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Background. The incidence of squamous lung cancer (LUSC) has substantially increased. Systematic studies of metabolic genomic
patterns are fundamental for the treatment and prediction of LUSC. Because cancer metabolism and immune cell metabolism
have been studied in depth, metabolism and the state and function of immune cells have become key factors in tumor
development. This also indicates that metabolic genes and the tumor immune microenvironment (TME) are crucial in tumor
treatment. This study is aimed at dissecting the connection between TME and LUSC digestion-related qualities. Methods. The
information used in this study was obtained from The Cancer Genome Atlas dataset. Metabolism-related genes in patients
with LUSC were screened, and relevant clinical data were collated. Next, genes associated with prognosis were screened using
univariate COX regression and LASSO regression analyses. Finally, a timer database study was conducted to analyze the
molecular mechanisms of immune cell infiltration of LUSC prognosis-related metabolic genes at the immune cell level. Results.
Nine metabolism-related genes were identified: ADCY7, ALDH3B1, CHIA, CYP2C18, ENTPD6, GGCT, HPRT1, PLA2G1B, and
PTGIS. A clinical prediction model for LUSC based on metabolism-related genes was constructed. In addition, 22
subpopulations of tumor-infiltrating immune cells (TIIC) in the TME were analyzed using the CIBERSORT algorithm. Finally,
we used the TIMER database to analyze the immune infiltration of LUSC and the relationship between metabolism-related
genes and immune cells. Conclusion. Our study identified metabolic genes associated with the prognosis of LUSC, which are
important markers for its diagnosis, clinically relevant assessments, and prognosis. The relationship between metabolic genes
with prognostic impact and immune infiltration was also analyzed, and a metabolic gene-based clinical prediction model was
identified, providing a new perspective for LUSC treatment.

1. Introduction

Metabolism alludes to methodical compound responses that
occur in an organic entity to support life. Cellular metabolism
is crucial for cell survival and development. The first relation-
ship between cancer cells and metabolism was demonstrated
by Otto Warburg. He discovered that cancer cells would
develop an abnormal dependence on glycolysis in the presence
of sufficient oxygen. This phenomenon was called the “War-
burg effect,” used to describe this particular form of aerobic

glycolysis [1]. Different cancers exhibit different metabolic
phenotypes. Generally accepted is that lactate contributes
more to the tricarboxylic acid cycle than glucose in the metab-
olism of lung neoplasms [2]. There are many metabolism-
related studies on different cancers, and they provide new
ideas for studying tumor cell proliferation and patient survival.
These metabolism-related processes are important because of
the differences between the intrinsic signaling pathways within
cancer cells and the interactions between cancer cells and their
surrounding tumor immune microenvironment (TME) [3].
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Accordingly, adjusting the digestion of cancer cells and
upgrading the movement of insusceptible cells are significant
challenges in the treatment of tumors.

We integrated the obtained clinical information with
metabolism-related gene expression profiles to assess the
prognostic status of patients with lung squamous carcinoma
(LUSC). We systematically analyzed the prognosis of patients
with LUSC and the expression of relevant metabolic genes.We
identified key genes that can significantly affect patient out-
comes and developed a new clinical prognostic model based
on these genes. Immune infiltration associated with these
genes was also analyzed. Our study provides a good basis for
the treatment of LUSC in terms of metabolism and TME.

2. Methods and Materials

2.1. Data Assortment and Handling. Data related to patients
with LUSC were obtained from The Cancer Genome Atlas
(TCGA) (https://cancergenome.nih.gov/) and the correspond-
ing clinical data [4]. All data required for this study were
imported from the TCGA data download window GDC
(https://portal.gdc.cancer.gov/), an open-access database from
which the relevant information retrieved does not require
additional moral approval. Only patients who were diagnosed
with LUSC were included in this study. 504 tumor samples
and 59 normal samples were obtained in total. Information
on patients whose age and TNM stage were not recorded in
the clinical data was also excluded from the relevant analysis.
Finally, 494 tumor sample were obtained.

The Molecular Signature Database (MSigDB) is a set of
annotated genomes that can be used in conjunction with
centralized genome analysis software (https://www.gsea-
msigdb.org/gsea/downloads.jsp). The background pathway
gene set was downloaded from the website. Calibration to

the same level and logfc of expression was performed by
transforming the data using the R package. Metabolic-
related genes were listed in the Kyoto Encyclopedia of
Genomes (KEGG) according to the metabolic-related path-
ways in the Molecular Characterization Database [5].

2.2. Differential Expression Analysis and Pathway
Enrichment Analysis. The expression data of metabolism-
related genes in LUSC and normal lung tissues were normal-
ized using the limma package in R software, and differential
analysis was performed to obtain differential expression data
of metabolism-related genes in LUSC in the TCGA database.
The limit was set to absolute value of log 2 ðfolding rateÞ > 1
and false discovery rate ðFDRÞ < 0:05.

2.3. Risk Score Validation. To identify the genes most strongly
associated with survival, we combined the expression of
metabolism-associated genes with the OS of patients and then
performed a univariate COX analysis on the sequential vari-
ables of genes. One-step screening further identified them as
independent metabolic factors for predicting the prognosis
of squamous lung cancer.

The screened metabolism-related genes were consoli-
dated into Lasso regressions and repeated 1000 times using
the glmnet package of R studio.

Last, a clinical prognostic model for LUSC was devel-
oped based on the LASSO regression coefficients multiplied
by the expression figures. The equation is shown in the fol-
lowing equation.

Risk ⋅ score = αgene að Þ × gene ⋅ expression að Þ + αgene bð Þ
× gene ⋅ expression bð Þ+⋯+αgene nð Þ
× gene ⋅ expression nð Þ:
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Figure 1: Selection of candidate genes. (a) Volcano plot of differential gene expression between tumor and normal tissues. Red dots
represent upregulated genes. Green represents downregulated genes. Genes without significance are marked in black. (b) Genes
significantly associated with prognosis after the secondary screening. Red and green dots represent the HR of the corresponding genes
above and less than 1, respectively. FC: fold change; HR: hazard ratio.
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2.4. Survival Analysis. Using the middle challenge score as
the basic worth, we isolated patients with LUSC into gener-
ally safe gatherings and high gamble bunches. Kaplan–Meier
curves were applied using the Survminer package of R to
examine the association between metabolism-related genes
and prognosis. Univariate and multivariate analyses were
performed to investigate the free prognostic variables in
patients with LUSC. The area under the curve (AUC) was
determined using the endurance ROC R studio to confirm
the prognostic highlights. Additionally, a nomenclature chart
with clinical factors and chance scores was created. Calibration
and decision curves were plotted to illustrate the accuracy of
the model in predicting the survival of patients with LUSC.

2.5. GSEA. The purpose of the GSEA was to identify the
pathways and molecular mechanisms (https://www.gsea-
msigdb.org/gsea/index.jsp) associated with high- and low-
risk groups. After 1000 substitutions, the gene sets with P
< 0:05 and FDR < 0:05 were considered significantly
enriched.

2.6. Analysis of the Relationship between Immune Cell
Infiltration and Metabolism-Related Genes. Investigations
have shown that metabolism and TME play a significant role
in cancer treatment. The highly active metabolic pathways
peculiar to cancer cells can profoundly change the compo-
nents of many small molecules, as well as the nutritional
products in the TME. The high metabolic activity and unor-
ganized blood vessels of cancer cells in the TME contribute
to nutrient depletion and hypoxia, leading to a metabolic
contest between cancer cells and invading invulnerable cells
[6–8]. All immune-related data for LUSC were obtained
from the TCGA and transformed into TPM matrices using
the R software preprocess core package to obtain immune
cell content, the estimation package to obtain the TME
scores, and the corrplot package for immune-related analy-
sis. And based on this data, the proportion of 22 immune
cells in LUSC was plotted. The TIMER database (https://
cistrome.shinyapps.io/timer/) was used to analyze and visu-
alize the number of tumor-infiltrating immune cells and
examine the correlation between metabolism-related genes
screened by LASSO regression and the level of infiltration
of six immune cell subtypes: CD4+ T cells, B cells, CD8+ T
cells, neutrophils, macrophages, and dendritic cells. Copy
number variation is an important aberration that leads to
changes in gene expression during tumorigenesis and cancer
growth. TIMER applied data from GISTIC 2.0 to examine
the impact of genes with different copy states on immune

infiltration, including CD4+ T cells, B cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells.

3. Result

3.1. Screening of Metabolism-Related Genes. Gene expression
analysis was performed on 504 and 59 tumor and normal
specimens, respectively. Among them, there were 504 tumor
samples, and 494 samples remained after their exclusion due
to partial lack of data such as survival time. We identified
metabolic-related genes from the KEGG genome (Supple-
ment 1). Among the genes screened for differential expres-
sion based on profiles, 353 were upregulated, and 197 were
downregulated in tumor specimens (P < 0:05, Figure 1(a)).
For additional determination, 14 genes proved to be of prog-
nostic significance based on the calculated HR values of
patients with LUSC by univariate COX regression analysis.
Eleven of these genes (ADCY7, ALDH3B1, ALOX5, AOC3,
CHIA, ENTPD6, PDE2A, PLA2G15, PLA2G1B, PTGIS, and
SGMS2) may have more terrible anticipation than the other
three genes (P < 0:01, Figure 1(b)).

3.2. Developing the Expectation Model. As aforementioned,
we identified candidate metabolic genes associated with
prognosis. For the selected genes, we performed LASSO
regression to build the model and determine the coefficients.
Finally, the model contained nine genes, with every coeffi-
cient mathematically showing the heaviness of articulation.
Individual risk scores were determined based on the articu-
lation status of prognostic qualities and their related coeffi-
cients (P < 0:05, Table 1).

The calculation formula of the risk score was shown as
the following equation:

Table 1: Characterization of LUSC metabolic genes and coefficient
of risk.

Gene Coef

ADCY7 0.0396025207343667

ALDH3B1 0.011687487660189

CHIA 0.0143573936898486

CYP2C18 -0.0356322600211849

ENTPD6 0.0196686829383862

GGCT -0.00384755414754328

HPRT1 -0.00251832392113586

PLA2G1B 0.0193309813261464

PTGIS 0.027941353204922

Risk ⋅ score =

ADCY7 ∗ 0:0396025207343667ð Þ + ALDH3B1 ∗ 0:011687487660189ð Þ
+CHIA ∗ 0:0143573936898486ð Þ + CYP2C18 ∗ −0:0356322600211849ð Þ
+ENTPD6 ∗ 0:0196686829383862ð Þ + GGCT ∗ −0:00384755414754328ð Þ
+HPRT1 ∗ −0:00251832392113586ð Þ + PLA2G1B ∗ 0:0193309813261464ð Þ

+PTGIS ∗ 0:027941353204922ð Þ

2
666666664

3
777777775
: ð2Þ
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3.3. Confirmation of Risk Scores. To further affirm the reli-
ability of the risk scores, we divided the TCGA LUSC cohort
into two groups based on their median risk scores: high- and
low-risk. Analysis of the pathways involved in the high- and
low-risk groups by using the GSEA predictions showed that
the risk scores were significantly enriched in several metabo-

lically related bioprocesses (Figure 2(a)). It can be clearly
seen that the enrichment of genes in metabolism-related
and other pathways is significantly different between the
high-risk and low-risk groups. In the high-risk group, 119
gene sets are upregulated, and 104 gene sets are significant
at FDR < 0:25. In the low-risk group, 59 gene sets are
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Figure 2: GSEA and survival analysis. (a) Representative results of GSEA analysis of high- and low-risk group genes. (b) Survival curve for
OS. The red line depicts the survival of high-risk patients; the blue line depicts the survival of low-risk patients.
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Figure 3: Validate risk scores. (a) Distribution of risk scores for the high-risk and low-risk groups. Red dots indicate cases in the high-risk
group, and green indicates low-risk cases. (b) Distribution of survival status of patients in the high-risk and low-risk groups. Green dots
represent alive and red dots represent dead. (c) Heat map of the expression profiles of metabolism-related genes included.
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upregulated, and 31 gene sets are significant at FDR < 0:25.
K-M survival analysis showed that survival probability in
the low-risk group was much higher than in the high-risk
group (Figure 2(b)).

The distribution of the risk scores and the correlation
between survival data are shown in a scatter plot
(Figure 3(a)). Based on the value of the median risk score
in the TCGA LUSC cohort, patients were separated into
low- and high-risk groups (Figure 3(b)). The expression pro-
files of prognostic risk genes between the high- and low-risk
groups are shown in the heat map (Figure 3(c)).

3.4. Analysis of the Combination of the Risk Scoring System
and Clinical Factors. Based on the analysis of univariate
and multivariate LASSO Cox regression models, we found
that a risk scoring system constructed using mRNA could
be used to predict OS in patients with LUSC. To further
evaluate its predictive performance, we constructed ROC
curves. This implies that the risk scoring system has an
excellent predictive ability (Figure 4(c)). Univariate Cox
analysis showed that stage, T-stage, and risk score were sig-
nificantly associated with OS (Figure 4(a)). Further multi-
variate Cox analysis revealed that risk score could be used
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0

Hazard ratio

6

Risk score

1 2 3 4 5

(a)

p value Hazard ratio

Age 0.212 1.318 (0.854 – 2.034)

Gender 0.234 1.263 (0.860 – 1.856)

Stage 0.765 0.933 (0.593 – 1.469)

T 0.203 1.226 (0.896 – 1.679)

M 0.438 1.741 (0.428 – 7.083)

N 0.203 1.299 (0.869 – 1.944)

4.297 (2.714 – 6.803)< 0.001

0

Hazard ratio

7

Risk score

1 2 3 4 5 6

(b)

0.0 0.2

0.2

0.4

0.4

False positive rate

Risk score (AUC = 0.616)
Age (AUC = 0.552)
Gender (AUC = 0.522)
Stage (AUC = 0.565)
T (AUC = 0.594)
M (AUC = 0.500)
N (AUC = 0.508)

Fa
lse

 p
os

iti
ve

 ra
te

0.6

0.6

0.8

0.8

1.0

1.0

0.0

(c)

Figure 4: Forest plots. For (a) univariate and (b) multivariate Cox regression analysis in the TCGA LUSC cohort. (c) ROC curves for risk
scores. AUC: area under the curve.
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as independent prognostic factors to assess patient survival
time (Figure 4(b)). Regardless of the univariate or multivar-
iate analyses, the risk score system we constructed was very
effective in assessing the prediction, which further showed
the assessment value of the model.

3.5. Metabolic Genes and the Immune Microenvironment.
The proportion of the 22 immune cells in LUSC is shown
in Figure 5. Pearson correlation analysis illustrates the coex-
pression pattern between immune cells with a significant
positive correlation between CD4 memory-activated T cells
and CD8 T cells and a negative correlation between CD8 T
cells and macrophages M0 (Figure 5).

To understand whether the metabolic genes used to con-
struct the prognostic model were associated with the
immune microenvironment, the association between nine
genes of prognostic significance (ADCY7, ALDH3B1, CHIA,
CYP2C18, ENTPD6, GGCT, HPRT1, PLA2G1B, and PTGIS)

and immune infiltration was analyzed using the TIMER
database. As shown in Figure 6, the expression of six genes,
ALDH3B1, CHIA, GGCT, HPRT1, PLA2G1B, and PTGIS,
correlated significantly (P < 0:05) with immune infiltration
in all six cell types; the expression of ADCY7 and CYP2C18
correlated with CD4+ T cells, CD8+ T cells, neutrophils,
macrophages, and dendritic cells (P < 0:05), and the expres-
sion of ENTPD6 correlated significantly with the infiltration
of B cells and CD8+ T cells (P < 0:05). In addition, we ana-
lyzed the relationship between somatic copy number
changes and the abundance of the immune infiltration of
metabolism-related genes (Figure 7). The SCNA module
provides a comparison of the level of tumor infiltration for
a given gene with different somatic copy number changes.
SCNA is defined by GISTIC 2.0 and includes deep deletion,
arm-level deletion, diploid/normal, arm-level deletion, and
high amplification. Box plots show the distribution of each
immune subset at each replicate number state in the LUSC.

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y
Pl

as
m

a c
el

ls
T 

ce
lls

 C
D

8
T 

ce
lls

 C
D

4 
na

iv
e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng
T 

ce
lls

 C
D

4 
m

em
or

y 
ac

tiv
at

ed
T 

ce
lls

 fo
lli

cu
la

r h
el

pe
r

T 
ce

lls
 re

gu
la

to
ry

 (T
re

gs
)

T 
ce

lls
 g

am
m

a d
el

ta
N

K 
ce

lls
 re

sti
ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es
M

ac
ro

ph
ag

es
 M

0
M

ac
ro

ph
ag

es
 M

1
M

ac
ro

ph
ag

es
 M

2
D

en
dr

iti
c c

el
ls 

re
sti

ng
D

en
dr

iti
c c

el
ls 

ac
tiv

at
ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed
Eo

sin
op

hi
ls

N
eu

tr
op

hi
ls

St
ro

m
al

Sc
or

e
Im

m
un

eS
co

re

B cells naive
B cells memory

Plasma cells
T cells CD8

T cells CD4 naive
T cells CD4 memory resting

T cells CD4 memory activated
T cells follicular helper
T cells regulatory (Tregs)

T cells gamma delta
NK cells resting

NK cells activated
Monocytes

Macrophages M0
Macrophages M1

Macrophages M2
Dendritic cells resting

Dendritic cells activated
Mast cells resting

Mast cells activated
Eosinophils

Neutrophils
Stromal score

Immune score

Figure 5: Proportion of immune cells per patient. The blue and red graphs indicate a negative and positive correlation, respectively.

7BioMed Research International



Purity B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

0.00

1

2

A
D

CY
7 

ex
pr

es
sio

n 
le

ve
l

(L
og

2 
TP

M
)

LU
SC

3

4

5

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 1.250.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

Infiltration level

0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.30.0 0.2 0.4 0.6

(a)

Purity B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

0.00

2

A
LD

H
3B

1 
ex

pr
es

sio
n 

le
ve

l
(L

og
2 

TP
M

)

LU
SC4

6

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 1.250.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

Infiltration level

0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.30.0 0.2 0.4 0.6

(b)

Purity B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

0.00

0

2

CY
P2

C1
8 

ex
pr

es
sio

n 
le

ve
l

(L
og

2 
TP

M
)

LU
SC

4

6

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 1.250.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

Infiltration level

0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.30.0 0.2 0.4 0.6

(c)

Purity B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

0.00

4

6

5

EN
TP

D
6 

ex
pr

es
sio

n 
le

ve
l

(L
og

2 
TP

M
)

LU
SC

7

8

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 1.250.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

Infiltration level

0.3 0.4 0.50.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.30.0 0.2 0.4 0.6

(d)

Purity B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

0.00
4

6

5G
G

CT
 ex

pr
es

sio
n 

le
ve

l
(L

og
2 

TP
M

)

LU
SC

7

9

8

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 1.250.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

Infiltration level

0.3 0.4 0.50.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.30.0 0.2 0.4 0.6

(e)

Purity B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

0.00

6

5

H
PR

T1
 ex

pr
es

sio
n 

le
ve

l
(L

og
2 

TP
M

)

LU
SC

7

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 1.250.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

Infiltration level

0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.30.0 0.2 0.4 0.6

(f)

Figure 6: Continued.
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4. Discussion

Metabolism is a critical aspect in the development of cancer,
and tumor tissues tend to exhibit faster metabolic capabili-
ties, such as glucose metabolism, than normal tissues, to ful-
fill their rapid growth. It also affects the protocol and efficacy
of tumor immunotherapy. The study of tumors must con-
tinue. Research at the genetic level is expanding, and differ-
entially expressed genes play an important role in cancer
research and subsequent related therapies. We thoroughly
investigated the impact of metabolic genes on the prognosis
of LUSC and elaborated on the related mechanisms by
selecting 14 closely related genes. Using these genes, we
assessed the clinical features associated with LUSC.

From the 14 metabolic genes obtained, we screened 9
genes (ADCY7, ALDH3B1, CHIA, CYP2C18, ENTPD6,
GGCT, HPRT1, PLA2G1B, and PTGIS) using LASSO regres-
sion. Based on these nine genes, a correlation model was
developed to understand tumor metabolism in patients, pre-
dict disease outcomes, and guide clinical treatment. We
combined the models and found that the low-risk group
tended to show longer survival times than the high-risk
group, and the reliability of the models was confirmed by
regression analysis. Our study suggests that clinical prognos-
tic models using metabolic genes can be used as indicators
for an independent analysis.

The expression level of ADCY7 affects several human
metabolic processes and affects many important physiologi-
cal aspects of the body, especially with a strong correlation
with the level of immune cell infiltration. The literature has
demonstrated that ADCY7 and the prognosis of acute mye-
loid leukemia are closely related, and its high expression may
be detrimental to the prognosis of patients with this disease
[9]. Studies have confirmed that ALDH3B1 is expressed at
higher levels in lung adenocarcinoma tissues than in normal
tissues. This expression has an important impact on the
prognosis of other cancers such as lung adenocarcinoma. A
commonly held belief is that the expression of ALDH31
affects the metabolism of aldehydes such as acetaldehyde
[10]. Aldehydes have stimulatory effects in humans and
induce mutations that lead to cancer [11]. Studies have con-
firmed that ALDH3B11 is relatively highly expressed in
mouse lung tissue, where it plays an important role in alde-
hyde metabolism. This mutation is likely to cause lung
lesions [12]. GGCT is also involved in important metabolic
processes in the body, catalyzing the production of 5-
oxoproline and free amino acids [13, 14], and the literature
has shown that GGCT expression is upregulated in clinical
samples from various cancers. Studies have identified ele-
vated GGCT expression in 58% of cervical cancers, 38% of
lung cancers, and 72% of colon cancers [15]. GGCT inhibi-
tors are currently used as anticancer drugs.
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Figure 6: Correlation of metabolism-related genes and immune cell infiltration levels in human LUSC analyzed using TIMER database. (a)
ADCY7, (b) ALDH3B1, (c) CYP2C18, (d) ENTPD6, (e) GGCT, (f) HPRT1, (g) PLA2G1, (h) PTGIS, and (i) CHIA levels were closely
correlated with tumor immune cell infiltration in LUSC.
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10 BioMed Research International



2.0

1.5

1.0

0.5

In
fil

tr
at

io
n 

le
ve

l

0.0

B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

Copy number
Deep deletion
Arm-level deletion
Diploid/normal

Arm-level gain
High amplification

LUSC
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎⁎

⁎
⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎⁎⁎

⁎

(d)

2.0

1.5

1.0

0.5

In
fil

tr
at

io
n 

le
ve

l

0.0

B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

Copy number
Deep deletion
Arm-level deletion
Diploid/normal

Arm-level gain
High amplification

LUSC
⁎ ⁎ ⁎ ⁎ ⁎ ⁎

⁎
⁎

⁎
⁎
⁎⁎ ⁎ ⁎ ⁎ ⁎ ⁎

⁎
⁎⁎

⁎
⁎
⁎⁎

(e)

P-value significant codes: 0 ≤ ⁎⁎⁎ < 0.001 ≤ ⁎⁎ < 0.01 ≤ ⁎ < 0.05 ≤ . < 0.1

2.0

1.5

1.0

0.5

In
fil

tr
at

io
n 

le
ve

l

0.0

B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

Copy number
Deep deletion
Arm-level deletion
Diploid/normal

Arm-level gain
High amplification

LUSC
⁎
⁎⁎

⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎

⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎

⁎⁎⁎⁎⁎⁎
⁎⁎

⁎⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎

⁎⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎

⁎⁎⁎⁎⁎

(f)

Figure 7: Continued.

11BioMed Research International



P-value significant codes: 0 ≤ ⁎⁎⁎ < 0.001 ≤ ⁎⁎ < 0.01 ≤ ⁎ < 0.05 ≤ . < 0.1

2.0

1.5

1.0

0.5

In
fil

tr
at

io
n 

le
ve

l

0.0

B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

Copy number
Deep deletion
Arm-level deletion
Diploid/normal

Arm-level gain
High amplification

LUSC
⁎
⁎

⁎
⁎⁎

⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎

⁎ ⁎ ⁎⁎
⁎

⁎
⁎⁎

⁎⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎

⁎
⁎
⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎⁎

⁎
⁎
⁎

⁎

(g)

P-value significant codes: 0 ≤ ⁎⁎⁎ < 0.001 ≤ ⁎⁎ < 0.01 ≤ ⁎ < 0.05 ≤ . < 0.1

2.0

1.5

1.0

0.5

In
fil

tr
at

io
n 

le
ve

l

0.0

B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

Copy number
Arm-level deletion
Diploid/normal

Arm-level gain
High amplification

LUSC
⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎
⁎

⁎ ⁎ ⁎⁎⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎ ⁎

⁎
⁎

⁎⁎
⁎
⁎

(h)

P-value significant codes: 0 ≤ ⁎⁎⁎ < 0.001 ≤ ⁎⁎ < 0.01 ≤ ⁎ < 0.05 ≤ . < 0.1

2.0

1.5

1.0

0.5

In
fil

tr
at

io
n 

le
ve

l

0.0

B cell CD8 + T cell CD4 + T cell Macrophage Neutrophil Dendritic cell

Copy number
Deep deletion
Arm-level deletion
Diploid/normal

Arm-level gain
High amplification

LUSC
⁎
⁎

⁎
⁎

⁎
⁎

⁎
⁎

⁎ ⁎ ⁎ ⁎ ⁎

⁎
⁎

⁎

⁎⁎
⁎

⁎
⁎

⁎⁎
⁎

⁎
⁎⁎

⁎⁎

⁎

(i)

Figure 7: Correlation of somatic cell replication number alteration (SCAN) with the abundance of immune infiltration of neoplastic
hypometabolism-related genes analyzed using the TIMER database. (a) ADCY7, (b) ALDH3B1, (c) CHIA, (d) CYP2C18, (e) ENTPD6, (f)
GGCT, (g) HPRT1, (h) PLA2G1, and (i) PTGIS include deep deletion, arm-level deletion, diploid/normal, arm-level gain, and high
amplification. The box plot shows the distribution of each TIIC subset for each copy number status in LUSC using the same statistical
tests as the “Mutation” module.
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Undoubtedly, attempts to understand the mechanism of
tumorigenesis have increased in sophistication and compre-
hensiveness. However, many questions remain even though
an inextricable link between metabolism and cancer has
been identified. For LUSC, many aspects of the relevant
mechanisms remain unclear. Our study focused on the link
between the tumor metabolic state and the immune
environment.

Accelerated tumor growth is a major explanation for the
inability of immune cells to monitor and eliminate it on time
[16]. Tumor cells may evade the body’s immune surveillance
under the influence of various factors, such as by downregu-
lating the expression of relevant antigens; however, some
tumor cells are inherently weakly immunogenic or release
soluble antigenic factors to close off receptors [17]. Studies
have shown that nonsmall cell carcinomas can establish
multiple immune escape mechanisms [18]. Tumor cells
upregulate the glycolytic catabolism of glucose to form lactate,
which also induces the formation of an immunosuppressive
environment, and its concentration is also influenced by mac-
rophages [19].

Cancer cells depend on glucose and lipid uptake for sur-
vival and growth, and the TME often reflects the immune
status of cancer cells and can provide strong support for sub-
sequent therapeutic strategies. Different members of the
TME, which constitute the specific ecological environment
of the tumor, interact through cytokines, chemokines, and
other factors. A necessary linkage has been made between
TME and metabolic gene correlation. Additionally,
metabolism-related genes, such as those affecting glycolysis,
have been shown to play an important role in the prolifera-
tion and invasion of cancer cells.

First, we demonstrated the feasibility of constructing a
model based on nine metabolism-related genes to determine
the clinical treatment of LUSC. Cancer development is
closely related to metabolism; however, immunity plays a
more critical role than metabolism. Cellular metabolism is
the key to maintaining the viability and function of cancer
and immune cells. Immunotherapy is an established tool
for cancer treatment [20]. By analyzing the data obtained
using the ESTIMATE algorithm, we obtained immune
and matrix scores to understand the LUSC microenviron-
ment. Next, we used CIBERSORT to assess the different
infiltration patterns of various immune cells in patients
with LUAD and LUSC and reveal their relationship with
clinical outcomes. Most TIICs in LUSC were significantly
different from those in normal tissues, suggesting a critical
role of immune status in cancer progression, and there is
a clear coexpression pattern between some related immune
cells. Recent research has found that the content of neutro-
phil infiltration in tumor tissue was significantly altered in
LUSC [21, 22].

We also found that the expression of genes related to
metabolism was associated with the degree of infiltration of
immune cells, such as CD4+ and CD8+ T cells. The litera-
ture has shown that most of the follicular B cells infiltrated
by tumors are highly expressed to CD40 and so forth [23].
Plasma cells are thought to be associated with better long-
term survival in NSCLC, suggesting an active role for plasma

cells in antitumor immunity [23, 24]. Tumor-infiltrating
lymphocytes (TIL-Bs) play a regulatory role in activating B
cells but can also influence the density of T cells [25]. T cells
play an important role in immune processes and are a
central component of tumor cell immunity. CD4+ T cells
express various costimulatory molecules that can be acti-
vated by interactions with other immune cells, such as B
cells [26, 27]. CD4+ T cells belong to the family of tumor
necrosis factor receptor costimulatory receptors and are
associated with NSCLC tumor frequency [28]. Additionally,
CD8 T cell-derived metabolites can mediate fatty acid
metabolism through blockade [29].

In conclusion, T cell metabolites have an important
impact on antitumor immune responses. Tumor-associated
macrophages are the major immune-infiltrating cells in the
TME [30–32]. Relevant studies have shown that their metab-
olites contribute to tumor invasion and metastasis, and
metabolite analysis may improve the understanding of the
hyperprogressivity of cancer in immunotherapy [33].

This study has limitations. First, we had limited access to
data information, which reflected only part of the tumor
immunity and metabolism. Second, we did not include an
independent cohort for validation. Finally, our results
require validation through relevant experiments.

5. Conclusion

In summary, based on the relevant data downloaded from
the TCGA database, a screening of metabolism-related genes
associated with the prognosis of LUSC patients was per-
formed. A prediction model was constructed based on nine
metabolism-related genes (ADCY7, ALDH3B1, CHIA,
CYP2C18, ENTPD6, GGCT, HPRT1, PLA2G1B, and PTGIS).
The immune microenvironment was also analyzed based on
metabolism-related genes, and the association between
metabolism-related genes and immune cells was analyzed
using the TIMER database. This study has guiding signifi-
cance for LUSC prognosis, which benefits future in-depth
exploration of immune- and metabolism-related mecha-
nisms of LUSC.

Abbreviation

LUSC: Squamous lung cancer
TME: Tumor microenvironment
TIIC: Tumor-infiltrating immune cells
NSCLC: Nonsmall cell lung cancer
OS: Overall survival
FDR: False discovery rate
LASSO: Least absolute shrinkage and selection operator
AUC: Area under the curve
K-M: Kaplan-Meier.
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