]. After birth these cells
move a very short distance as they mature, migrating from
the subgranular zone (the inner lip) of the dentate granule
neuron layer to their final position within the layer. On
the other hand, neuroblasts born in the subventricular zone
migrate tangentially, moving as neuroblast chains through
the rostral migratory stream into the olfactory bulb [119].
Upon exiting the rostral migratory stream, the neuroblasts
turn and migrate radially and differentiate into granule and
periglomerular neurons in the olfactory bulb [83]. This
type of chain migration is regulated by signals that modify
the actin cytoskeleton including contact-mediated signalling
between the neuroblasts and the ensheathing glia [120–123]
and the chemorepulsion mediated by slit and netrin [124–
126]. Recent evidence suggests that, following neural stem
cell specification and neuroblast generation, LDL family
members, including LRP1 and LRP2, continue to play a
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significant role in regulating the successful maturation and
integration of these new cells in the CNS.

4.1. LRP8 and the VLDL Receptor Are Key Regulators of Neu-
roblast Migration in Development and Adulthood. While this
review focuses on LRP1 and LRP2, it is not possible to discuss
the role of LDL family members in regulating neuroblast
migration without first detailing the importance of the LRP8
and VLDL receptor in cortical development. Lrp8 and VLDL
receptor double knockout mice have abnormalities in the lay-
ering of the brain, including the ectopic placement of neurons
[127, 128], and also exhibit malformation of the cerebellum
and spinal cord [127, 129]. LRP8 and the VLDL receptor are
high affinity receptors for reelin [130, 131] a large extracellular
matrix protein [127, 129, 130]. Mice that lack reelin largely
phenocopy the distinct cortical lamination defects seen in the
Lrp8 andVLDL receptor double knockoutmice [127, 129, 130].
Oligomeric reelin binds to LRP8 and the VLDL receptor,
activates Src family kinases, and induces phosphorylation
of Disabled-1. This signalling pathway enables polarisation,
adhesion, stabilisation, process outgrowth, and ultimately
neuroblastmigration [132–134].During development reelin is
first expressed in the cortical marginal zone by Cajal-Retzius
cells [135–137] and later by interneurons [138, 139]. Humans
with mutations of the VLDL receptor gene have an increased
risk of developing schizophrenia, which is thought to result
from subtle neuroblast migration defects within the brain
[140].

LRP8 and the VLDL receptor can also regulate neu-
roblast migration when activated by an alternative ligand,
thrombospondin-1. Thrombospondin-1 is expressed in the
subventricular zone and throughout the rostral migratory
stream [141], where it acts on LRP8 and the VLDL receptor
to promote neuroblast chain migration. Thrombospondin-1
knockout mice have defective chain migration, with fewer
neuroblasts successfully migrating to the olfactory bulb [141].
This phenotype is also observed in mice lacking LRP8 and
VLDL receptor, or Disabled-1, but is not observed in reelin
knockout mice [142]. However, the successful migration
of neurons from the subventricular zone to the olfactory
bulb appears to require both ligands. Thrombospondin-1
stabilizes neuroblast chains and increases their length in
the subventricular zone and rostral migratory stream, but
reelin, produced by mitral cells in the olfactory bulb, is a
higher affinity ligand and subsequently directs neuroblast
dissociation, allowing them to transition to radial migration
[143].Of the two ligands, only reelin activates the proteasomal
degradation of Disabled-1, which is necessary for neuroblast
dissociation [141].

There is no evidence that reelin signalling interacts with
LRP1 or LRP2. However, thrombospondins are known to
interact with membrane proteins such as integrins, CD47,
CD36, proteoglycans, and LRP1.Thrombospondin-1 has been
shown to interact with LRP1 in combination with calreticulin
to promote the focal adhesion of mature oligodendrocytes
[144] and microglia [145] but has not been demonstrated to
regulate neuroblast migration.

4.2. LRPs, Neuroblast Migration, and Neuronal Development.
LRP2 regulates neuroblast migration indirectly. In vitro
LRP2 and caveolins are expressed by astrocytes and work
together to bind and endocytose albumin [40, 146]. This
is significant, as albumin uptake activates the transcription
factor sterol regulatory binding element protein 1, inducing
expression of stearoyl-coA 9-desaturase-1, the key enzyme
required for synthesis of the neurotrophic factor oleic acid
[147]. In the lateral periventricular zone of the developing
rat brain, oleic acid production regulates neuronal growth,
migration, axon generation, and early synaptogenesis [148,
149], with the major neurotrophic effect being mediated
by the downstream effectors PAR-𝛼, protein kinase A, and
neuro D2 [150]. When stearoyl-coA 9-desaturase-1 is knocked
down in lateral periventricular explant cultures, albumin-
mediated neuroblast migration is essentially prevented
[148].

Once neuroblasts stop migrating, their journey is far
from over. The immature neurons extend an axonal process
to commence formation of the circuitry of the nervous
system. The extending axons are tipped with a growth
cone, which navigates the extracellular matrix, guiding the
axon to its target cell to ultimately form a synapse [151].
A growth cone comprises membranous, receptor-rich, fan-
shaped lamellipodia that extend along finger-like projections
known as filopodia. The growth cone cytoskeleton is com-
prised of closely interacting microtubules and filamentous
and globular actin [152–154]. Bundles of filamentous actin
give structure to the filopodia, as does the cross-linked
filamentous actin along the lamellipodial leading edge [152,
154, 155]. Microtubules are arranged as parallel bundles
along the axon and splay outwards within the growth cone,
providing structure and transport for proteins and organelles
[156].

Growth cones are fitted with an elaborate suite of recep-
tors that allow for the simultaneous integration of amultitude
of chemotactic cues [157]. Binding of a chemotactic factor
to its specific receptor/s on the growth cone membrane
induces an intracellular signalling cascadewhichmanipulates
the cytoskeletal elements and dictates whether the response
of the growth cone culminates in turning, extension, sta-
sis, retraction, collapse, or bifurcation [154]. Well-defined
receptors for chemotactic signals include the Eph family of
receptor tyrosine kinases, Neuropilin, Roundabout, Deleted
in Colorectal Cancer, L1, and Plexins (reviewed in [158]).

LRP1 and LRP2 are highly expressed on the growth cones
of developing neurons in vitro and have been shown to
signal in a codependent manner to promote chemotactic
axon guidance within developmental neurons in vitro [159].
Together, LRP1 and LRP2 act as chemotactic receptors for
a variety of ligands, including metallothioneins and tissue-
type plasminogen activator [159]. Metallothioneins are small,
highly conserved, inducible heavy metal binding proteins
that are avid scavengers of reactive oxygen species [160].
Metallothioneins I and II are widely expressed in the nervous
system and elsewhere. They differ by only a few amino acids
and appear to have redundant functions. Metallothionein
III is highly expressed in the brain, while metallothionein
IV appears to be absent from the nervous system [161]. In
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cultured growth cones from sensory neurons, the activa-
tion of LRP1 and LRP2 by metallothionein II stimulated
chemoattraction, resulting in growth cones turning towards
the source of metallothionein II [159]. Metallothionein III
had the opposite effect and induced chemorepulsion. Other
LRP1 ligands, such as 𝛼2-macroglobulin, and tissue-type
plasminogen activator also induced chemorepulsion [159].
The opposing responses induced by different LRP1 ligands
are thought to result from differential activation of down-
stream signaling pathways, withmetallothionein II activating
Ca2+/calmodulin-dependent protein kinase and other recep-
tors such as the tropomyosin-related kinase A receptor in
complex signaling hubs (see Figure 2(d)).

Various LRP ligands have also been shown to alter neurite
outgrowth. For example, metallothionein I/II signalling has
been shown to transiently activate Akt and ERK, which
belong to the mitogen-activated protein kinase and the
phosphoinositide-3 kinase/Akt intracellular signalling path-
ways [162]. Myelin associated glycoprotein, an established
chemorepulsive molecule, is known to interact with LRP1
[163] to inhibit axonal outgrowth and induce growth cone
collapse [164, 165]. In vitro experiments have demonstrated
thatmyelin associated glycoprotein and LRP1 form a complex
with the p75 neurotrophin receptor, to activate RhoA [163], a
potent mediator of growth cone collapse and axon retraction
[166]. Additionally apolipoprotein E-containing lipoproteins
are secreted by astrocytes and have been shown to bind
LRP1 on the surface of immature neurons to promote neurite
outgrowth generally, without having an effect on direction-
ality [167]. The complexity of LRP signaling interactions in
immature neurons remains to be fully deciphered but appear
to be context- and ligand-dependent [168].

Mice in which Lrp1 is selectively deleted from neurons
exhibit prominent tremor and dystonia, behavioural abnor-
malities, hyperactivity, motor dysfunction, age-dependent
dendritic spine degeneration, synapse loss, neuroinflamma-
tion, memory loss, eventual neurodegeneration, and pre-
mature death [169–171], clearly demonstrating that LRP1 is
crucial to neuronal function. LRP1 is also found postsynap-
tically, where it can interact with NMDA receptors in vitro,
via the intracellular scaffold postsynaptic density protein 95
[169, 172]. LRP1 is able to influence the activity of NMDA
receptors and regulate their distribution and internalisation
[168, 173, 174], as well as the NMDA-induced internalisa-
tion of the AMPA receptor subunit GluR1 [174]. The very
nature of this LRP1/NMDA receptor relationship suggests
that LRP1 plays an integral role in neurotransmitter-induced
calcium signalling, particularly in synaptic plasticity [173,
174].

LRP8 also regulates synaptic plasticity [128, 175]. LRP8
activation, by the addition of reelin to primary mouse
cortical neuron cultures, triggers its proteolytic cleavage by
𝛾-secretase.The liberated intracellular domain translocates to
the nucleus, along with phosphorylated CREB to enhance the
transcription of genes associated with learning and memory
[176]. Furthermore, the ability of neurons to produce ATP for
synaptic transmission may be tied to LRP1, as cultured neu-
rons lacking Lrp1 have reduced expression of the glutamate
transporters GLUT3 and GLUT4 [177].

5. LRP1 and LRP2 as Regulators of
Oligodendrocyte Progenitor Cell Function

OPCs, also known as NG2 glia, are a proliferative, immature
cell type found in the developing and adult CNS [178, 179].
OPCs can be identified by their expression of specific proteins
such as the NG2 proteoglycan [180] and PDGFR𝛼 [181].
During the early stages of embryonic development, OPCs
are produced from radial glia in the neuroepithelium of the
developing brain and spinal cord [182, 183]. In the mouse
spinal cord, OPC generation commences from the ventral
pMN domain at E12.5 [182, 184]. The pMN domain is named
for its role in generating spinal cord motor neurons and is
defined by the expression of two transcription factors, OLIG1
and OLIG2 [185], both of which are highly expressed by
OPCs and necessary for their generation and subsequent
differentiation [186, 187]. Olig1/2 expression by pMN domain
neural stem cells is induced by a gradient of ventrally
secreted sonic hedgehog, suggesting that specification of this
domain would also be LRP1/2-dependant. In the absence
of Olig1/2, stem cells in the pMN domain instead form V2
interneurons and astrocytes [188]. Shortly after their birth,
OPCs differentiate into myelinating oligodendrocytes in the
spinal cord grey and white matter [183, 189]. It is estimated
that approximately 85% of all spinal cord oligodendrocytes
originate from the pMN domain, but other domains such
as the P3 domain [184] and more dorsal domains [190, 191]
also produce OPCs, just slightly later in response to different
spatiotemporal cues.

Like spinal cord OPCs, forebrain OPCs have multiple
origins. They are generated and migrate in three distinct
waves [192]. The initial wave commences in the medial
ganglionic eminence and the anterior entopeduncular area at
E12.5 in mice. The OPCs migrate from their ventral origins
to populate all regions of the developing brain, including the
developing cortex [96]. The next wave of OPCs is initiated
at E15.5 from the lateral- and caudal-ganglionic eminence,
followed by the third and final wave from the cortical
neuroepithelium [192]. OPCs derived from the initial wave
are lost shortly after birth [192] and the function performed
by these temporary OPCs and the signals rendering them
susceptible to developmental removal are still unknown. By
P13, ∼80% of oligodendrocyte-lineage cells in the corpus
callosum originate from the cortical neuroepithelium, and
the remainder originate from the lateral ganglionic eminence
[191]. All OPCs that populate the optic nerve arise from the
preoptic area [193].

LRP1 may be a critical regulator of OPC behaviour, as
recent microarray [194] and RNA sequencing [195] data
indicate that Lrp1mRNA is highly expressed by OPCs in the
early postnatal mouse brain. However expression of this gene
is rapidly downregulated upon differentiation and is barely
detectable in oligodendrocytes.The role of LRP2 in regulating
this lineage is more clearly established.

5.1. LRP2 Regulates OPC Proliferation and Migration during
Development. One of the signalling molecules regulating
OPC proliferation and migration is sonic hedgehog [196,
197], and LRP2 appears to regulate OPC proliferation and
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migration by modulating sonic hedgehog availability and
contributing to the generation of a concentration gradient. In
the developing mouse optic nerve, LRP2 is highly expressed
by astrocytes [198]. However, LRP2 expression is not homo-
geneous, being highest in the caudal optic nerve at E14.5,
but then changing to be highest in the rostral optic nerve
at E16.5. Blocking LRP2 signalling by optic nerve astrocytes
leads to a significant reduction in OPC proliferation and
migration [198]. In vitro studies suggest that the LRP2-
mediated uptake and release of sonic hedgehog by astrocytes
promotes OPC proliferation and act as a chemoattractant
directing their migration [198]. The temporal regulation of
LRP2 expression in the caudal versus rostral regions of the
optic nerve would be predicted to “trap” sonic hedgehog in
the region being populated by OPCs at that time.The expres-
sion pattern of LRP2 in the postnatal optic nerve has not
been characterised. However as LRP2 is expressed by mature
oligodendrocytes in the postnatal spinal cord [199], it might
also be upregulated by optic nerve OPCs upon differentia-
tion.

5.2. HowMight LRP1 Influence OPC Behaviour? When exam-
ining LRP1 function in other cell types, there are a number
of mechanisms by which LRP1 could feasibly influence OPC
behaviour. For example OPC processes share some structural
similarities with the growth cones of developing neurons
[200, 201]. In particular growth cones comprise specialised
cell membrane extensions called lamellipodia and filopodia,
which also extend from the cellular processes of OPCs
[200]. LRP1 signalling mediates the chemoattraction and
chemorepulsion of growth cones in vitro, [159], so perhaps
LRP1 could regulate OPC process guidance or even OPC
migration. LRP1 is expressed by Schwann cells in vivo and
regulates the migration and adhesion of immature Schwann
cells in vitro by the activation and repression of two small Rho
GTPases, Rac1 and RhoA, respectively [202]. Rac1 activation
stimulates the formation of peripheral lamellae by actin
remodelling in the leading process [203]. Lrp1 knockdown
decreases Rac1 activation and increases RhoA activation,
which in turn increases cell adhesion and prevents migration
[202]. This is of particular interest, as OPCs take on a bipolar
morphology when migrating [201], and their movement has
been attributed to the NG2-dependent regulation of small
Rho GTPases and polarity complex proteins [204].

LRP1 also has the potential to influence OPC migration
by acting as a coreceptor for PDGFR𝛼 signalling, in a similar
way that it promotes fibroblast migration by cosignalling
with PDGFR𝛽. When PDGFBB binds to PDGFR𝛽 on the
surface of cultured mouse embryonic fibroblasts, it induces
migration. However this involves the association of LRP1
with PDGFR𝛽 [205, 206]. The two receptors are internalised
and colocalize in the endosomal compartment, where the
kinase domain of PDGFR𝛽 phosphorylates the distal NPXY
motif of LRP1 [65, 205, 207]. Once phosphorylated, LRP1 has
an increased affinity for the intracellular domain for SHP-
2 [206, 208], outcompeting PDGFR𝛽 for this interaction,
and preventing further activation of downstream signalling
pathways [206]. While OPCs do not express PDGFR𝛽, they
express high levels of the related receptor, PDGFR𝛼, which is

also internalised following ligand binding [209], suggesting
an association with an unidentified endocytic receptor which
we propose could be LRP1. PDGFAA is known to bind to
PDGFR𝛼 on the surface of OPCs and activate a phosphory-
lation cascade involving the Fyn tyrosine kinase and cyclin-
dependant kinase 5 [210], a known regulator of the actin
cytoskeleton in neurons [211]. By interacting with PDGFR𝛼 it
is feasible that LRP1 could promote not only OPC migration
but also proliferation and cell survival [181, 210, 212, 213].
While the signallingmechanism is likely to be different, a role
for LRP1 in regulating cell survival is not unprecedented, as
LRP1 has been shown to protect Schwann cells against TNF𝛼-
induced cell death in a sciatic nerve crush injurymodel in vivo
and in vitro [214].

LRP1 could equally influence OPC migration by regulat-
ing lipid availability within the cell, as the establishment of
cell polarity andmovement of the leading edge duringmigra-
tion is dependent on the availability of cholesterol [215, 216].
Most lipid-carrying proteins cannot cross the blood brain
barrier and therefore must be generated within the CNS.
Apolipoprotein E is secreted by astrocytes and functions as an
effective lipid transport protein and can bind LRP1 [217, 218].
Lipoproteins form noncovalent aggregates with triglycerides,
phospholipids, and cholesterol esters before they bind to
specific receptors and are internalised and utilized by the
cell [219]. Upon binding of apolipoprotein E to LRP1, the
complex is internalised where its lipid content is discharged,
making it available to the cell [220], before apolipoprotein
E is resecreted [221]. Once internalised, lipoproteins may be
utilized by OPCs for a number of functions.

LRP1-mediated lipid uptakemay alternatively allowOPCs
to sustain their postsynaptic connections with neurons.
Forebrain neuron-specific Lrp1 gene knockout mice have
severe deficiencies in lipid metabolism and show synapse
loss [171]. The presynaptic use of cholesterol by neurons is
high, due to the requirements of lipid-rich neurotransmitter
vesicles [222]. However, the postsynaptic cell also utilizes
cholesterol for receptor recycling in and out of the postsy-
naptic membrane. Therefore, cholesterol uptake into OPCs
may be critical for the formation of axon-OPC synapses and
maintenance of the OPC postsynaptic density.

6. Conclusions and Outlook

Our knowledge of LRP1 and LRP2 processing and trafficking
has come a long way in the past decade.Without even consid-
ering the possibility that cleaved forms of these proteins may
regulate gene transcription or perform dominant negative
signalling functions, a growing number of studies clearly
indicate that LRP1 and LRP2 perform a diverse range of
cellular functions in neural stem and progenitor cell popula-
tions. The generation of conditional knockout mice has now
made it possible to perform the detailed studies that will be
necessary to understand the role of LRP1 and LRP2 in each
immature cell type, across a variety of developmental stages.
This is particularly critical now that we understand that
LRP1 and LRP2 can influence the balance of growth factor
and morphogen signalling, making them critical spatial and
temporal regulators of neural development.
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Garćıa-Verdugo, and A. Alvarez-Buylla, “Noggin antagonizes
BMP signaling to create a niche for adult neurogenesis,”Neuron,
vol. 28, no. 3, pp. 713–726, 2000.

[106] J. K. Sabo, T. J. Kilpatrick, and H. S. Cate, “Effects of bone
morphogenic proteins on neural precursor cells and regulation
during central nervous system injury,” NeuroSignals, vol. 17, no.
4, pp. 255–264, 2009.

[107] H. Marzban, M. R. Del Bigio, J. Alizadeh, S. Ghavami, R.
M. Zachariah, and M. Rastegar, “Cellular commitment in the
developing cerebellum,” Frontiers in Cellular Neuroscience, vol.
8, article 450, 2015.

[108] N. Dahmane and A. Ruiz i Altaba, “Sonic hedgehog regulates
the growth and patterning of the cerebellum,”Development, vol.
126, no. 14, pp. 3089–3100, 1999.

[109] R. J. Wechsler-Reya and M. P. Scott, “Control of neuronal
precursor proliferation in the cerebellum by sonic hedgehog,”
Neuron, vol. 22, no. 1, pp. 103–114, 1999.

[110] P. Haldipur, U. Bharti, S. Govindan et al., “Expression of sonic
hedgehog during cell proliferation in the human cerebellum,”
Stem Cells and Development, vol. 21, no. 7, pp. 1059–1068, 2012.

[111] C. Vaillant, O. Michos, S. Orlicki et al., “Protease nexin 1 and
its receptor LRP modulate SHH signalling during cerebellar
development,”Development, vol. 134, no. 9, pp. 1745–1754, 2007.

[112] J. Stiles and T. L. Jernigan, “The basics of brain development,”
Neuropsychology Review, vol. 20, no. 4, pp. 327–348, 2010.

[113] J. G. Parnavelas, “The origin andmigration of cortical neurones:
new vistas,” Trends in Neurosciences, vol. 23, no. 3, pp. 126–131,
2000.

[114] A. Kriegstein, S. Noctor, and V. Mart́ınez-Cerdeño, “Patterns
of neural stem and progenitor cell division may underlie
evolutionary cortical expansion,” Nature Reviews Neuroscience,
vol. 7, no. 11, pp. 883–890, 2006.

[115] A. A. Lavdas, M. Grigoriou, V. Pachnis, and J. G. Parnavelas,
“The medial ganglionic eminence gives rise to a population
of early neurons in the developing cerebral cortex,” Journal of
Neuroscience, vol. 19, no. 18, pp. 7881–7888, 1999.

[116] K. Letinic, R. Zoncu, and P. Rakic, “Origin of GABAergic
neurons in the human neocortex,”Nature, vol. 417, no. 6889, pp.
645–649, 2002.



Stem Cells International 13

[117] S. Nery, G. Fishell, and J. G. Corbin, “The caudal ganglionic
eminence is a source of distinct cortical and subcortical cell
populations,” Nature Neuroscience, vol. 5, no. 12, pp. 1279–1287,
2002.

[118] N. B. Hastings and E. Gould, “Rapid extension of axons into the
CA3 region by adult-generated granule cells (vol 413, pg 146,
1999),” Journal of Comparative Neurology, vol. 415, no. 1, p. 144,
1999.
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