

# **Full Paper**

# NADH peroxidase plays a crucial role in consuming $H_2O_2$ in Lactobacillus casei IGM394

# Shingo NARAKI<sup>1\*</sup>, Shizunobu IGIMI<sup>2</sup> and Yasuko SASAKI<sup>1</sup>

<sup>1</sup>Agricultural Chemistry, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan <sup>2</sup>Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan

Received October 24, 2019; Accepted December 5, 2019; Published online in J-STAGE December 25, 2019

The facultative anaerobic bacterium Lactobacillus casei IGM394 is used as a host for drug delivery systems, and it exhibits the same growth rate under aerobic and anaerobic conditions. L. casei strains carry several genes that facilitate oxygen and reactive oxygen species (ROS) tolerance in their genomes, but their complete functions have not been uncovered. To clarify the oxygen and ROS tolerance mechanisms of L. casei IGM394, we constructed 23 deficient mutants targeting genes that confer oxidative stress resistance. Significantly decreased growth and high H<sub>2</sub>O<sub>2</sub> accumulation were observed in the NADH peroxidase gene-mutated strain ( $\Delta npr$ ) compared with the findings in the wild type. The H<sub>2</sub>O<sub>2</sub> degradation capacity of  $\Delta npr$  revealed that NADH peroxidase is a major H<sub>2</sub>O<sub>2</sub>degrading enzyme in L. casei IGM394. Interestingly,  $\Delta ohrR$ , a mutant deficient in the organic hydroperoxide (OhrA) repressor, exhibited higher H<sub>2</sub>O<sub>2</sub> resistance than the wild-type strain. Increased Npr expression and  $H_2O_2$  degradation ability were observed in  $\Delta ohrR$ , further supporting the importance of OhrA to ROS tolerance mechanisms. The other mutants did not exhibit altered growth rates, although some mutants had higher growth in the presence of oxygen. From these results, it is presumed that L. casei IGM394 has multiple oxygen tolerance mechanisms and that the loss of a single gene does not alter the growth rate because of the presence of complementary mechanisms. Contrarily, the H<sub>2</sub>O<sub>2</sub> tolerance mechanism is solely dependent on NADH peroxidase in L. casei IGM394.

Key words: NADH peroxidase, oxidative stress, deficient mutants, Lactobacillus casei, H<sub>2</sub>O<sub>2</sub>

#### **INTRODUCTION**

Lactic acid bacteria are facultative anaerobic bacteria that do not require oxygen for growth, and they do not have a respiratory chain and catalase; thus, they rely on anaerobic fermentation to produce energy. There is a wide range of variations in tolerance to oxygen and reactive oxygen species (ROS) stress among lactic acid bacteria, even in the same species. This means that stress tolerance in bacteria depends on the genes present in their genomes. ROS are produced via the conversion of oxygen to the superoxide anion radical, which is further converted to hydrogen peroxide ( $H_2O_2$ ), and  $Fe^{2+}$  in cells induces production of the more toxic hydroxyl radical via the Fenton reaction. ROS damage intracellular proteins and DNA and cause cell death [1]. Many studies have examined the tolerance mechanisms of lactic acid bacteria to oxygen and ROS. Enzymes such as NADH oxidase and pyruvate oxidase, which degrade molecular oxygen [2–7], superoxide dismutase (SOD), which targets superoxide as a substrate [8, 9], and NADH peroxidase, which degrades  $H_2O_2$ [10], are involved in the tolerance mechanisms. Further, lactic

acid bacteria in the Lactobacillus casei group possess multiple types of peroxidase, including NADH peroxidase, glutathione peroxidase, thiol peroxidase and iron-dependent peroxidase. Therefore, several antioxidant enzymes are involved in oxidative stress tolerance in lactic acid bacteria. In addition to enzymes that confer direct resistance to oxygen and ROS, some enzymes contribute to oxidative tolerance. Thioredoxin reductase (TrxB2), which maintains the intracellular redox state balance, has been reported to be involved in oxygen tolerance in Lactococcus lactis, Lactobacillus plantarum WCFS1, and Lactobacillus casei Shirota [11–13], and similar findings have been reported for *Escherichia* coli [14]. Streptococcus mutans carries an iron-binding protein (Dpr) to avoid the Fenton reaction, in addition to antioxidant enzymes such as NADH oxidase [15, 16]. Furthermore, L. casei Shirota expresses the iron-binding protein HprA1, which is involved in H<sub>2</sub>O<sub>2</sub> resistance via a different mechanism than Dpr [17]. HprA1 is involved in H<sub>2</sub>O<sub>2</sub> resistance, but it does not exhibit H<sub>2</sub>O<sub>2</sub>-decomposing activity. It has also been reported that the disruption of the NADH peroxidase gene (npx) of L. casei Shirota results in a decreased growth rate under shaking and the

©2020 BMFH Press



This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. (CC-BY-NC-ND 4.0: https://creativecommons.org/licenses/by-nc-nd/4.0/)

<sup>\*</sup>Corresponding author. Shingo Naraki (E-mail: s naraki@meiji.ac.jp)

loss of H<sub>2</sub>O<sub>2</sub>-decomposing activity. On the contrary, in recent studies, some lactic acid bacteria in which the electron transfer system is activated by the addition of heme alone or together with menaquinone (vitamin K<sub>2</sub>) and oxygen is consumed as the final electron acceptor have been reported [18-20]. Compared with anaerobic fermentation, in which ATP is obtained only from glycolysis, use of the electron transfer system increases the amount of ATP and improves growth rates. Additionally, organic hydroperoxide resistance protein transcriptional regulator (OhrR), which was initially found in the gram-negative bacterium Xanthomonas campestris, is involved in resistance to organic peroxide and H<sub>2</sub>O<sub>2</sub> [21]. There are similar reports in the grampositive bacterium Bacillus subtilis [22]. However, OhrR has not been reported in lactic acid bacteria. According to the information on lactobacilli published in KEGG, L. casei and L. plantarum, which are generally considered oxygen-resistant, carry ohrR, but oxygen-sensitive species such as L. acidophilus and L. delbrueckii subsp. bulgaricus do not possess the gene. Thus, the antioxidant factors possessed by lactic acid bacteria vary depending on the genus and species, and the response to oxygen stress differs accordingly.

Comparative genomic analysis of *L. casei* and *L. paracasei* revealed that several genes involved in oxidative stress tolerance are shared between the species [23–31]. However, the functions of these genes remain to be clarified.

L. casei IGM394 has high immunostimulatory capacity, and it is used as a host for drug delivery systems [32, 33]. The bacterium also exhibits an extremely good growth rate under aerobic conditions. Similar to other L. casei group bacteria, this strain has multiple oxidative stress tolerance genes, and thus, it is predicted that it has complex mechanisms of oxygen stress tolerance. However, the details of these mechanisms are unclear. It is important to clarify the functions of genes involved in tolerance to oxidative stress in conducting applied research with this strain as the host.

In this study, we constructed 23 deficient mutants (deficient in a single gene, 14 strains; deficient in multiple genes, 9 strains) targeting antioxidant genes reported in other bacteria via a doublecrossover method. The oxidative stress tolerance mechanisms of these strains were evaluated by examining oxygen resistance in shaking culture as well as based on the consumption and resistance to  $H_2O_2$  generated in metabolic processes. As a result, although no differences were observed in the growth of most of the deficient mutants, the  $\Delta npr$  strain had a decreased growth rate. We found that NADH peroxidase is an essential enzyme for  $H_2O_2$  degradation in *L. casei* IGM394.

#### **METHODS**

#### Strains, plasmids, media, and growth conditions

The strains and plasmids used in this study are listed in Table 1. L. casei IGM394 was used as the wild type. The L. casei IGM394 was a derivative of L. casei ATCC 393, and the L. casei ATCC 393 was distributed by a European collaborator. The L. casei IGM394 exhibits high transformation efficiency. Escherichia coli DH5 $\alpha$  (Toyobo, Osaka, Japan) was used as the competent cells for DNA transformation. The plasmid pBTE was used as a cloning vector for deficient mutants. Lactic acid bacteria were grown at 37°C in MRS medium (Becton, Dickinson and Company, Sparks, MD, USA) and LAPTg medium (2% glucose, 1% yeast extract, 1% Bacto Proteose Peptone No. 3, 0.1% Bacto Tryptone, 0.1% Tween 80, and 0.01% MgSO<sub>4</sub>·7H<sub>2</sub>O). *E. coli* was grown at 37°C in LB Miller medium (Becton, Dickinson and Company). Erythromycin was added at a final concentration of 5  $\mu$ g/mL for lactic acid bacteria. Ampicillin was added at a final concentration of 100  $\mu$ g/mL for *E. coli*. The optical density of the culture was measured at 600 nm (OD<sub>600</sub>) using a UV-1200 UV-VIS spectrophotometer (Shimadzu, Kyoto, Japan). The medium was dispensed into test tubes with loose aluminum caps (static condition) or silicon caps that allowed free air exchange (shaking condition). The cells were cultured with shaking at 180 rpm for the shaking condition. Growth analysis of wild-type and mutant strains was performed in three independent experiments under the static or shaking condition. The data are shown as the mean  $\pm$  SE of three independent experiments.

#### Construction of deficient mutants

pBTE is a derivative of the shuttle and thermosensitive plasmid vector pBT2. The origin of replication for lactic acid bacteria cannot function at 42°C. Recombinant plasmids for deficient mutants were constructed as follows. The upstream and downstream fragments of the target gene were amplified by PCR using L. casei IGM394 genomic DNA as a template, PrimeSTAR Max DNA polymerase (Takara, Shiga, Japan), and the primer pairs listed in Table 2. The fragments were digested at both ends using appropriate restriction enzymes (Table 2). The fragments were cloned into pBTE, which had previously been digested using the same restriction enzymes. Recombinant plasmids were purified using NucleoSpin® Plasmid (Macherey-Nagel, Bethlehem, PA, USA) and transferred into L. casei IGM394 via electroporation. Cells were grown in 10 mL of MRS broth to the stationary phase and harvested via centrifugation, and they were then suspended in 10 mL of MRS broth containing 8% (w/v) glycine and incubated at 37°C for 90 min. The cells were subsequently washed twice with an equal volume of sterile water, followed by washing with an equal volume of 50 mM EDTA solution and washing twice with an equal volume of 0.3 M sucrose solution. They were then suspended in 1 mL of 0.3 M sucrose solution. Electroporation was done with a Gene Pulser (BTX, San Diego, CA, USA) using 100 µL of competent cells and 10 µL of plasmid DNA solution in a 2-mm electroporation cuvette at a capacitance, resistance, and voltage of 25  $\mu F,\,48$   $\Omega,$  and 1.5 kV, respectively. Cells were transferred to 1 mL of MRS broth and then incubated at 37°C for 2 hr. After incubation, cells were plated onto MRS agar containing 5 µg/mL erythromycin and incubated at 37°C for 3 or 4 days under anaerobic conditions using AnaeroPouch<sup>®</sup>-Anaero (MGC, Tokyo, Japan). Erythromycin-resistant colonies were selected, and plasmid introduction was confirmed by PCR with appropriate primers (Table 2). To induce plasmid integration, transformants were incubated at 42°C in MRS broth containing 5 µg/mL erythromycin. After several cycles of subculture, cells were plated onto MRS agar containing 5 µg/mL erythromycin and incubated at 37°C for 3 or 4 days under anaerobic conditions using Anaero Pouch®-Anaero. A colony was selected at random, and plasmid integration was confirmed by PCR with appropriate primers (Table 2). The integrants were incubated at 37°C in MRS broth. After several cycles of subculture, cells were plated onto MRS agar and incubated at 37°C for 3 or 4 days under anaerobic conditions using AnaeroPouch®-Anaero. Colonies were selected at random, and gene disruption was confirmed by PCR with

| Strains or plasmid                                       | Phenotype of genotype                                                             | Source or reference |
|----------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------|
| Strains                                                  |                                                                                   |                     |
| L. casei                                                 |                                                                                   |                     |
| IGM394                                                   | Wild-type                                                                         | our collection      |
| $\Delta nox$                                             | deficient of nox gene                                                             | This study          |
| $\Delta nox5$                                            | deficient of nox5 gene                                                            | This study          |
| $\Delta poxF$                                            | deficient of poxF gene                                                            | This study          |
| $\Delta cidC$                                            | deficient of <i>cidC</i> gene                                                     | This study          |
| $\Delta ahpC$                                            | deficient of ahpC gene                                                            | This study          |
| $\Delta ohr R$                                           | deficient of ohrR gene                                                            | This study          |
| $\Delta sod$                                             | deficient of sod gene                                                             | This study          |
| $\Delta suf$                                             | deficient of suf gene                                                             | This study          |
| $\Delta flp$                                             | deficient of <i>flp</i> gene                                                      | This study          |
| $\Delta dpsB$                                            | deficient of dpsB gene                                                            | This study          |
| $\Delta cydAB$                                           | deficient of cydAB gene                                                           | This study          |
| $\Delta gshR1$                                           | deficient of gshR1 gene                                                           | This study          |
| $\Delta i pr$                                            | deficient of ipr gene                                                             | This study          |
| $\Delta n pr$                                            | deficient of <i>npr</i> gene                                                      | This study          |
| $\Delta nox::\Delta npr$                                 | deficient of nox and npr gene                                                     | This study          |
| $\Delta nox5::\Delta npr$                                | deficient of nox5 and npr gene                                                    | This study          |
| $\Delta sod::\Delta npr$                                 | deficient of sod and npr gene                                                     | This study          |
| $\Delta gshR1::\Delta npr$                               | deficient of gshR1 and npr gene                                                   | This study          |
| $\Delta gshR2::\Delta npr$                               | deficient of gshR2 and npr gene                                                   | This study          |
| $\Delta i pr::\Delta n pr$                               | deficient of <i>ipr</i> and <i>npr</i> gene                                       | This study          |
| $\Delta gshR1::\Delta gshR2::\Delta npr$                 | deficient of gshR1, gshR2 and npr gene                                            | This study          |
| $\Delta sod::\Delta gshR1::\Delta gshR2::\Delta npr$     | deficient of sod, gshR1, gshR2 and npr gene                                       | This study          |
| $\Delta i pr:: \Delta gshR1:: \Delta gshR2:: \Delta npr$ | deficient of ipr, gshR1, gshR2 and npr gene                                       | This study          |
| E. coli                                                  |                                                                                   |                     |
| DH5a                                                     | Commercial strain purchased from Toyobo                                           |                     |
| Plasmids                                                 |                                                                                   |                     |
| pBTE                                                     | <i>E</i> coli-gram positive bacteria shuttle vector carrying pBT2 or region pAMb1 | our collection      |
| PDIE                                                     | erythromycin resistance gene, multi cloning sites and temperature sensitivity     |                     |
| pBTE::∆ <i>nox</i>                                       | pBTE carrying deficient fragment of nox                                           | This study          |
| pBTE::∆nox5                                              | pBTE carrying deficient fragment of nox5                                          | This study          |
| pBTE:: <i>\Down</i> F                                    | pBTE carrying deficient fragment of <i>poxF</i>                                   | This study          |
| pBTE::∆ <i>cidC</i>                                      | pBTE carrying deficient fragment of <i>cidC</i>                                   | This study          |
| pBTE::∆ <i>ahpC</i>                                      | pBTE carrying deficient fragment of <i>ahpC</i>                                   | This study          |
| pBTE::ΔohrR                                              | pBTE carrying deficient fragment of <i>ohrR</i>                                   | This study          |
| pBTE::Δsod                                               | pBTE carrying deficient fragment of sod                                           | This study          |
| pBTE::Δ <i>suf</i>                                       | pBTE carrying deficient fragment of suf                                           | This study          |
| pBTE::Δ <i>flp</i>                                       | pBTE carrying deficient fragment of <i>flp</i>                                    | This study          |
| pBTE:: <i>\Delta dpsB</i>                                | pBTE carrying deficient fragment of <i>dpsB</i>                                   | This study          |
| pBTE::∆ <i>cydAB</i>                                     | pBTE carrying deficient fragment of cydAB                                         | This study          |
| pBTE:: \Delta gshR1                                      | pBTE carrying deficient fragment of gshR1                                         | This study          |
| pBTE::\DeltagshR2                                        | pBTE carrying deficient fragment of gshR2                                         | This study          |
| pBTE::∆ <i>ipr</i>                                       | pBTE carrying deficient fragment of ipr                                           | This study          |
| pBTE::∆ <i>npr</i>                                       | pBTE carrying deficient fragment of <i>npr</i>                                    | This study          |

Table 1. Bacterial strains and plasmids used in this study

#### appropriate primers (Table 2).

#### Quantification of $H_2O_2$

quantified using the standard curve.

A mixture of the chromogenic reagent DA64 (100  $\mu$ M in PIPES buffer [0.1 M, pH 6.8, 0.5% Triton-X 100]) and horseradish peroxidase (100 units/mL) was used to measure H<sub>2</sub>O<sub>2</sub> concentrations. Cultures of each strain were harvested via centrifugation (10,000 × g, 3 min). Each supernatant (20  $\mu$ L) were added to the mixture, which was incubated at 37°C for 5 min. After incubation, OD<sub>727</sub> was measured, and H<sub>2</sub>O<sub>2</sub> content was

# $H_2O_2$ consumption

Cells precultured at 37°C were inoculated into 10 mL of MRS medium at  $OD_{600} = 0.05$ . The cells were used after static culture at 37°C for 5 hr. They were then washed twice with PIPES buffer (pH 6.8) and resuspended in 10 mL of H<sub>2</sub>O<sub>2</sub> adjusted to 50  $\mu$ M, 100  $\mu$ M, 300  $\mu$ M with PIPES buffer. After incubation at 37°C for 1 hr under a static condition, the cells were harvested via centrifugation (10,000×g, 3 min). Supernatants were used to

| Table 2. | Primers | sequence | used i | in this | study |
|----------|---------|----------|--------|---------|-------|
|----------|---------|----------|--------|---------|-------|

| Construction of deficient mutuals nov nov_A-forward CAACCIGCAGTITITICETETTGATTAATATGTTTGAAAACAA Nov_A-forward TGGTTGCAATGGATGGAAGCATCGATGCAAACAA Nov_B-forward TGGTTGCAATGGATGGAAGCATCGCTTGAACAACAA Nov_B-forward TGGTTGCCAATGGATGGAAGCATCGCTTGCAACA Nov_B-forward GCAAGACGCTTGTGTGCGGACAGTGCTCGTTTCA Nov_B-forward GCAAGACGCTTGTGTGCGGCGTCGTCGGCGGAAAATTAGAATGCAT Nov_B-forward GCAAGACGCTTGTGGCGCGTCGGTGGGGAAAATTAGAATGCAT Nov_B-forward GCAAGACGCTTGTGGCGGCCGTGGTGGGGAAAATTAGAAAGGAAG Nov_B-forward GCAAGACGCTTGTGGGAGGATTTTGAAGAAAGGAAAGGCAAGT Nov_B-forward GCCAAGACGCTGTGGGGGCGTGGTGGGGAAAATTAGAAAGGAAG Nov_B-forward GCCAGAGCCCAGGGCGCGTGGTGGGGAAAATTAGAAAGGAAG Nov_B-forward GCCAGGACGCGGCGGGGGAAAATGCAAAGGCAAAGG Nov_B-forward GCCAGGACGCGGCGGGGGGAAAATGCAAAGGCAAAGG GCAG-forward GCCAGGAGCGCGGCGGGGGGAAAATGCAAAGGCAAAGG AGACGCAGCGGGGGAAAATGCAAAGGCAAAGGCAAGT AGACGCGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Target gene       | Primer name       | Primer sequence (5' to 3')                        | Restriction enzyme site |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------------------------|-------------------------|
| pace         pace, A-reverse         CAACCTGC/GAAGTTTTTACATATICTTTGAAAAAT         Pal           pace, A-reverse         TGGAAGGAAGTTTTACATACATCACAAAAAA         Hand HI           pace, B-reverse         TGGAAGCTGGTAACGACGTGCCAACGTGCCCGT         Hand HI           pace, B-reverse         CCATGGATCGTAAAGCATGTGGAAGGTACCTTCTCA         Hand HI           pace, B-reverse         GCCATGGATCGTAAGCGTAGGTGCGGGGGAAAATATAGAATCT         Hand HI           pace, B-reverse         GCCCAAGCTTCTTCATCGGACGTCGCCCTTCTCA         Hand HI           pace, B-reverse         GCCCAAGCTTTGGACGGGGGCACTCTCGCATTGCCCTTCAA         Hand HI           pace, B-reverse         GCCCAAGCTCCTTGGACGGCGCCTTGTAAAAAGGAAGGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Construction of d | eficient mutants  |                                                   |                         |
| mox A-reverse         TGGTAGGAGTOTTIAACCATCGATTGAAACAACAA           mox B-roward         TTGGTAGGAGTAGTTAAACCATCGATTGCAA           mox S-A-forward         CCATGGATGCCCCGTGAACGTAGGTAGTTAACCACCATCGTTGCA           mox S-A-forward         CCAAGGTCCCCGTGAACGTAGGTAGTTGAC           mox S-B-forward         TGGAAGCCAATGGCGGGGAATATTAGAATTGGATTGGT           mox S-B-forward         GTGGGATCCCCGGGCAATGGCGGACTTCTGCAA         Hud III           mox S-A-forward         GTGGGATCCACGCCGATGGCGCAATGGCGAA         Hud III           pox B-forward         ATCTTTTGGGAGGATTGTGCAAAAGGAAT         Part I           pox B-forward         ATCTTTTTTTTTGATGGGAGGATTGTCGAA         Part I           cidC - atoward         GCTAGGATCGCAAGGCAATGCGGAA         Part I           cidC - atoward         GCTAGGATCGCAAAGCAAGTGCGAAAATCCAAAAGTCCCCCCAAAAGGAAGTATTGGAAAATCCAAAGTGCGTTTAAAAAAGGAGAATTTGAATGTGGT         Hud III           cidC - atoward         GCTAGGATCGCAATGCGAAAATCCAAAGTCCCCCAAAAGTGCAAGTAGCAAGTGAAGTGAAGTAATGCAAGGTGGTTTAAAAAAGGAGCAATTTGGAAGTGGCTTTAAGTAAAGTGGAGTAAATGTACAAGGTGGCTTTAAGTAAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nox               | nox_A-forward     | CAAC <u>CTGCAG</u> TTTTTGCTGTTGATTAATATGTTTGAAAAT | Pst I                   |
| nox B-roward         TICGTAGCAATGGATGGATAGTAAACACTCCTTCACA           nox B-roward         CCATGGATCCCAAGGGCCACAGGCCCGT         Hud III           nox B-A-reverse         ACCAATGGATCCAAGGGCACAGTGCCTCCTTCAT         Hud III           nox B-roverse         CCCAATGGATCCCCCAGGATGCGCTCGTCTCTTCA         Hun III           nox B-roverse         CCCAATGGATCCACGCAGGCTCGTCGTCAAC         Hun III           nox B-roverse         CCCAAGGCTCTTCTCAAGAGAATCCCCCCAAAGGAT         Ful           nox B-roverse         CCCAAGGCTTCTCTCAAGAGAATCCCCCAAAGGAT         Ful           nox B-roverse         CCCAAGGCATCTTCCAAGAGAAATCCCAAAGT         BanH1           nox B-roverse         CCCAAGGCATCTCCAAGGACACCCCCAAAGTGAAGAAATCCAAAGT         Ful           cidC A-forward         CCCACGGCACCAAGTGACGCCCTTATTA         BanH1           cidC A-roverse         CCACAAGCTCAAGGACATTCCCCAAAGTGACCCCCAAAATCACGTAAAATCCAACGTAATCCCCTTATTAAG         Hud III           cidC B-roverse         CCACAAGCTCCCAACGTGACACAAAATCCACACCTACGTACACCACCCCACACATAGCGCGCAAAATCAACCACCTCCCACACATAGGACACACCACCACACACA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | nox_A-reverse     | TGTGAAGGAGTGTTTAACTATCCATTCGAATTGCAAACAA          |                         |
| mox Barverse         Tro GAAGCTTGTATCCCCAAGTGCCCT         ///mill           mox A. Areverse         CCAGAGTCCCCCGT0AAGCGTAGTGTTG         Baml/I           mox J. Barverse         GCCAAAGGACCCCGTGAACGGCGTCGTCTGCT         Hind III           mox J. Barverse         GCCAAAGGACCAATGCGGGCATCTGGCT         Hind III           mox J. Barverse         GCCAAAGGACCAATGCGGCACTTCTGGA         Hind III           park J. Areverse         GCCACGCGGGCCGCGCGCGCAAAGGCGCGAA         Put I           park J. Areverse         TGCACTGCGCGGGCGCGCGCGCGAA         Put I           gark J. Areverse         TGCATGCGCGGGCGCGCGCGCGAAAGTCCCCCCCCAAAAGGCGGCC         Hind III           gark J. Areverse         TGCATGGCGCGGGCCGAAAGTCCGCGAGTGCGGAA         Put I           gark J. Areverse         TGCATGGCGGGCGCGAGTGCGGAAATCCCCCCCCCAAAAGGG         Hind III           gark J. Areverse         GCATAGGGCGGTGGAAATCCCCGGGTGGATGCGGCGAAGTCCTGAGGCCGAAAGTCCGGAGGGCCGAAAGTCGGGAAGGACCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | nox_B-forward     | TTGTTTGCAATTCGAATGGATAGTTAAACACTCCTTCACA          |                         |
| aox5         nox5_A-loward         CCATGEATECCCCGTGATGCTGTTG         BanH1           nox5_A-everse         AGGAATCCATAGTTCCCCCAGGATGGCGGGGGAAATTAGAATCGT         Hind III           podF         podF_A-forward         GTGAAGGAAGGCCAATGGCGGGGGGAAAATTAGAATCGT         Hind III           podF         podF_A-forward         GTGGGGGCCAATGGCGGCGCTCCGGAAAGGAAT         BanH1           podF         podF_B-forward         GTGGGGGCCAATGGCGCAATGGCGCAAAAGGAAT         BanH1           podF         B-forward         GCGCAAGGCCTTGGCAATGGCAAAAGTAAAGGAAGTT         BanH1           godF         B-forward         GCGCAAGGCCTTGGCAATGCCAACCCCCCCCCAAAAAGCAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | nox_B-reverse     | TTC G <u>AAGCTT</u> GTTATCCGCAACGTGCCGT           | Hind III                |
| nex5_B-Powerse       ACGAATICATAATITTCCCCCAGCATCCCCTTTCA         nex5_B-Powerse       GCC AAAGCTLCTTGATGCCGGCAAATITAGAATCGT         nex5_B-Powerse       GCC AAAGCTLCTTGATGCGGCATCGCGTCTATC         nex5_B-Powerse       ACTITTTGGGAGGGGATTGTTCTAGTGGATAAAAAAGAGAT         poxF_A-reverse       ACTITTTGGGAGGGGATTGTCAGGGAACTCCTCGGAA         poxF_B-reverse       TGCATAGGAAGCAACGGAGGGAAAATCAAAAACGAAAAGCAAACGCAAAGCAAACGCAAAGCAAACGCAACGGAAAATCCAAAAACCAAACGCAACGCAGGAAAATCCAAAAACCAAACCTAACGGAACGCAAAAGTCAAAAGCAAACTCCAATAGCGACCTGGACGGCTTTATAA         cidC_A-horward       GCCATAGGAACCTAGGGCACACAATATCCCGAAAACCCAATAGCGACGCTTGATACGACCA         cidC_B-reverse       GCCATAAAGGAACCTATCGCCAAAATCCAAATACCCACCTGGACGCCTTTGATACGACCA         abpC_A-reverse       GCTAAAGGAACCTATCGCCAAAATCCAACACCATTCCCGAACCACCCTTGATACGACCA         abpC_B-reverse       GCTAGGAACCCACCGTGATATTACCCCCCTTTGATAGCCTA         abpC_B-reverse       GCTAGGACGCCGCGCACAATCCCGAAATCCCAAATCCCAACCCACCACCACCACCACCCAAATCCGACCACCCTTACAATCACCCGAAATCCCAAATCCCAAATCCCAAATCCCAAATCCCGAAATCCCAAATCCCAAATCCCAAATCCCCAAATCCCCAAATCCCAAATCCCCAAATCCCCAAATCCCCAAATCCCCAAATCCCCAAATCCCCAAATCCCCAAATCCCCCAAAATCCCAAATCCCCCAAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCAAATCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nox5              | nox5_A-forward    | CCAT <u>GGATCC</u> CCCGTGAAGCGTAGTTGTTG           | BamH I                  |
| nex5_b-reverse         GCAAAGGCACGACCATGCGGGGGAAAATTATGAATCCT           pxxF         pxxF_A-reverse         GCCGAAGCCACCATGGCGACCTCTGCAC         Hind III           pxxF_A-reverse         ACTITITGGGAGGGATCTTCTGACCAAAGAGAT         pxxI           pxxF_A-reverse         ACTITITGGGAGGGATCTTCTGAGAAAACCCCCAAAAGGAT         pxxI           pxxF_B-breverse         ICCACTGCAGGGCTTGGCAAAACCCCCCAAAAGGAAAATTATCAAAGAGAT         PxxI           cidC_A-reverse         TGATACAAGCTAATGGAAAATCCCCTCCCAAAAAGGACAAAAGAGAAAATTATCAACGCAAAATCCCCTAAAGAGAAATTATCAACGGTCTTTATAA         BauH1           cidC_B-reverse         GCAAAGCCCCACCAATTCCCGATAGCTGCTATGCTGTTATCA         Hind III           ahpC_A-reverse         GCATAGCCCCCACAATTCCCGGTTCTGATGCTGCTATCAGAAACT         Hind III           ahpC_B-reverse         GATAGCCACCGCTGAACTCCCCCAAAATTCAGAACCCCTAGAAATC         Hind III           ahpC_B-reverse         GATAGCCACCCCCCCCAAAATTCACAGGATC         Hind III           ahpC_B-reverse         GATAGCCACCCCCCCCCCAAAATTAGAACCCCTCCCAAAATTCAGAATC         Hind III           ahpC_B-reverse         GATGAGCCACCCCCCCCCCAAAATTAGAAGGATC         Hind III           ada         ad_A-reverse         CATGATCCAAACCTGAGGACAACCTTCC         Hind III           sdd         second-Areverse         GGTGAGGATCCAACCCTGACGCCTAAACCTTC         Hind III           sdd         A-reverse         GGTGGAAACTGCCCCAAAACTGGGAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | nox5_A-reverse    | ACGAATTCATAATTTTCCCCCAGCATCTGCCTTCCTTTCA          |                         |
| mox5         B-revense         GCC AAAGCTLCTICATCGGTCCGCTCATC         Hand III           poxF         AppE A-revense         ACTITITGGGAGGCCCCCCAAGAAAGCC         BamH1           poxF         B-revense         ACTITITGGGAGGCTCTGGCAAGAATCCACTCCCCAAAAAGCA         Fit           cidC         cidC A-revense         TGCATGGAGGCTTGGCAGCGCGCAAAAGCAAAACCCAAAAGCAAAACCCAAAAGCCAAACCCAACCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | nox5_B-forward    | TGAAAGGAAGGCAGATGCTGGGGGAAAATTATGAATTCGT          |                         |
| posF         posF         A-forward         GTTGGCATCCAGCCAATIGCCGATTCTCGGA         BamH1           posF         A-forward         ATCTCTTTTTAGCAGGAAGAATCCCTCCCAAAAGGAT         posF           posF         B-forward         ATCTCTTTTTAATCACTAGAAGAATCCCTCCCAAAAAGGT         Ps1           cidC         A-forward         CGTAGGATCCCTAGGAGTGCCGAA         BamH1           cidC         A-forward         CGTAGGATCCCTAGGAGTGCCGAA         BamH1           cidC         B-forward         GGGATAAAGGAGATTTCGTATGGATGATCGTTAACA         BamH1           cidC         B-forward         GGGATAAGGACACATATGCGATAAGCGAGC         BamH1           abpC         A-reverse         GGAAAGGAGCACCATATGCGAAGAGCGC         BamH1           abpC         A-reverse         GAAAGGGAGACAGATCCCCGCACCGTGATTTACGACGAC         BamH1           abpC         B-reverse         GATAAAGGAGAGTACGCCCCGTAATTGCGAGCAGCG         BamH1           abpC         A-reverse         GATAAGGAGAGAGCCCCCCCAAAATAGCGGAGCGTGCTTCTTAAGAGAAT         BamH1           abpC         A-reverse         GATAAGGAGAGAGCACCCCCCCAAAATAGGG         BamH1           sidC         A-reverse         GATAAGGAGAGAGCACCCCCCCAAAATTACCTCCTTTAA         BatCCTAATTTTTGGGGGGGGGGGTGCTTCCTCTAA         BatCCTAATTTTTTGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAGGAGCACTTGCCCCAAAAGGTG         Hind III         BatCA         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | nox5_B-reverse    | GCC A <u>AAGCTT</u> CTTGATCGGCTCGTCTGATC          | Hind III                |
| porF.B-Forward         ACTITITICGCAGGAGGATICTICIAGTGAAAAAAAGAGAT           porF.B-Forward         ACCACIGACACCACACAGAGACATCCCCCCCAAAAAGT           porF.B-Forward         GCCAAGGACACCAGATGCCCACACACACCCCCCCAAAAGT           cidC.A-forward         GCCTAGGAGCACCACATACGCAAAACICCCATTATCGC           cidC.B-reverse         GCAAAAGCTIGACACACAATACICCTGAACCCATATCCGACCACATACICCACACACACACCCTGACCCCTATACCACCA           cidC.B-reverse         GCAAAAGCTIGGACACACAATACICCCGTGACGCCTTATCACACCACAAAGCCGACCCATTCGCACCCATTACCACCACAAAGCCGCGCCCCAAAACCACAAAGCGCGCCCCCAAAACCACAAAGCGCGCCCCCAAAACAAAAAGAGAGGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | poxF              | poxF_A-forward    | GTTG <u>GGATCC</u> AGCCAATGGCGACTTCTGGA           | BamH I                  |
| pors.B. B-ionwardATCTCTTTTTAATCACTAGAAGAATCCCTCCCAAAAAGTParlcidCh-forwardGCTAGGATCCCAGCGGCACGGCTTTTATABamH1cidC. A-forwardGCTAGGATCCCAGCGGCACGGCTTTTTATABamH1cidC. B-forwardGCGACAAAGGAACCAATCGAAAGGAAAATCAAAATCCAAAATCCACGCTHand IIIohgC. A-reverseGCACAAACCTIGGAACACAATCGAATAGCAAAATCAAAATCAAAATCCAACGCTHand IIIohgC. A-reverseGCACAACCTIGGAACCAATATCCGATAGCTCAACGCTHand IIIohgC. A-reverseCACAACCCTIGGAACCAATATCCGATATATCCGACTAATAGCAACGACCAGCAATATACCGCAATTTTTAAGAATCHind IIIohrR. A-forwardCAACCTGACGAGGCGCGTCGTCCCTCTAAParlohrR. A-forwardCTGACTGACAAGCCGCGCCAAAATAAGGParlohrR. B-ForwardTTAGGAGGAAGCAGCCGCCCCAAAAATAAGGParlsod A-reverseGCACACAAGCTTAAGGCTGATGCCTCCTCTAAParlsod A-reverseGCACAGCTCAAGGCGCGCGAAATCACCGAGGACHind IIIsod A-reverseGCACAGCCAAAGCTGAGGCTGGTCCCTCCTAAParlsod A-reverseGGTAAGCTCCTGGTGAACCATCGAGGACCTTGCCACParlsod A-reverseGGTAAGCTCCTGGTGACCATCACGCCCCCAAAAGGTGHind IIIsuf A-forwardCTGAGGCACAGTGGCCCCCCAAAAGGTGHind IIIsuf A-forwardTTGAGGCACAGTGCCCCCCCAAAAGGTGParlsuf A-forwardGCTAGGACCCAACGCCTTGCCCCCCAAASarl H-reversesuf A-forwardGCTGGGGCCCCCGCAGCACCTGCCCCCAAParlflpflp A-reverseGCACCCGCGCGCTGCCCCCAAAAGGTGGCACTGGCCCCCAAParlgdr3HgafA-forwardGCTGGGGCCCCCCGCGCCCCCAABamH1gdr3Hflp A-reverseCGCACCTGGCAGCCTTGCGCAGCGCCCCCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | poxF_A-reverse    | ACTTTTTGGGAGGGATTCTTCTAGTGATTAAAAAAGAGAT          |                         |
| posF_B-reverseTGCACTGCAGGGCTTGGCAGTGCCCGAAPs1cidC_A-reverseTGATACAAGCTAGGGGCGGCAGGGCTTTTTATABamH1cidC_A-reverseGCGATAAAGGCACGAATACTGGAAGACTTTTATCGGCHind IIIdidC_B-reverseGGATAAAGCCTGGGACACCAATACTCGGAGGCHind IIIdipC_A-forwardGCTGGGATCCAACACCACATATCCTGGAGGCHind IIIdipC_A-forwardTAGCTGATCAAAGCCGCGGTGGCTGCTTTGATCAACTABamH1dipC_B-reverseCTAAAAGGGAGGATGATGCCCTAAHind IIIohrR_AbornardCAACGTGGAGGAGGAGGATGGTCCCTAGAAATAAGAGGAGGAGAGGAGGAGGAGGAGGAGGAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | poxF_B-forward    | ATCTCTTTTTTAATCACTAGAAGAATCCCTCCCAAAAAGT          |                         |
| cid2eid2A-verseGCTAGGATCCCAGCGTGACGGCTTTTATABamH1adpCGCGATAAAGGACAATTTGATTTTGCGATAGCTTGATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | poxF_B-reverse    | TGCA <u>CTGCAG</u> GGCTTGGCAGTGCCGAA              | Pst I                   |
| eidC -Areverse GATACAGAAGCTAATGGAAAAATCAAAATCTCCTTTATCGA<br>eidC B-reverse GACAAAGGCATATGGATTTGGATTTGGATTGCA<br>eidC B-reverse GACAAAGGCATGGAATTTGGATTTGGATTGGAT<br>alpC A-reverse GACAAAAGGGAGTAATACACAGGGTGGATGGACGACA<br>alpC B-reverse GATAAAGGGAGGAGTGATATGCACGGGGGTTGATCAGGTA<br>alpC B-reverse GATAAAGGGAGGAGTGATATGCACGGGGGTTGATCAGGTA<br>alpC B-reverse GATAAGGTAGAGGAGGGATGGATGCCTCAGATG<br>ohrR A-forward CAAGGTGCAGGGGATGGATGCCCTCAAATGGAG<br>ohrR A-forward CAAGGTGCAGGGATGGATGGCAGGGATG<br>ohrR B-Reverse GCACAAGGCGGCGGAGAGGCGAAGGGATG<br>ohrR B-Reverse GCACAAGGCTGAAATGCAGGCAAATGA<br>ohrR B-Reverse GGACGGAGGATGGATGGCAGAGGGATG<br>sod A-reverse GGACGGAGGCGGAAATGCACGCACCAAAGGT<br>sod A-reverse GGACGGAGGATGAGCATCGGAAATGCACT<br>sod B-reverse GGTAAGGCTGGAGTGGCAGATGGCACAC<br>sod A-reverse GGTAAGGCTGGGAATGCACACTC<br>sod B-reverse GGTAAGGCTGGGAATGCACACTCC<br>sod B-forward CTGGAGGCAGGTGGCTGGGAATGCACT<br>sod A-reverse GGTGAGGCAGGTGGCTGGGAGATGCACT<br>sod B-reverse GGTAAGGCTGGGGCGAAATGCACT<br>sod B-reverse GGTAAGGCTGGGTGCGTGGTGGGCCAAAGGT<br>flp A-forward CTGAGGACGAGTGGCCGAAAAGGT<br>flp A-forward GCAGGGAATGTGCCGTGGAGTGGCCGAAA<br>sof B-reverse TGGAGGACGTGGCCGGAGAGTGGCCGAAAGGT<br>flp A-forward GCTGGGAGACGTGCCGGAGGAGCACT<br>flp A-reverse CGCACGGGGCCAAACGGTGCCGAGGAGC<br>flp B-reverse CGTGCGGGAGCCGAGGGGCGAGGGAGCACT<br>flp B-reverse CGCACGGGGCCGAAGGTGGCCGAGGGAGCAGG<br>flp B-reverse CGCGCGGGGAGCCGAGCGTGCGGCGAAGGC<br>flp B-reverse CGCGCGGGGGGAGACCCACTTGCCCCCCAA<br>dpsB A-forward GCGGGGGGCGAAGCACTTGCCCCCCGGGCAA<br>dpsB A-forward GCGGGGGGGGAGAGAAGCACTGTGGCAGCG<br>fggBA-forward GCGGGTGGAGGGAGAGAAGCCACTGGGCGAAAGA<br>cydAB B-reverse CGCGCGGGGGGAGAGAAGCCCATTGGAGCG<br>gshR-1 A-reverse CAAGGAGGAGCACAGTGGCGCGAAAGA<br>cydAB B-reverse CGCGCGGGGGAGAGGAAGCCACTGGGCGAAAGA<br>fggBA - forward ATGGAGGTGCCGCGCGCGGCGAAAGA<br>fggBA - forward ATGGAGGGAGCGCGAAGGGGGGGAAAGACCCACTGGCGCAA<br>gshR-1 B-reverse CAAGGAGGAGCACATGGTGGAGGCGAAGAGCACGGCGAAAGA<br>fggBAB - forward ATGGCGGGCGAAGAGGAGGGGGCGAAAGACCCCGGCGAAAGA<br>fggBAB - forward ATGGCGGGAGCACAGGTGGCGCGAAGGCAAGGGAAGCACGCGCGAAGGGAGGG                                                                                                   | cidC              | cidC_A-forward    | GCTA <u>GGATCC</u> CAGCGTGACGGCTTTTTATA           | BamH I                  |
| eide B-reverse GACAAAGGAGATTITGATTITTGATTAGCTTGATCA Hud III ahpC A-reverse GACAAGGCTGGGACACAATATCGTGAGGC Hud III ahpC A-reverse GATAGAGCTGGAGCACCATTGATATTACCTCCATTTTAG ahpC B-reverse GATTAGGCTTAGATGATCACGGATGATTAGCACCATTGATAGATC IIII ohrR ohrR A-forward CAGCTGGATGATGATGACCATGTGATATTACCTCCATTTTAG ohrR ohrR A-forward CAGCTGGAGGAGGAGGCCTGGATGATCAGGATG ohrR A-forward CAGCTGGAGGAGGAGGCCTGGATGATCAGGATG ohrR A-forward CAGCTGGAGGAGGAGGGCTGAGCTGAGGATG ohrR A-forward CAGCTGGAGGAGGAGGCGCCGCAAAATAGG ohrR B-forward GAAGGTTGATGATGATCAGGATG Hind III sod A-forward GAAGGTTGATGATGATCAGGATG IIII ohr III sod A-forward GAAGGTTGATGATGATCAGAAGCACCTGGAAAATGCAGGAAGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | cidC_A-reverse    | TGATACAAGCTAATCGAAAAATCAAAATCTCCTTTATCGC          |                         |
| eidC B-reverse GACAAAGCTTGGACACAATATCGTGAGGC Hind III ahpC A-reverse CTAAAAATGGAGGTAATATCAACGGTGGCTTTGATCAGGT ahpC A-reverse CTAAAAATGGAGGTAATATCAACGGTGGCTTTGATCAGGTA inpC B-reverse GATTAAGGTTATGTGCGTGATGTCGGTTTGATAGAAATC inpC B-reverse GATAAGCTTGTGTGCGGATGCTCCGTTTTAAGAATC bhrR A-forward CTAGCTGAGGCGGGGGTGCTCCCCTTCATA ohrR A-forward TTAGGAGGAGCAGCGGCGGTGGTCCCCCTCCTAA ohrR B-Reverse CCTACAAGCTGCGGGGTGCTCCCCTCCTAA ohrR B-Reverse GCACAAGCTGCGGGGGTGCTCCCGCAAATC Psr1 sod A-reverse GGTGACGCGAAGCTGCGGAAGTCCGGAAAATC sod B-reverse GGTTAAGGTTGATGCTCGGAGATGCAGGATG sod B-forward GTAGCGGAGCTCTCCTGGGACGTCCCCCAAAAGGTG Hind III suf A-forward GAAGGTGATTCCTCGGAGTGTGTGGGCAGATC sod B-reverse GGTTAAGGTTGGTCAGGATGACGGACCATCAGGTG Hind III suf A-reverse GGTTAAGGTTGGTCAGGTGGATGCCCCAAAAGGTG Hind III suf A-forward GCTAGGAGCACGTGGCGGCGCCCAAAAGGTG Hind III suf B-reverse GGTTAGGCCCAAGTCGGCGCAGATCGCCCAAAGGTG Hind III suf B-reverse GCATCGGCAAACATGCCAAAAATGTTGGC Psr1 fp ffp A-forward GCTAGGGATCAGGTGCGGTGGGTGGCGGCGAGCG fp B-reverse CGCCCGGGGAGCCCCATCGCCCCAA suf B-reverse CGCCGCGGAGCCCGATGCCCCCAACGGTCGCGAGGAGC fp B-reverse CGCCGGGGAGCCCGATGGCCCCAACGGTTGCCACCCTCCTAA fp B-forward GCTAGGGATGCACGGTTGCCACCCTCCCAA fp B-reverse CGCCGCGGAGCACGGTTGCCACCCTCCTAA fp B-reverse CGCGCGGAGCACGGTTGCCACCCTCCTAA fp B-reverse CGCGCGGAGCACGGTTGGCACCCTCCCCAA fp B-reverse CGCGCGGAGCAGCGTTGGGACCCATCGGCA BamH1 fp A-forward CCGGGTGCAGCGGAGCAGAGCACTGTGGACCCCACGG fp B-Reverse CGCGCCGGAGCAGAGCACGGTTGGACCCCACG gbsB B-forward ACAGGAGGAGCAAGTGGAACCCACGGTCGGCAA gbsB A-reverse TGGGAGCCGAGGGGGGAAAAGA ccCGGGTGCAGGGGGGGAAAAGA ccCGGGTGCAGGGGGGGGAAAGAA gbsB A-reverse TGGGGGGCCGAAGGGGGGGGAAAGGA fp C-reverse CACAGGGGGGGGGAAAGGACCCGTGGTGGACCCGCG gbsB B-forward ACAGGAGGAGCAGGTGGGGGGGAAAGGA gbsB A-reverse CGCGGGGGGGGGGGGGGGGGGGGGGGGGGAAAGGA gbsB A-reverse CGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGAAAGGA gbsB B-forward ATGGGGGGGCTGAAGGGGGGGGGGGGGGGGAAAGGA gbsB B-forward ATGGGGGGGCTGAAGGGGGGGGGGGAAAGGA gbsB B-forward ACAGGGGGGCGGGGGGGGGGGGGGGGGGGAAAGGA gbsB B-forward ACAGGGGGGCGGGGGGGGGGGGGGGGGGGG                                                                                                                     |                   | cidC_B-forward    | GCGATAAAGGAGATTTTGATTTTTCGATTAGCTTGTATCA          |                         |
| ahpC     ahpC A-forward     GCTAGGATCCCCTACATTCTCGATATCGGT     BamH1       ahpC A-forward     TAGCTGATCAAAATGGGGTAATTACACGGTGCTTTGATCAGCTA     ahpC B-forward     TAGCTGATCAAAGGACGGTGATCACACGGTGGTTGATCACCGTCA       ohrR     ohrR A-forward     GATTAAGGTGGAGGAGGATGATCACACGGTGCTTTATAAGAGATC     Hind III       ohrR A-Reverse     CCTTATTTTTGGGCGGCTGCTTCCTCCTAA     Psr 1       ohrR A-Reverse     CCTTATTTTTGGGCGGCTGCTTCCTCCTAA     Psr 1       sod     ohrR A-Reverse     CCTAAGTGGAGGAGATGATCAACATAGG     Psr 1       sod     sod_A-forward     CTGACTGCACACTGGAGGAATGCCCAAAAATAGG     Psr 1       sod     sod_A-forward     CTGACTGCACACTCGGAGTTGATCACACTTC     Psr 1       sod_A-forward     GAAAGGTTGATCCTGGATGATTACCATCCCCAAAATG     Psr 1       sod_A-reverse     GGTTAGGCTTGATTGCTCGAGGACCAAAATGCCAAAATG     Psr 1       suf     A-forward     GAAGGTTGATTGCTCGGATGATTAAAATGCCAAAATGC     BamH1       suf     A-forward     GAAGGCTGAATCCAAGCACTGCCCCAAAATGGGACACAAGACCCAAAATGTGCAAAATGTTGGAC     BamH1       suf     B-forward     GCTACGGAGACGCAGTGCCCCAACGCCCCCCAAAATGTGGACCAAAATGTGAAATTTTGACAAGAGCAAGAACGACGACGCTGCCAAAGGCCAAGACGATGATGGACGAAGAAAATGTTGGCCAAAGGCCAAGACCATTGCCAAAGCCCAAGACCCATTGCCAAAGCAGAAGAAATGTTGGACAAGAAGAA     HamH1       fip     B-reverse     GCACCTGCGAAGCGTGCAAGCCCCCCCAAAGCGCGGCAAAGAA     HamH1       gab     B-reverse     GCACCTGCGAAGCGTGAACCCCCTCCCCAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | cidC_B-reverse    | GACA <u>AAGCTT</u> GGGACACAATATGCTGAGGC           | Hind III                |
| ahpC A-reverse CTAAAATGGAGGTAATATCAACGGTGCTTTGATCAGCTA  ahpC B-reverse GATT <u>AAGCTT</u> ATGTCCGTGATATTACCTCATTTTAG  ahpC B-reverse GATT <u>AAGCTT</u> ATGTCCGTGATCGTCCATTTTAAGAATC Hind III  ohrR A-forward CAAGCTGGCAGGCATGATGCCTAG Pr 1  ohrR A-reverse CTTATTTTTGGGCGGCGTCTCTCTCTAA  sod A-reverse GCACAAGCTTAGGTGATGAGCAGCGCAGAGAATC Pr 1  sod A-reverse GCACAAGCTGAGGCAGAGAATCCACCTTAC  sod A-reverse AGTGACCAAAGCTGAGGAGAATCCACCTTGC  sod A-reverse GGTT <u>AAGGTGAAATTCCCGCAAAAATC Pr 1  sod A-reverse GGTTAAGGTGAAATTACCATCCAAGGAGAAAAAAAAAAA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ahpC              | ahpC_A-forward    | GCTA <u>GGATCC</u> GCTACATTCTCGATATCGGT           | BamH I                  |
| ahpC_B-forward     TAGCTGATCAAAGCACCGTTGATATACCTCCATTTAG       bhrR     ohrR_A-forward     CAAGCTGCAGGAGCGATGATGCCTCGTTTATAAGAATC     Hind III       ohrR_B-Reverse     CCTTATTTTGGGCGGCGTGCTTCCTCCTAA     Fsr1       ohrR_B-Forward     TTAGGAGGAAGCAGCCGCCCAAAAATAAGG     Hind III       sod     ohrR_B-Reverse     GCACAAGCTTGAAGGTTGATGGATCAGGATG     Hind III       sod     sod_A-forward     CTGACTGAAGCTTCCTCGAAAATCCAAAATC     Psr1       sod_B-forward     GAAAGGTTGATCCTCGATGATTGCTCCAAAAGTG     Hind III       sod_B-forward     GAAAGGTTGATCCTCGATGATTGCCCCAAAAGGTG     Hind III       suf_B-forward     GATAGGTTGATCCTCGATGTTGGTCAACT     BamH1       suf_B-forward     AATAGGAATCCATGGCTCCAAAGGACCAAGGGC     BamH1       suf_B-forward     AATAGGATCCCAGGCACCATGCCCCAA     BamH1       suf_B-forward     GCACAGGCACAGTGCCCATGCCCCAA     BamH1       flp     flp_A-forward     GCACCAGGCCCCGATGACCCATGCCCCAA     BamH1       flp_B-reverse     CCGCTGTCAACAGCCCCATGCCCCAA     BamH1       flp_B-forward     TTAGGAGGAAGCACTGCCCCCATAGCC     Psr1       dpaB     dpsB_A-forward     GGTCGGGAACGCGTTCCCCCCCTCAA     BamH1       flp_B-reverse     CCGCTGCAACAGCCCCCATGACCACCACCCCCAA     BamH1       dpaB     dpsB_A-forward     GGTCGGGAAGGAACCAATTGTGCACCACACGCC     Psr1       dpaB     d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | ahpC_A-reverse    | CTAAAAATGGAGGTAATATCAACGGTGCTTTGATCAGCTA          |                         |
| ahpC B-reverseGATTAGCCTTATGTCCGTGATCGTCAGTCGTTATTAAGAATCHind IIIohrRohrR A-ReverseCCATTATTTTGGGGGGGGGTAGTGCGTAGYind IIIohrR B-forwardTTAGGAGGAGGAGGAGTAGGAGTCAGGATGHind IIIsodsod_A-forwardCTGACTGCAGCGCCGCAAAATAGGGHind IIIsodsod_A-forwardCTGACTGCAGCGCCGAAAATGCGCCAGAATGPsr Isod_B-reverseAGTGACCAAACATGAGGAATGCAGCATCAGGTGHind IIIsod_B-reverseGGTTAAGCTTCCTGATGTTGGTCAGTHind IIIsuf_A-reverseGGTGAGCAAAGGTTGATTCCTCGATGTTGGTCAGTBamH1suf_A-reverseGGTGAGGCAAGTGTCCTGGTGAATTACCATCCCCAAAGGTGHind IIIsuf_A-reverseGTGAGGCAAAGTGTCCTGGTGACATGAGCAAAGGTGBamH1suf_A-reverseTTGTAGTCACCAGGACAATGTGCCTAAAATGTTGGCPsr Iflpflp_A-forwardTTTTAGGAGGGCAACGTTGCCGCGATGATGBamH1flp_A-reverseCCACCCTGGCAACGATCACCCAACGCTCAACCPsr Iflp_B-reverseTCGGCTGCAGGCCGATGACCCTCAACPsr IdpsBgBB_A-forwardGGTGCGAGGACGATGTCTCCCCTCTAABamH1dpsBgBB_A-forwardGCGGCTTAGAGGAAAGAACTCAAGCTTGAGAGCGHind IIIcydABdpsB_A-reverseGCGGCTTGCAAGGCCGAAGGACACGTGTGTGCAGCAGGGCGAAAGAFsr IcydABgBR-1_A-forwardGCTCGGAGGAGGAAGGACACCCAGCTGTGTGCAGCGGCAATFsr IgshR1gshR-1_A-forwardCCTCGGAGCCCGCGCGCGCGCGCGCGCGCGCGCGCGCGAATFsr IgshR1gshR-1_A-forwardCCTCGGAGCCCGCGCGCGCGCGCGCGCGCGCGCGGCGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ahpC_B-forward    | TAGCTGATCAAAGCACCGTTGATATTACCTCCATTTTAG           |                         |
| ohrR     ohrR A-forward     CAAGCTCCAGGAGCATGATGCCTAG     Pst1       ohrR A-Reverse     CCTATTTTTGGGGGGGCGCTAGATGCCTCAA     ohrR B-Reverse     CCACAAGCTTAGGAGCAGCGCCCAAAAATAGG       ohrR B-Reverse     GCACAAGCTTAAGGTTGATGGGAACAAGCAGCGCCCAAAAATC     Pst1       sod A-forward     CTGACTGCAGGCGGCAAAATCGGAGAAACC     Pst1       sod A-forward     CGACAGCAACATCGAGGAGAACACCTTG     Sod A-forward     GAAGGTTGATTCCTCGATGTTGGTCACT       sod B-forward     GATAGCTGGTAAATCCCATCCCAAAAGGTG     Hind III       suf A-forward     AATAGGATCCTTGTGGTCCAAACACTGAGGAC     BamH1       suf A-forward     AATAGGATCCTGGGCAAACATGCTCAAAA     BamH1       suf B-forward     TTTTAAGTCACCAGGACACAGCCTCAAA     BamH1       fip     fh p.A-forward     GGTCGGGTCCAAGCGTTGCCGAGGTGACCTCAA     BamH1       fip.     heverse     GGCTGGCAGGCCCGAGGCCCTCAAC     BamH1       dpsB B-forward     GGTCGGTCGAGGCCCGAGGACCTCAACC     BamH1       dpsB B-forward     GGCCGGTAAGAGGTGACAAGCTTGTGGAAGGCGAGAGGC     BamH1       dpsB B-forward     GGCCGGCGCAGGAGAAGCATCAGGTTGTGGAAGGCGA     BamH1       dpsB B-forward     GGCGGTCGAGGCCCTAAGCTTACGGTACAGGT     Pst1       gpsB B-forward     GGCCGGAGGAGAAGCATTGTTGAAAGCTCAGGT     Pst1       gpsB J-reverse     GGCGGTGGCAACGGTGCCCTAATC     BamH1       gpshR.1     pshorward     CCCGGGTGGCCCGAGGAGAAGCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | ahpC_B-reverse    | GATT <u>AAGCTT</u> ATGTCCGTGATCGTCCGTTTATTAAGAATC | Hind III                |
| ohrR_A-ReverseCCTTATTTTGGGCGGCTGCTTCCTCAAohrR_B-ReverseGCACAAGGCTGACGCCCCAAAAATAAGGohrR_B-ReverseGCACAAGGTGACGGCGCCCAAAAATAAGGsodsod_A-forwardCTGACTGCAGCGCGCGAAATTGGCCAAAATCsod_A-reverseAGTGACCAAACGAGGAGAATCAAGCGAGGATCATTCCsod_B-ReverseGGTGACCAACGTGGTGGTCAATTGCCCCAAAAGGTGsod_B-reverseGGTGAGCATGTGGTGGTCAAGGATCAGGGACsuf_A-forwardAATAGGATCCTTGGTGTCCCCCAAAAGGTGsuf_B-reverseGGTGGCAGATGTCCTGGTTGACTTAAAAsuf_B-reverseGCACTGCGCAGCACTGCCCAAGCACCAGGACsuf_B-reverseGCACTGGCAGAATCATGCTGCAAAATGTTGGCflpflp_A-forwardGTTAGGAGGCAACGCTTGCCAACGCATTGCflpB-reverseCACCCTCGGCAAGCACCAGCCCTTAGflpB-reverseCCGCCTGCAGACCCTTGCCAACGCCCTCCAAflp_B-reverseCCGCGTGCAGGCCCGATGCCTTACGGTAGGCTGflp_B-reverseCGCGCTGCAGGAGCCCTCAACflp_B-reverseCGCGCTGCAGGAGCCCTATCGGTTACGGCAflp_B-reverseCGCGCTGCAGGAGAGAAGAACTCAAGCTGTGTGAAAGCGCGdpsB_B-forwardGCGGCTGCAGGAGAGAAGAACTCAAGCTGTTGACAGCGdpsB_B-reverseCGCGCTGCAGGAGAGAAGAACTCAAGGTGGAGAAGAcydAB_A-reverseTCTTTGCCCGCCGCTTGATCACCTTATCgshR1p-forwardATAGAGGGGACCATGGTTGACACCTGTgshR1A-reverseTCTTGGCGCCCCGCCGgshR1B-reverseTCTTGGCGCGCCGCGgshR1A-reverseTCTGGAGCCTTCACTATCATCATTGTCgshR1B-forwardATAGGAGGAGCCAATGGTTGATCCCTGgshR1B-reverseGCGCGCGCGGCGAAAGGCTAATGGTCCTTGTgshR1B-reverseGCGCCTCCACCTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ohrR              | ohrR_A-forward    | CAAG <u>CTGCAG</u> GAGCGATGATGCCTAG               | Pst I                   |
| ohrR_B-forwardTTAGGAGGAAGCAGCCGCCCAAAAATAAGGsodohrR_B-ReverseGCACAAGCTTAAGGTTAGGATCAGGATGHind IIIsodsod_A-forwardCTGACTIGCAGCGGGAAATTGCGCAAAATCPst Isod_B-forwardGAAAGGTTGGATCCTGGAGGATCAACCTTTCsod_B-forwardAGTGAACAAACATCGAGGAATCAACCTTTCsod_B-reverseGGTTAAGCTTGGTGACTCAGGACCBamH1suf_A-forwardAATAGGATCCTTGGTGGTCCAAGCATCAGGACBamH1suf_A-forwardTTTGAAGCAAGAGTGCTGGTGGTTCAATAAAsuf_B-reverseGCATCGCCAAGAAGTGCCTGGTGGGTTAAATAAASuf_B-reverseGCATCGCCAAGAACGTGCCTAAAAsuf_B-forwardTTTTAAGTCAACCAGGACACTTTGGCTCCAABamH1flpflp_A-reverseCATCACTCGGCCAAGACGACCGCTGCCCAAABamH1flp_B-reverseCATCACTCGGCGCAAGCACGACCCCTCTAABamH1flp_B-reverseCGCGCGGGACCCAACGACCGTGCCCAAAACBamH1dpsBdpsB_A-reverseCGGCTGGGAACGCGTAACGGCCGAACGGCTGATGGCBamH1dpsBdpsB_A-reverseGGGTCGGAACGCCTAAGGACTCAAACCCTCTACCCCBamH1dpsBdpsB_A-reverseGCGGCGGCGAGAAGCAATCAGCCTGTGTGAACGCGCBamH1cydABeydAB_A-forwardGCGCGCAGGAGAAGCAATCAGCCTGTGTGAACGGCGSal1cydABeydAB_A-forwardCCTCGGGACGCACCACTCACTCTATeydAB_A-forwardATAGAGGGAGTCAAAGCGCGCGCAAAGAcydABB-reverseTAGAGGGGATCAAAGCGGCGGCGAAAAGAeydAB_B-reverseCAACGCGCCCCTGAACCCTCTCATgshR1gshR-1_A-reverseATAGAGGGAGTCAAAGGCGGCGAAAGASal1gshR2gshR-2_A-forwardATCAAGGAGGAGCCTAAGGCGCCGCAATSal1gshR2gshR-2_A-revers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | ohrR_A-Reverse    | CCTTATTTTTGGGCGGCTGCTTCCTCCTAA                    |                         |
| ohrR_B-ReverseGCACAAGCTTAAGGTTGATGGATCAGGATCHind IIIsodsod_A-forwardGCACAAGCTGCAAATTGCGCAAAATCPst Isod_A-reverseAGTGACCAAACATCGAGGAATCAACCTTTCsod_A-reverseGGTAAGGTCGTGTGTGATCACCTTCsod_B-reverseGGTTAAGCTTGGTCAAGCATCCCCCAAAAGGTGHind IIIsuf_A-forwardAATAGGATCCTTGGTCCAAGCATCAGGACBamH1suf_A-reverseTTGGAGGCAAGTGTCTGGTGTCAAGCATCAGGACBamH1suf_B-reverseGCATCGCAACAGGACCCTTGCCCAASaf B-reverseflpflp_A-forwardGCTAGGATCCACGAGCACCTGCCCAABamH1flp_B-reverseCATCACCGGCAACCGTGCCCAAGCACCGTGCCCAABamH1flp_B-reverseCCATCACCGGCACCGTTGCCCAGTGATGBamH1flp_B-frewerseTTAGGAGGTGGCAACGGTTGCCGAGTGAGGBamH1dpsBdpsB_A-forwardGGTCGGGATCCAATGCCTTAAGGTTAGGCACBamH1dpsBdpsB_A-forwardGGCGGTAAGAGGAAGAACTCAAGCTGTGTGACGAGAGGdpsB_B-forwardcydABgesdA-reverseCCTGTGTCCCCAATCACTACCATTCBamH1cydABeydAB_A-reverseCCTGTTTCCCCCTAACATCACTTCBamH1cydABgshR-1A-forwardCCAGGCTGAACACCTGGCGAAAGCAFst IgshR1gshR-1B-forwardATAGGGGCGTAAAGCGGCGGAAACGGCGAAAGGASal IgshR1gshR-1B-forwardCAATGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ohrR_B-forward    | TTAGGAGGAAGCAGCCGCCCAAAAATAAGG                    |                         |
| sod     sod_A-forward     CTGACTGCAGCGCTGAAATTGCGCAAAATC     Pst1       sod_A-reverse     AGTGACCAAACATCGAGGAATCAACCTTTC     sod_A-reverse     GGTGAACCATCACATCGCATGTTTGGTCACT       sod_B-reverse     GGTTAAGCTTGGTGACCTCCCCAAAGGTG     Hind III       suf_A-forward     AATAGGATCCTTGGTGGTCCAAGGATCAAGGTG     BamH1       suf_A-reverse     TGGAGGCAAGTGTCCTGGTGGCACTAAAA     BamH1       suf_B-reverse     GCATCTTGCCAGGACACTTGCCCAAA     BamH1       flp     Mp_A-reverse     CCATCGTCGCAGAACCATTGCCCCAAA     BamH1       flp     A-forward     GCTAGGATCCCCAAGCACATTGG     Pst1       flp_A-reverse     CATCACTCGGCAACGACGTTGCCCACAA     BamH1       flp_B-forward     TTAGGAGGTGGCAACGGTTGCCAGGACACGTCCTAAA     BamH1       dpsB_A-reverse     CGCGCTGCAGGACCAATGGCTCCAAGAC     Pst1       dpsB_A-reverse     CGCGCTGCAGGACCAATGGTTGACGACA     BamH1       dpsB_B-reverse     CGCGCTGCAGGAAAGACTCAAAGCTTGATGACAGAGGG     HamH1       cydAB     eydAB_A-reverse     CGCGCTGCAGGAAAGACCTAAGCTTGTGGAACAGGG     Pst1       cydAB     eydAB_A-reverse     CCTCGCGAGACACACGTGCAAAGAGA     EydAB       cydAB     eydAB_A-reverse     TGAACGGCCTGAACACGTGCAAAAGA     EydAB       cydAB_B-reverse     TAGACGGACCAATGAGGCCGCAAAAGA     EydAB       gshR1     gshR-1_A-reverse     TAGACGGCGCGCAAACGGCGCGCAAAAGAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | ohrR_B-Reverse    | GCAC <u>AAGCTT</u> AAGGTTGATGGATCAGGATG           | Hind III                |
| sod_A-reverse AGTGACCAAACATGAGAGAATCAACCTTC<br>sod_B-forward GAAGGTGATCCCTCGATGTTGGCACCT<br>sod_B-reverse GGTTAAGCTTGTGATGACTCCCCAAAAGGTG Hind III<br>suf_a-reverse TTGGAGCAAGTGCCTGGTGACTTAAAAA<br>suf_A-reverse GCATCTGCAAGGATCAGGACCACTTGCCCCAA<br>suf_B-forward GCTAGGAACGTGCCGGGCACCGTCCCAA<br>flp_h-a-reverse GCATCTGCCAAGGACCCATTTG BanH1<br>flp_A-reverse GCATCTGCGCAACGATCAGGACCCATTTG BanH1<br>flp_A-reverse GCATCTGCGCAACGATCAGGACCCATTTG BanH1<br>flp_A-reverse GCATCTGCGCAACGGTGCCGAGTGACT<br>flp_B-reverse TCGGCTGCCAAGGACCGTTGCCCACCTCCTAA<br>flp_B-reverse TCGGCTGCCAGGCCCGATGACCCACTGC<br>dpsB_A-freverse CGCTCTGTCAACCAGGACCCATTGGCACCGC<br>dpsB_A-freverse CGCTCTGTCAACAAGCTTGAGTACGGCA BanH1<br>dpsB_A-reverse CGCTCTGTCAACAAGCCTGAGGCAGTGGCAAGGCG<br>dpsB_B-forward GCGGTGCAGGAGCAATCGTGTGACAGGCGG<br>dpsB_B-forward CCCGGTGCAGGCCCGATGACCCATTC<br>cydAB_A-forward CCCGGGTGCCGAGGCCATCATTG BAAGTCAGGCG<br>dpsB_B-forward CCCGGGTGCACGGCCGATGAGTCTTCCCCTCTAACGGCA<br>dpsB_B-forward CCCGGGTGCACGGCCGCGCGCAAAGGCAGTCGTTGACAGGCG<br>cydAB_B-reverse TCTTTTCGCCGCCCGCTTTGATCACGCCG<br>gshR-1_A-forward CAAGGAGGACGCTGCGTGAACGAGCAT<br>gshR-1_B-forward ATAGAGGTGCAACGGTGCGAAAGAA<br>cydAB_B-reverse TCTTTTCGCCGCCGCTTGATCCCCGG<br>gshR-1_A-forward CCACGGAGACCATGGTTGTAGCGGCGAAATGA<br>gshR-1_B-forward ATAGAGGTGCAAAGCGTGCGAAAGA<br>fgrA-reverse TAGACTGCAACCGTGCATCACTG<br>gshR-1_B-forward ATGGAGGCGCAACCTTGATCCCGG<br>gshR-1_B-forward ATGGAGGCGCAATTGTGTGCCCGGCGAAT<br>gshR-1_B-forward ATGCGCGCCAATTAGGTGTCACCTCCTTGT<br>gshR-1_B-forward ATGCGCGCACCATGACCGTGCAATGATGATC<br>gshR-2_B-forward ATGCGCGCACCATGAGGCGCAAT<br>fipr_A-reverse GCCGG <u>GCGAACGAATGATGATC</u><br>gshR-2_B-forward ACAGGGGCGAACGATAAGGTGCTAATGATCC<br>gshR-2_B-forward ACAGGGCGAACGATAAGGTGCTAATGATCC<br>fipr_A-reverse GCCGG <u>GCGAACGAATTAAGTGCCTCCTTGT</u><br>fipr_A-reverse GCCGG <u>CCAACGAATTAAGTGCCTCCCTCAA</u><br>fipr_A-reverse GCCG <u>GCCGAACGAATTAAGTGCCTCCCTCAA</u><br>fipr_A-reverse GCCG <u>CCAACGACTTACGGCCCCCAAA</u><br>fipr_A-reverse GCCC <u>AAGGAACGAACGATAAGGTTGCCCCTCAAA</u><br>fipr_A-reverse ATTAGGAGGACAATTTACCTTTAAAGGCCCCCAAAGGACAATTGATCCCTCAACGACCTCAACGACCTTCAACGACCTCCAACGACTTACGACCAACGACTTACCTCCTCAACGACTTACGACCT | sod               | sod_A-forward     | CTGA <u>CTGCAG</u> CGCTGAAATTGCGCAAAATC           | Pst I                   |
| sod_B-forward GAAAGGTTGATTCCTCGATGTTGGTCACT<br>sod_B-reverse GGTT <u>AAGCTTGGTCAATAACATCCCCCAAAAAGGTG Hind</u> III<br>suf_A-forward ATA <u>GGATCCTTGTGGTCCAACCATCAGGAC BamH</u> 1<br>suf_A-reverse TTGGAGGCAAGTGTCCTGGTTGACTTAAAA<br>suf_B-forward TTTTAAGTCAACCAGGACACTTGCCTCCAAC<br>flp_A-forward GCTA <u>GGATCCCAAGCACAGCACCATTTGG</u> BamH1<br>flp_A-forward GCTA <u>GGATCCCAAGCACCGGTGCCCACCATTTG</u> BamH1<br>flp_B-forward GCT <u>AGGATCCCAAGCACCGGTGCCCACCTCTAA</u><br>flp_B-reverse CATCACTCGGCAACCGTTGCCCCACCTCTAA<br>flp_B-reverse TCGC <u>GTGCAGGCCAACGGTGCCCACCCG</u><br>gbs_B_A-forward GGT <u>GGATCCAATGCTAACAGCTACGCCA</u> BamH1<br>dpsB_A-forward GGT <u>GGATCCAATGCTTACGGCAACGGCTGCAGCC</u><br>dpsB_B-reverse CGCCTGTCAACAAGCTTGGTGACGCCA<br>gbs_B-reverse GCGC <u>GTGCAGGACCCAATGCCTTAACGGCA</u> BamH1<br>cydAB_A-forward GGT <u>GGATCCCAATGCCTTACGGCA</u> BamH1<br>cydAB_A-forward GCGCTTAAGAGGAAGAACTCAAGCTTGTTGACAGAGCG<br>dpsB_B-reverse GCGC <u>GTGCAGGAGAAGCAATTGTTGAAAGTCAGT</u> Pst 1<br>cydAB_A-forward CCT <u>GGATCCCCTACCATCACCTCTT</u><br>cydAB_A-forward ATAGAGGGAGAAGAACTCAAGCTTGTTGACAGCAGCC<br>gshR1 eydAB_A-forward ATAGAGGGGATCAAAGCGGGGGGGAAAAGA<br>cydAB_B-forward ATAGAGGTGATCCAACCTTGCTCTT<br>cydAB_B-forward ATAGAGGTGATCCAACGCTGCCTATC<br>gshR1_B-forward ATAGAGGGGATCCAATGCTTGTTGACCGCCGCG<br>gshR1 gshR-1_A-reverse TAGAC <u>TTGCAGCGCCTCGTTGCCCCCTGT</u><br>gshR1_B-forward ATAGAGGGCGTCCGGTTCGGTCCCCTGT<br>gshR2_B-forward ATGCGGCTCGCTCGGTCCCCTGTG<br>gshR2_B-forward ATGCGGCTCGCTCGTTCGTCCTGT<br>gshR2_A-reverse CACAGGAGACGAAGAAGGCGTAATGGTCTCCTCTTGT<br>gshR2_B-reverse GCGG <u>GGTCGACCCCTTCGTCCTTGT</u><br>gshR2_A-reverse CACAGGAGACGAAGAAGGCGTAATTGATAC<br>ps_B-reverse CCGC <u>AGGCCGCCCCCCCCCCCCCCCCCCCCCCCCCCCC</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | sod_A-reverse     | AGTGACCAAACATCGAGGAATCAACCTTTC                    |                         |
| suf and bereverse GGTTAAGCTTGGTAAATTACCATCCCCAAAGGTG Hind III suf A-forward AATAGGATCCTTGTGGTCCAAGCATCAGGAC BanHI suf A-reverse TTGGAGGCAAGTGTCCTGGTTGACTTAAAA suf B-reverse GCATCTGCAGAATCATGCCCAAGCACTTGCCCAA suf B-reverse GCATCGCAGGATCATGCTGACTAAAATGTTGGC Pst I fip. A-reverse CATCACTCGGCAAGCACGTGCCCAAGCACCAGTACCAGACCAGTG fip.B-forward TTAGGAGGTGCCAAGCCCATTTG BanHI fip.B-forward TTAGGAGGTGCCAAGCACGGTGCCGAGTGATG fip.B-forward GGTCGGAGCCCAGTGCCGAGTGACTAACGAGAGCG dpsB_A-reverse CGCGCTGCCAGTGCCCAACCAGTCCCTCAAC BanHI dpsB_A-reverse CGCGCTGCCAACGGTTGCCGAGTGCCAAGGCG dpsB_A-reverse GGCGCTGCCAAGGAGAAGAAGCACTCAAGGCTGTGACGAGGG dpsB_B-reverse GGCGCTGCCAAGGAGAAGAAGAACTCAAGGCTGTGACAGAGG dpsB_B-reverse GGCGCTGCCAAGGCAGAGAAGAAGAACTCAAGGTTGTGACAGAGG dpsB_B-reverse GCGGGCTGCAAGGAGAAGAAGAACTCAAGGCTGTGTGACAGAGG dpsB_B-reverse GCGGGCTGCAAGGAGAAGAAGAACTCAAGGCTGTGTGACAGGGG dpsB_B-reverse TCTTTCGCCGCCCCTATCATCC BanHI cydAB_A-reverse TCTTTCGCCGCCGCCTTGATCAGGT Pst I gshR1_A-forward CAAGGGGGTGATCAAAGGGGGCGAAAAGA cydAB_B-reverse TAGACTGCAGGCTGAACACGTGCATACTG Pst I gshR1_B-forward CAATGCGGCTAAGGGTGATACCGGGCAAT gshR2 gshR1_B-forward CAAGGGGTCCAATGGTGTACGCGCCAAT gshR2 gshR2_A-reverse GTGTGAAGCGCTCGATATCCGG BanHI gshR2_A-reverse GTGGAGCCCCAATCAGGTGTATCAGGGCAAT gshR2 B-forward AACGGAGTCCAATGAGGGTCATATCATCC gshR2 B-forward AACGGAGTCCCAATGAGGTGTATACGGGCCAAT gshR2 B-forward AACGGAGTCCCAATGAGGTGTATACGGCGCCAAT gshR2 B-forward AACAGGAGTCCCAATGAGGTCATAGCGCCAAT gshR2 B-forward AACAGGAGTCCCAATAAGGTGCTAAGGGGCAAT gshR2 B-forward AACAGGAGTCCCAATAAGGTGCTGCCC BanHI gshR2 B-forward AACAGGAGTCCCAATGAGGTCCAAGG gshR2 B-forward AACAGGAGTCCCAATAAGGTGCTGCC Pst I gshR2 B-forward AACAGGAGTCCCAATGAGGTCAAAGCGCGCGCGAATGCATCCCCAAA fip_B-forward AACAGGAGCCAATGCGTCCCAAA fip_B-forward ACAAGGGAGCCAATGCCTCCAAA fip_B-forward ACAAGGAGCAATGCCTCCAACG fif fip_B-forward ACAAGGAGCAATTCCTTCGGTGCCG BanHI fip_B-forward ACAAGGAGCAATTACGGTCCCCAAA fif fip_B-forward ACAAGGAGTCCAATCCCTCAAA fip_B-forward ACAAGGAGTCCAATCCCTCAAA fip_B-forward ACAAGGAGCAATTACGGTCCACAGCTCCAAA fip_B-forward ACAAG                                                                                                                     |                   | sod_B-forward     | GAAAGGTTGATTCCTCGATGTTTGGTCACT                    |                         |
| suf     suf_A-reverse     TTGGAGGCAAGTGTGCTGGTGACATCAGGAC     BamH1       suf_B-reverse     GCATCTGCCAGGAAGTGTGACTTAAAA     suf_B-reverse     GCATCTGCACAGGACCTTGGCTCCAA       suf_B-reverse     GCATCGCAAGCACAGACCATGGCTAAAATGTTGGC     Pst I       flp     flp_A-forward     GCTAGGATCCCAAGCACAGACCATTTTG     BamH1       flp_B-reverse     CATCACTCGGCAACCGTTGCCAACCATTTTG     BamH1       dpsB     flp_B-forward     TTAGGAGGTGGCAACGGTTGCCCACTCTCAA     Pst I       dpsB     dpsB_A-forward     GCGGCTGCAAGGCCATGCCTACGGTAAGGCACCTCAAC     Pst I       dpsB     dpsB_A-forward     GCGGTGCAAGGAGAAGCAATTGTTGTGAACAGAGGCG     dpsB_Areverse       cydAB     eydAB_A-reverse     GCGGCTGCAAGGAGAAGCAATTGTTGTGAACAGAGGCG     dpsB_Areverse       cydAB     eydAB_A-reverse     GCGGCTGCAAGGCCGCATCACTATCATTC     BamH1       cydAB     eydAB_A-reverse     TGCTTTTCGCCGCCGCGTTGATCACTCTCTT     Pst I       cydAB     B-forward     ATAGAGTGATCAAAGGGGGCGCGAAAAGA     Pst I       cydAB     B-forward     ATAGAGGAGATCAATGGTTGATCACCTCTGT     Pst I       gshR1     gshR-1_A-reverse     TGTAGACGCTTCGGTACACGGCGCGAAAAGA     Sal I       gshR1     gshR-1_A-reverse     ATGCAGGCGCACACGTTGGGCGCGAAAGGAAGAATTGATAC     Pst I       gshR2     gshR-1_B-reverse     GTTGAACACAGGAGGAGAAGGAAGGAAGGAAGGAAGGAATTGATAC     gshR-1 </td <td></td> <td>sod_B-reverse</td> <td>GGTT<u>AAGCTT</u>GGTAAATTACCATCCCCAAAAGGTG</td> <td>Hind III</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | sod_B-reverse     | GGTT <u>AAGCTT</u> GGTAAATTACCATCCCCAAAAGGTG      | Hind III                |
| suf_A-reverse TIGGAGGCAAGTGTCCTGGTTGACTTAAAAA suf_B-forward TTTTAAGTCAACCAGGACACTTGCCTCAAA auf_B-reverse GCATC <u>TGCAGA</u> AATCATGCTGAAAATGTTGGC <i>Pst</i> 1 fip fip fip fip fip fip A-forward GCTA <u>GGATCCC</u> AAGCACAGACCCATTTTG BamH 1 fip_B-forward TTAGGAGGTGGCAACCGTTGCCACCTCCTAA fip_B-reverse TCGG <u>CTGCCAGGCCCGATGACCCCTAAC Pst</u> 1 dpsB dpsB_A-forward GGTC <u>GGATCCCAATGCCTTACGGTTACGGCA</u> BamH 1 dpsB_b-reverse CGCTCTGTCAACAAGCTTGACTCATCCCTTAACGC dpsB_b-forward GCGGTTAAGAGGAGAAGAACTCAAGCTTGTTGACAGAGGGG dpsB_b-reverse GCGG <u>CTGCCGGAGGACCCCATTCCCCTTACGGCTGCAAGAGGAGAAGAACTCAAGCTGTGTGACAGAGAGG</u> cydAB_A-reverse TCTTTTCGCCCGCGCTTCACCATTCTC BamH 1 eydAB_A-reverse TCTTTTCGCCCGCGCCTTCGGCAAGAGAAGAACT cydAB_b-forward CCTC <u>GGATCCCCCTACTCACTATCATTC BamH 1 eydAB_A-reverse TAGACTGCAGCCCGATGACCCCCTACTCACTTCT gshR-1_A-reverse TAGACTGCAGCGCGGCGGCGCAATAGG gshR-1_A-reverse ACAAGGAGGATCAATGGTTGTAGCGGCAAT gshR-1_A-reverse ACAAGGAGGATCAATGGTTGTAGCGGCAAT gshR-1_A-reverse CCCGGCTTCGGTATCCCGG Hind III gshR-2_A-reverse CACAGGAGCGAGCAGCAGCATTCCTCTGTG gshR-2_A-reverse CCCGGCTACTCACTTCTCTGTGT gshR-2_A-reverse CCCGGCTCCCATTAAGGTCATATCATCCC BamH 1 ipr_A-forward CCGACTGCAACGCGCGCAATAGC pshR-2_A-reverse CCCGGGTCATCACGCCTCACTTCATCCC BamH 1 ipr_A-forward CCGACTGCACACTTCGTTCGTGT gshR-2_B-reverse GCGGGTCGAACACGTTCCTCTTGTGT ipr_A-reverse GCGCGCTAATTAAGGTCATACGTCTCTGTGT ipr_A-reverse GCCGGCTAACGGTAAAGGGCCTAATGCCCCAATTAAGGTCATACCGCTTCGTCTGTGT ipr_A-reverse GCCGCCAATTAAGGTCATACCGTTCCCCAAA ipr_B-reverse GCCGCCAATTAACGCTTCCTCCTCGTGAT ipr_B-reverse GCCCGCATTAGGATAAGTTCCTTCACGCCCCAATTAAGGACACTTATCGGTACGCCTCCAAA ipr_B-reverse GCCCGCTAATTCCGCCCCCAAA ipr_B-reverse GCCGCCTAATTCAGGCTCCCTCAAG ipr_B-reverse GCCCGCTAATTGGTTACGCCTCCAAA ipr_B-reverse GCCCGCATTCACGGCCTAAGCCTTCAGG BamH 1 ipr_A-reverse GCCCGCATTAGGATAAGTTCCTTCAACG ipr_B-reverse GCCCGCATTCGCTCCTAAT ipr_B-reverse GCCCGCAATTCCCTCAAA ipr_B-reverse GCCCGCATTCCCTCAATTCCTCAACGCCTCCAAA ipr_B-reverse GCCCGCAATTCCCTCAATTCCTCCAAATTCCTTCAAAGCAACTTTATTCGTACGCCTCCAAATTCCCTCAATT ipr_B-reverse GATACTGCAATTGCTTCTCAAGGTACAGCTTACCCCTCAATT ipr_B</u>                                                                       | suf               | suf_A-forward     | AATA <u>GGATCC</u> TTGTGGTCCAAGCATCAGGAC          | BamH I                  |
| suf_B-forward       TITIAAGTCAACCAGGAACCTIGCCTCCAA         suf_B-reverse       GCATCTGCAAGAATCATGCTAAAATGTTGGC       Psr1         flp       A-forward       GCTAAGGATCCCAAGCACAGACCCATTTG       BamH1         flp_B-reverse       CATCACTCGGCAACCGTTGCCCACTCCTAA       Imp       Broward       TTAGGAGGTGCCAACCGTTGCCCACTCCTAA         dpsB       dpsB_A-forward       GGTCGGATCCCAATGCCTTACGGTACGCAC       BamH1         dpsB       dpsB_A-forward       GGTCGGATCCAATGCCTTACGGTACGGCA       BamH1         dpsB       A-forward       GGTCGGATGCAATGCTTAAGAGTCAAGGCAGAGGCG       BamH1         dpsB       A-reverse       CGCGCTGCAGGAGAAGAAGTTGTTGACAGGAGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | suf_A-reverse     | TTGGAGGCAAGTGTCCTGGTTGACTTAAAA                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | suf_B-forward     | TTITTAAGTCAACCAGGACACTTGCCTCCAA                   | D 1                     |
| <i>ipp</i> np_A-forwardGCIAGGATCCCAAGCACAGACCCTTTIGBamH Ifp_A-reverseCATCACTCGGCAACCGTTGCCAACCGTTGCCAACFitfp_B-reverseTTAGGAGGTGGCAACCGTTGCCGAGTGATGFit <i>dpsB_dpsB_A-forward</i> GGTC <u>GGATCCAATGCCTTACGGCTACGGCA</u> BamH I <i>dpsB_b-crverse</i> CGCTCTGTCAACAAGCTTGAGGTCTTCTCCTCTAACCGCJamH I <i>dpsB_b-crverse</i> GCGGTTAAGAGAGAAGAACTCAAGCTTGTTGAACAGAGCGJamH I <i>cydAB_b-forward</i> GCGG <u>TCGCAGG</u> GAGAAGAACTCAAGCTGATGTTGACAGAGCGJamH I <i>cydAB_b-forward</i> CCTC <u>GGATCCCCTACTCACTATCCTTTGCACAGAGCGCGCGAAAAGAAPst I<i>cydAB_b-forward</i>CCTC<u>GGATCCCCTGACTACACCTCTAT</u><i>samH IcydAB_b-forward</i>ATAGAGGGGATCAAAGGGCGGCGAAAAGAAPst I<i>gshR1gshR-1_A-forward</i>CAAT<u>GTGCAGCCTGGAACACGTGCGGCGAAAAGAA</u><i>sal IgshR2gshR-1_A-reverse</i>ACAAGGAGGATCAATGGTTGTAGCGGCCAAT<i>sal IgshR2gshR-1_A-reverse</i>ACAAGGAGGATCAATGGTCGTCCTTGT<i>gshR IgshR2gshR-2_A-forward</i>AACC<u>AGGACCCAATTAAGGCCTAATGATCCCCGGGGCGAAATGAGGGCTAATTGATCCCCGGshc2_A-reverse</u><i>Sal IgshR2_A-forward</i>AACC<u>AGGACCCCAATTAAGGCCTAATGATCCCCGGGCCGCGGCGGCGGCGGCGGCGGCGGCGCCGCCG</u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                 | suf_B-reverse     | GCAT <u>CTGCAG</u> AATCATGCTAAAATGTTGGC           | Pst I                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | flp               | flp_A-forward     | GCTA <u>GGATCC</u> CAAGCACAGACCCATTTTG            | BamH I                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | np_A-reverse      |                                                   |                         |
| $ \begin{array}{c} \mbox{lp} B-reverse & \mbox{lc} GGTCGATGCCCGATGACCCGATGACCCGAATGCCCCAATGCGCTAACGGCA & BamH1 \\ \mbox{dpsB} A-forward & \mbox{GC}GGTTCAACAAGGCTGAGGTCTTCTCCTCTTAACGGC & \\ \mbox{dpsB} B-forward & \mbox{GC}GGTTAAGAGGAGAAGAACTCAAGGCTGGTGACAGAGCG & \\ \mbox{dpsB} B-reverse & \mbox{GC}GGCTGCAGGAGAAGAACTCAAGGCTAGGT & Pst 1 \\ \mbox{eydAB} A-forward & \mbox{CCC}GGGGCGCAAAAGCAATTGTTGAAAGTCAGT & \\ \mbox{eydAB} B-forward & \mbox{CCC}GCGCGCTTGGATCACTCTCATT & \\ \mbox{eydAB} B-forward & \mbox{CCC}GCGGCTGACACGGGCGGCGAAAAGA & \\ \mbox{eydAB} B-reverse & TAGACTGCAGCGCGGCGGCGAAAAGA & \\ \mbox{eydAB} B-reverse & TAGACTGCAGCCTGAACACGTGGATACTG & \\ \mbox{eydAB} B-reverse & TAGACTGCAGCCTGGATACCCGG & \\ \mbox{gshR-1} B-reverse & ACAAGGAGGATCAATGGTGTAGCGGCAAT & \\ \mbox{gshR-1} B-reverse & ACAAGGAGGATCCAATGGTGTAGCGGCAAT & \\ \mbox{gshR-2} & \mbox{gshR-2} B-forward & \mbox{ACAGGAGCCCAATGAGCCCTCCTTGT & \\ \mbox{gshR-2} & \mbox{gshR-2} & \mbox{GCGGGTGGACGCAAGGAAGGCGTAATTGATAC & \\ \mbox{gshR-2} & \mbox{gshR-2} & \mbox{GCGGGTGGACGCATCAGGCCTTCCTTGTGT & \\ \mbox{gshR-2} & \mbox{gshR-2} & \mbox{GCGGGTGGACGCATCACGGCGTAATTGATAC & \\ \mbox{gshR-2} & \mbox{gshR-2} & \mbox{GCGGGTGGACGCATCACGGCTTCCTTGTGT & \\ \mbox{gshR-2} & \mbox{gshR-2} & \mbox{GCGGGTGAACGAAGGAAGGCGTAATTGATAC & \\ \mbox{gshR-2} & \mbox{forward} & \mbox{GCGGGTGGACGCATCACGGCTCCAAA & \\ \mbox{gshR-2} & \mbox{forward} & \mbox{GCGGGTGAACGATTACGGCTCCCAAA & \\ \mbox{gshR-2} & \mbox{forward} & \mbox{GCGGCGTAACGGATCACGGTTGAT & \\ \mbox{gshR-2} & \mbox{forward} & \mbox{GCGGGTGAACGATTACGGCCTCCAAA & \\ \mbox{gshR-2} & \mbox{forward} & \mbox{ACAGGAGCGTAACGGTTGATGAGC} & \\ \mbox{fign } & \mbox{fign } & \mbox{fign } & \\\ \mbox{fign } & \mbox{fign } & \mbox{fign } & \\\ fign $                                                                      |                   | np_B-forward      |                                                   | D / I                   |
| dpsBdpsB_A-reverseCGTCUGALCLAATGCCTTACGCCABamH 1dpsB_A-reverseCGCTGTCAACAAGCTTGAGTTCTTCTCCTCTTAACCGCdpsB_B-forwardGCGGTTAAGAGGAGAAGAACTCAAGCTTGAGAGCAGGcydABeydAB_A-forwardCCTC <u>GGATCC</u> CCTACTCACTATCATTCBamH 1cydABeydAB_A-forwardCCTC <u>GGATCC</u> CCTACTCACTATCATTCBamH 1cydABeydAB_A-reverseTCTTTTCGCCGCCGCTTGATCACCTCTATFst IcydAB_B-reverseTCTTTTCGCCGCCGCGCTTGATCACCTCTATeydAB_B-reverseTAGACTGCAGCCTGAACACGTGCATACTGgshR1gshR-1_A-forwardCAATGCCAGCGCTGAACACGTGCATACTGPst IgshR1gshR-1_A-reverseACAAGGAGGATCAATGGTTGTAGCGGCAAATgshR-1gshR1gshR-1_A-reverseGTTGAAGCTTTGATCGGCGCGCGHind IIIgshR2gshR-1_B-reverseGTTGAAGCTTTGATCGGCGCGCGCGBamH 1gshR2gshR-2_A-forwardAACAGGAGTCCCAATTAAGGTCATATCATCCCBamH 1gshR2gshR-2_A-reverseGCAGGAGCAAGGAAGGCAGGCGCGCGHind IIIgshR2gshR-2_B-reverseGCAGGGCGCACACGCGCTCAAGGSal 1ipripr_A-forwardGTATCAATTACGCCTCCTTGTGTCTGTGTFst Iipripr_A-forwardGCGCCAAGCGTATCACGGCCTCAAGSal 1ipripr_A-forwardCCGACTGCAGCTTATCATCGCTCCAAAFst Iipr_B-reverseGGCCAAGCTTATGAGGACCATGCCTCCAAAipr_B-reverseipr_B-forwardCCAAGGCACTTATCGTCGGAGCATCCCCAAAHind IIInpr_A-forwardCCAAGGCTCATGGAGCATCCCTCGAAABamH 1npr_A-forwardCCAAGGCTCATGGAGCATACGCTCCCAAAAipr IIInpr_B-reverseGGCCAAGCTTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | de a D            | пр_B-reverse      |                                                   | Pst I                   |
| dpsB_A-reverseCGCGTGTAAGAGGAGAAGAACTCAAGCTTGTTGAAGGGCGdpsB_b-forwardGCGGTTAAGAGGAGAAGCAATTGTTGAAAGCTGAGAGGCGcydABeydAB_A-forwardCCTC <u>GGATCCCCTACTCACTATCATTC</u> gydAB_A-reverseTCTTTTCGCCGCGCGCTTTGATCACTCTCATcydAB_B-forwardATAGAGGTGATCAAAGCGGCGGCGAAAAGAcydAB_B-reverseTAGACTGCAGCCTGAACACGTGCATACTGgshR-1gshR-1_A-forwardCAATGTCGACGCTTCGGTATCCCGGgshR-1gshR-1_A-forwardCAATGTCGACGCTTCGGTATCCCGGgshR-1B-forwardATTGCCGCTACAACCATTGATCCCGGgshR-1B-reverseACAAGGAGGATCAATGGTTGTAGCGGCAATgshR-1B-forwardATTGCCGCTACAACCATTGATCCCGGgshR-1B-forwardATTGCCGCTACAACCATTGATCCCGGGgshR-2A-forwardAACAGGATCCCAATTAAGGTCATATCATCCCgshR2gshR-2A-forwardgshR2GATCAATTACGCCTCCTTCGTCTTGTGgshR2gshR-2A-forwardgshR2GCGGGTCGACGCATCACGGCCTAAGgshR2B-forwardGTATCAATTACGCCTTCCTTCGTCTGTGgshR2B-forwardCCGACTGCAGCGTAACGGCCTAAGgshR2B-forwardCCGACTGCAGCGTAACGGCCTAAGgshR2B-forwardCCGACGCGCATCACGGCCTAAGgshR2B-forwardCCGACTGCAGCGTAACGGTACACGTTGCCgshR2B-forwardCCGACGCGCACCTTATGCGTCCCCCCAAAiprA-forwardCCGACGCGCGACCACGGACACGCTTCGCipripr_B-forwardCCGACGCGCGACACGACTTATCCCTCCAAAiprnpr_A-forwardCAATGGAGGACCATTATCCTTCCAAAiprB-forwardCATGGAACCTTTATGCTTAACGCCTCCCTAATipr <td>apsв</td> <td>dpsB_A-forward</td> <td></td> <td>BamH 1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | apsв              | dpsB_A-forward    |                                                   | BamH 1                  |
| dpsB_B-lorwardGCGGTTAAGAGGAGAAGCAACTCAAGCTAGTPst IcydABdpsB_B-reverseGCGGCTGCAGGAGAAGCAACTCAAGCTAGTPst IcydAB_A-reverseTCTTTTCGCCGCCCCACTCACTACCACTCATcydAB_B-reverseTCTTTTCGCCGCGCCGCTTTGATCACCTCATcydAB_B-forwardATAGAGGTGATCAAAGCGGCGGCGAAAAGAcydAB_B-reverseTAGACTGCAGCCTGAACACGTGCATACTGPst IgshR1gshR-1_A-forwardCAATGTCGACGCTTCGGTATCCCGGSal IgshR-1gshR-1_A-reverseACAAGGAGGATCAATGGTTGACGCGCAATgshR1gshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCGTgshR-1_B-reverseGTTGAAGCCCCAACCATTGATCCTCCTGTgshR2gshR-2_A-forwardAACAGGAGCTTTGATCGGCGGCGCGHind IIIgshR2gshR-2_B-forwardACAAGGAAGCAATCACGGCCTAATGATCACCCCBamH IgshR2gshR-2_B-reverseCACAGGAGCGAACGAAGGAAGGCGTAATTGATACpst Igrbripr_A-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-1ipripr_A-forwardCCGACTGCAGCGATAAGGTACGCTCAAGFst Iipripr_A-forwardCCGACTGCAGCGTAACGGTCAAGCTTCGATpst Iipripr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAAABamH Iipr_B-forwardCAATGGAGCGTAACGAGAGTTGCCTTCGATipr_B-reverseHind IIInprnpr_A-forwardCAATGGAGCAACTTTATCGTTACGCCTCCAAABamH Iipr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAAABamH Inpr_B-forwardCAATGGAGGACAACGAGAGCTCCTCCAAABamH Inpr_B-forwardCAATGGAGGACCACTTTATCGTTCAAGCCTCCCAAApst Inpr_B-forwardGTCTTTTTAAAGGAGAAGTTCCCTCCAAATTAAGACApst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | dpsB_A-reverse    |                                                   |                         |
| cydABcydAB_A-forwardCCTCGGATCCCCTACTCAATGATGAAGGAAGGAAGGAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | dpsB_B-forward    |                                                   | Det I                   |
| cydABcydAB_A-reverseTCTTTCGCCGCCGCTTGCACACCTCTATcydAB_A-reverseTCTTTTCGCCGCCGCCGCTTGATCACCTCTATcydAB_B-forwardATAGAGGTGATCAAAGCGGCGGAAAAGAcydAB_B-reverseTAGACTGCAGCCTGAACACGTGCATACTGgshR1gshR-1_A-forwardCAATGTCGAGCGTTCGGTATCCCGGgshR-1_B-forwardACAAGGAGGATCAATGGTTGTAGCGGCCAATgshR-1_B-reverseGTTGAAGCTTTGATCGGCGCGCGCGgshR-1_B-reverseGTTGAAGCTTTGATCGGCGGCGCGCgshR-2_A-forwardAACAGGAGTCCCAATTAAGGTCATATCATCCCgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTGTGgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTGTGgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTGTGgshR-2_B-forwardCCGACTGCAGCGCATCACGGCCTAAGjpripr_A-forwardCCGACTGCAGCGTATATCAGTTGCipr_A-reverseGTGAGGCGTAACGATAACGTTGCTipr_B-forwardATCAAGCAACTTTATCGTTACGCTCCAAAipr_B-reverseGGCCAGCCTACAGCGACAAGACGCTTCAGipr_B-reverseGGCCAAGCTTAGGAGGAACAGCTTCCCCnpr_A-reverseAATTGGAGGAGAACAACTTTATCGTTACGCCTCCAAAipr_B-reverseGGCCAAGCTTAGGAGGAAAAGTTGCCTTCAGnpr_A-reverseAATTGGAGGAGAATTCCCTTCAGmpr_A-reverseAATTGGAGGAGATTTACTTTTAAAAAGACAnpr_B-reverseGATACTGCAGAATTTGGCCGGGACAAGTGnpr_B-reverseGATACTGCAGATTTGCCCCTCAATTnpr_B-reverseGATACTGCAGATTTGCCCCCCAATT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and AP            | aud A P A forward | CCTCCCATCCCCTACTCACTATCATTC                       | PSt 1<br>Pam H I        |
| cydAB_ArleverseICTITICOCCCCCCAATTCOATCACCTCTATcydAB_B-forwardATAGAGGTGATCAAAGGGGCGCGAAAAGAcydAB_B-reverseTAGACTGCAGCCTGAACACGTGCATACTGgshR1gshR-1_A-forwardCAATGCCGCACGCGCTCCGGTATCCCGGgshR-1_A-reverseACAAGGAGGATCAATGGTTGTAGCGCGCAATgshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCTTGTgshR-1_B-reverseGTTGAAGCTTTGATCGGCGCGCCGgshR-2gshR-2_A-forwardAACAGGATCCCAATTAAGGTCATATCATCCCgshR-2gshR-2_A-reverseCACAGAGCGAAGGAAGGAAGGCGTAATTGATACgshR-2gshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTGTGgshR-2gshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTGTGgshR-2gshR-2_B-reverseGCGGGTCGACGCATCACGGCCTAAGjpripr_A-forwardCCGACTGCAGCGTATTAATCACGTTGCpripr_A-forwardCCGACTGCAGCGTACACGATACGATACGCTTCCAAAnprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTCCAAAnpr_B-reverseGGCCAAGCTTATGAGGTACAGCTTCGCnpr_B-forwardTGTCTTTTTAAAAAGTAAATTCCTCCTAATTnpr_B-reverseGATACTGCAGATTTGGCCGGGACAAGTGps-B-reverseGATACTGCAGATTTGGCCGGGACAAGTGpr_B-reverseGATACTGCAGATTTGGCCGGGACAAGTGpr_B-reverseGATACTGCAGATTTGGCCGGGACAAGTGpr_B-reverseGATACTGCAGATTTGGCCGGGACAAGTGpr_B-reverseGATACTGCAGATTTGGCCGGGACAAGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | суаль             | cydAB_A-Iorward   |                                                   | <i>Δαμι</i> Π Ι         |
| cydAB_B-reverseTAGACGTGCAGCCTGAACACGGGCATACTGPst IgshR1gshR-1_A-forwardCAATGTCGACGCTTCGGATCCCGGSal IgshR1gshR-1_A-reverseACAAGGAGGATCAATGGTTGTAGCGGCAATSal IgshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCCTTGTgshR-1gshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCCTTGTBamH IgshR2gshR-2_A-forwardAACAGGAGCGAAGGAGGAGGAAGGCGTAATTGATACBamH IgshR2gshR-2_B-reverseCACAGAGACGAAGGAGAGGCGTAATTGATACBamH IgshR2gshR-2_B-reverseCCGAGTGCACGCATCACGGCCTAAGSal Iipripr_A-forwardCCGAGTGGACGCATCACGGCCTAAGSal Iipripr_A-forwardCCGACTGCAGCGTATTAATCACGTTGCPst Iipr_B-reverseGGCCAAGCTTATGAGGTACAGCTTCGCHind IIInprnpr_A-forwardCCAATGGATCCATCGGAGCATATCCCTCCAAAHind IIInprnpr_A-reverseTTTGGAGGCGTAACGAGCTTCGCHind IIInprnpr_A-reverseGGCCAAGCTTATGAGGTACAGCTTCGCHind IIInprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTCCAAAHind IIInprnpr_A-reverseATTAGGAGGAATTTACTTTTAAAAGACAHind IIInpr_B-reverseGGCCAAGGTCATCGGAGCATATCCCTCCAAAHind IIInpr_B-reverseGATACTGCAGGAAGTTAGCTCCTCCTAATTNor ATTAGGAGGAATTTACTTTTAAAAAGACAnpr_B-reverseGATACTGCAGAGTTGGCCGGGACAAGTGPst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | cydAB_R forward   |                                                   |                         |
| gshR1gshR-1_A-forwardCAATGTCGACGCTTCGGTATCCCGGSal IgshR1gshR-1_A-reverseACAAGGAGGATCAATGGTTGTAGCGGCAATSal IgshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCCTTGTgshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCCTTGTgshR2gshR-2_A-forwardAACAGGATCCCAATTAAGGTCATATCATCCCBamH IgshR2gshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCGTGSal IgshR2gshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCGTGSal Iipripr_A-forwardGCGGGTCGACGCATCACGGCCTAAGSal Iipripr_A-forwardCCGACTGCAGCGTATTAATCACGTTGCPst Iipr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAATInd IIInprnpr_A-forwardCAATGGATCCATCGGAGCATAACGCTTCGCHind IIInprnpr_A-forwardCAATGGATCCATCGGAGCATAACGCTTCGCHind IIInprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_B-reverseGGCCAAGCTTATGAGGAGCATATCCCTTCAGBamH Inpr_B-reverseAATTAGGAGGAATTTACTTTTAAAAAGACAYest I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | cydAB_B reverse   | TAGACTGCAGCCTGAACACGTGCATACTG                     | Pet I                   |
| gshR1gshR1_A-reverseACAAGGAGGATCAATGGTTGTAGCCGGCAATsal 1gshR-1_A-reverseACTGCCGCTACAACCATTGATCCTCCTTGTgshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCCTTGTgshR-1_B-reverseGTTGAAGCTTTGATCGGCGCGCCGHind IIIgshR2gshR-2_A-forwardAACAGGATCCCAATTAAGGTCATATCATCCCBamH IgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-2_B-reverseGCGGGTCGACGCATCACGGCCTAAGSal Iipripr_A-forwardCCGACTGCAGCGTATTAATCACGTTGCPst Iipr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAAAipr_B-reverseGGCCAAGCATCATCGGAGCATATCCCTTCAGnprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_A-reverseGGCCAAGCTTATGAGGTACAGCTTCGCHind IIInpr_B-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_B-forwardCAATGGAGGAATTTACTTTTAAAAAGACATGTCTTTTTAAAAAGTAAATTCCTCCTAATTnpr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTAATTpst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ashR1             | gshR_1_A_forward  | CAATGTCGACGCTTCGGTATCCCGG                         | Sal I                   |
| gshR 1_A fervationATTGCCGCTACAACCATTGATCCTCCTTGTgshR-1_B-forwardATTGCCGCTACAACCATTGATCCTCCTTGTgshR-1_B-reverseGTTGAAGCTTTGATCGGCGCGCCGHind IIIgshR2gshR-2_A-forwardAACAGGATCCCAATTAAGGTCATATCATCCCBamH IgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGipripr_A-forwardCCGACTGCAGCGCATCACGGCCTAAGSal Iipripr_A-forwardCCGACTGCAGCGTATTAATCACGTTGCPst Iipr_B-reverseGTCCAAGCAACCATCACGGCCTCCAAAipr_B-reverseGGCCAAGCTTATGAGGTACAGCTTCGCnprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_A-reverseAATTAGGAGGAATTTACTTTTAAAAAGACAipr_B-forwardTGTCTTTTTAAAAAGTAAATTCCTCCTAATTnpr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTCAATTnpr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTCAATTnpr_B-reverseGATACTGCAGAGATTTGGCCGGGACAAGTGPst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | gsniti            | gshR-1_A-reverse  | ACAAGGAGGATCAATGGTTGTAGCGGCAAT                    | Sull                    |
| gshR 1_D forwardINFOCCOUNT FUNCTIONgshR-1_B-reverseGTTGAAGCTTTGATCGGCGCGCCGHind IIIgshR-2gshR-2_A-forwardAACAGGATCCCAATTAAGGTCATATCATCCCBamH IgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGipripr_A-forwardCCGACTGCAGCGCATCACGGCCTAAGSal Iipripr_A-forwardCCGACTGCAGCGTAACGATAAAGTTGCTTGATPst Iipr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAAAipr_B-reverseGGCCAAGCATCATCGGAGCATACGATAAAGTTGCTTGATnprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_A-reverseATTAAGGAGGAATTTACTTTTAAAAAGACAipr_B-forwardFGTCTTTTTAAAAGTAAATTCCTCCTAATTnpr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTAATTpst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | gshR_1_R-forward  |                                                   |                         |
| gshR1_D-reverseGTTO_AGGATCCCAATTAAGGTCATATCATCCCBamH IgshR2gshR-2_A-reverseCACAGAGACGAAGGAAGGCGTAATTGATCATCCCBamH IgshR-2_B-reverseCACAGAGACGAAGGAAGGCGTAATTGATACgshR-2_B-reversegshR-2_B-reverseGCGGGTCGACGCATCACGGCCTAAGSal Iipripr_A-forwardCCGACTGCAGCGTATTAATCACGTTGCPst Iipr_B-reverseTTTGGAGGCGTAACGATAAAGTTGCTTGATInnd IIInprnpr_A-reverseGCCCAAGCTTATGAGGTACAGGCTCCAAAInnd IIInprnpr_A-forwardCCGACTGCAGCGTATTAATCACGTTCGCHind IIInprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_B-reverseAATTAGGAGGAAATTTACTTTTAAAAAGACAInngr_B-reverseAATTAGGAGGAATTTACTTTTAAAAAGACAnpr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTCAATTPst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | gshR_1_B_reverse  | GTTGAAGCTTTGATCGGCGCGCG                           | Hind III                |
| gsindgsind 2_A reverseCACAGAGACGAAGGAAGGAAGGCGTAATTGATACgshR-2_A-reverseCACAGAGACGAAGGAAGGCGTAATTGATACgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-2_B-reverseGCGGG <u>TCGAC</u> GCATCACGGCCTAAGgshR-2_B-reverseGCGCACTGCAGCGTATTAATCACGTTGCipr_A-forwardCCGACTGCAGCGTAACGATAAAGTTGCTTGATipr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAAAipr_B-reverseGGCCAAGCTTATGAGGTACAGCTTCGCnprnpr_A-forwardcAATGGATCCATCGGAGCATATCCCTTCAGBamH 1npr_A-reverseAATTAGGAGGAAATTACTTTTAAAAAGACAnpr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTAATTnpr_B-reverseGATACTGCAGATTGGCCGGGACAAGTGPst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oshR?             | gshR-2 A-forward  | A A CAGGATCCCA ATTA A GGTCATATCATCCC              | RamH I                  |
| gshR 2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-2_B-forwardGTATCAATTACGCCTTCCTTCGTCTCTGTGgshR-2_B-reverseGCGGG <u>TCGAC</u> GCATCACGGCCTAAGipripr_A-forwardCCGACTGCAGCGTATCACGGTGCPst Iipr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAAAipr_B-reverseGGCCAAGCTTATGAGGTACAGCTTCGCipr_B-reverseGGCCAAGCTTATGAGGTACAGCTTCGCnprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGmpr_B-forwardCAATGGAGGAATTTACTTTTAAAAAGACAnpr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTCAATTnpr_B-reverseGATACTGCAGATTGGCCGGGACAAGTGPst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 551112            | gshR-2_A-reverse  |                                                   | Dumiti                  |
| gshR 2_B forwardGCGGGTCGACGCATCACGGCCTAAGSal Iipripr_A-forwardCCGACTGCAGCGTATCACGGCCTAAGSal Iipr_A-reverseTTTGGAGGCGTAACGATAATCACGTTGCPst Iipr_B-forwardATCAAGCAACTTTATCGTTACGCCTCCAAAIntel IIInprnpr_A-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_A-reverseATTAGGAGGAGAATTTACTTTTAAAAAGACAIntel IIInpr_B-forwardCAATGGATCCATCGGAGCATATCCCTTCAGBamH Inpr_B-forwardGTCTTTTTTAAAAAGTAAATTCCTCCTAATTIntel IIInpr_B-forwardGATACTGCAGATTGGCCGGGACAAGTGPst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | gshR-2 B-forward  | GTATCA ATTACGCCTTCCTTCGTCTCTGTG                   |                         |
| <i>ipr</i> ipr_A-forward CCGA <u>CTGCAG</u> CGTATCAATCACGTTGC <i>Pst I</i><br><i>ipr_A-reverse</i> TTTGGAGGCGTAACGATAAAGTTGCTTGAT<br><i>ipr_B-forward</i> ATCAAGCAACTTTATCGTTACGCCTCCAAA<br><i>ipr_B-reverse</i> GGCC <u>AAGCTT</u> ATGAGGTACAGCTTCGC <i>Hind III</i><br><i>npr_A-forward</i> CAATGGATCCATCGGAGCATATCCCTTCAG <i>BamH 1</i><br><i>npr_A-reverse</i> AATTAGGAGGAATTTACTTTTAAAAAGACA<br><i>npr_B-forward</i> TGTCTTTTTAAAAAGTAAATTCCTCCTAATT<br><i>npr_B-reverse</i> GATACTGCAGATTGGCCGGGACAAGTG <i>Pst I</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | gshR-2_B-reverse  | GCGGGTCGACGCATCACGGCCTAAG                         | Sal I                   |
| ipr_A-reverse       TTTGGAGGCGTAACGATAAAGTTGCTTGAT       Fort         ipr_B-forward       ATCAAGCAACTTTATCGTTACGCCTCCAAA       Hind III         npr       npr_A-forward       CAATGGAGGCGTACCGGAGCATATCCCTTCAG       BamH I         npr_B-forward       CAATGGAGGAATTTACTTTTAAAAAGACA       Fort       Inor_A-reverse         npr_B-forward       CAATGGAGGAATTTACTTTTAAAAAGACA       Fort       Inor_A-reverse         npr_B-forward       TGTCTTTTTAAAAAGTAAATTCCTCCTAATT       Pst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ipr               | ipr A-forward     | CCGACTGCAGCGTATTAATCACGTTGC                       | Pst I                   |
| ipr_B-forward       ATCAAGCAACTTTATCGTTACGCCTCCAAA         ipr_B-reverse       GGCC <u>AAGCTT</u> ATGAGGTACAGCTTCGC         npr       npr_A-forward         cAATGGAGGACATCTCATCGGAGCATATCCCTTCAG         BamH I         npr_B-forward         rgTCTTTTTAAAAAGTAAATTCCTCCTAATT         npr_B-forward         GATACTGCAGCATTTGGCCGGGACAAGTG         Pst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T.                | ipr A-reverse     | TTTGGAGGCGTAACGATAAAGTTGCTTGAT                    |                         |
| ipr_B-reverse       GGCCAAGCTTATGAGGTACAGCTTCGC       Hind III         npr       npr_A-forward       CAATGGATCCATCGGAGCATATCCCTTCAG       BamH I         npr_B-forward       AATTAGGAGGAATTTACTTTTAAAAAGACA       TGTCTTTTTAAAAAGTAAATTCCTCCTCAATT         npr_B-forward       GATACTGCAGGATTTGGCCGGGACAAGTG       Pst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | ipr B-forward     | ATCAAGCAACTTTATCGTTACGCCTCCAAA                    |                         |
| npr     npr_A-forward     CAATGGATCCATCGGAGCATATCCCTTCAG     BamH1       npr_A-reverse     AATTAGGAGGAATTTACTTTTAAAAAGACA     TGTCTTTTTAAAAAGTAAATTCCTCCTAATT       npr_B-forward     TGTCTTTTTAAAAAGTAAATTCCTCCTCAATT     Pst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | ipr B-reverse     | GGCCAAGCTTATGAGGTACAGCTTCGC                       | Hind III                |
| npr_A-reverse     AATTAGGAGGAATTTACTTTTAAAAAGACA       npr_B-forward     TGTCTTTTTAAAAGTAAATTCCTCCTAATT       npr_B-reverse     GATACTGCAGATTTGGCCGGGACAAGTG     Pst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | npr               | npr A-forward     | CAATGGATCCATCGGAGCATATCCCTTCAG                    | BamH I                  |
| npr_B-forwardTGTCTTTTTAAAAGTAAATTCCTCCTAATTnpr_B-reverseGATACTGCAGATTTGGCCGGGACAAGTGPst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T                 | npr A-reverse     | AATTAGGAGGAATTTACTTTTAAAAAGACA                    |                         |
| npr_B-reverse GATACTGCAGATTTGGCCGGGACAAGTG Pst I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | npr_B-forward     | TGTCTTTTTAAAAGTAAATTCCTCCTAATT                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | npr_B-reverse     | GATACTGCAGATTTGGCCGGGACAAGTG                      | Pst I                   |

| Target gene          | Primer name               | Primer sequence (5' to 3')          | Restriction enzyme site |
|----------------------|---------------------------|-------------------------------------|-------------------------|
| Confirmation of d    | leficient mutants         |                                     |                         |
| nox                  | 279962_F                  | GTAGCATCGGCAATTGTCATGTAGTGTCAC      |                         |
|                      | 282934 R                  | CTGTTTTGAGTCATACCGTGCAACCCG         |                         |
| nox5                 | 177892_F                  | CTGCGGTTCGATGGTGCTAAGGTCACCTTC      |                         |
|                      | 180877_R                  | GTTTTGACGCATTCATCGAATCGAGTCGCG      |                         |
| poxF                 | 2268013_F                 | GTCTGACTAATATGCAGTGGCGCAAAGTGAG     |                         |
|                      | 2270930_R                 | CGAGGCAGCCAAAGCTTTCGTTAAGAAGCAC     |                         |
| cidC                 | 498129_F                  | CGTTGCTTCGATCATGGTCTGGCAGAATTC      |                         |
|                      | 501457_R                  | GGCCAGTGGCATTCCTGATTACACCGAG        |                         |
| ahpC                 | 2611951_F                 | GAATAACCATAGAAAGAAGGGAGGCAGTTG      |                         |
|                      | 2614120_R                 | AATTATTACCAGCCGGACCCGAGCACAAAG      |                         |
| ohrR                 | 1040892_F                 | CAATTTTAGATCCGGATACCATGGCGATTTC     |                         |
|                      | 1043371_R                 | CTCCATTGCACACAAATTGCACACAAATTC      |                         |
| sod                  | 2004800_F                 | CAATCGCATGCTCGGAAATGAGTTTCAAAC      |                         |
|                      | 2007409_R                 | GGAAATAGGTATGCGATATTCATTTACGAC      |                         |
| flp                  | 69484_F                   | CTTATGGAGGAGGTTTCGATCCTATAGAAC      |                         |
|                      | 71774_R                   | GCAGTATACCAACGTTCCAACCGCTATC        |                         |
| dpsB                 | 68755_F                   | GAAAAGGTGATGTTTGTCGGTGACGGGATC      |                         |
|                      | 70973_R                   | GTATTTAAAAAACATCACTCGGCAACCTCACCAAG |                         |
| cydAB                | 14573_F                   | GAAGCTTAGAGTGACGGCTAATGAAC          |                         |
|                      | 18661_R                   | CCGCAAAATGGACGGGTATTATCCATC         |                         |
| gshR1                | 2311599_F                 | CAATGGGTTGCGGTTCGCATTCCTGAC         |                         |
|                      | 2314729_R                 | CTGTCGGAACGTTACTCGTCATGCTTG         |                         |
| gshR2                | 2748254_F                 | CAGTGACCAAAGATTTTGACCATCATAAAC      |                         |
|                      | 2751189_R                 | GTTGATCCAACGAGCGGCGTCATC            |                         |
| ipr                  | 706255_F                  | GGGTAATAAACCAGCAATGACCACAAGACG      |                         |
|                      | 708795_R                  | CTAGAATTCAATCGAAATAATATTCGGATTGTCGG |                         |
| npr                  | 464266_F                  | CCAATTTTTTTCTGCAAAGTCCTTTTGAGAG     |                         |
|                      | 467233_R                  | CGTTTTACAAGCATGGGAAAATACGGC         |                         |
| qRT-PCR              |                           |                                     |                         |
| NADH peroxida        | ase                       | ACGGCAATCCACAAGTTTGC                |                         |
|                      |                           | TTGTTGTTGAACGGCGAGTG                |                         |
| Elongation factor Tu |                           | AACCGCGAACAAGTTGAACG                |                         |
| -                    |                           | ACGGCCACCTTCTTCTTTTG                |                         |
| Glyceraldehyde       | 3-phosphate dehydrogenase | AACACGATTCCTCACAGCAC                |                         |
|                      |                           | ACAACAGAAACACGCTGTGC                |                         |

Table 2. continued.

measure H<sub>2</sub>O<sub>2</sub> concentrations.

#### Repressive effect of $H_2O_2$ on bacterial growth

Cells precultured overnight at 37°C were inoculated into fresh MRS medium at OD<sub>660</sub> = 0.05. These bacterial cultures were aliquoted (180  $\mu$ L/well) into a 96-well plate, and 20  $\mu$ L of H<sub>2</sub>O<sub>2</sub> solution was added to a final concentration of 0.5, 1.0, or 2.0 mM; the plate was then incubated at 37°C for 24 hr. The OD<sub>600</sub> was measured using a multiplate reader, and the value at each concentration was calculated on the basis of the value at 0 mM for each strain. Significance was indicated by p<0.05 (for each wild-type concentration).

#### **RNA** isolation

 $H_2O_2$  treatment was performed as follows. Samples precultured at 37°C were inoculated into 20 mL of MRS medium at  $OD_{600}$ = 0.05. The cultures were grown for 5 hr at 37°C under static conditions and divided into two 10 mL aliquots. The cells were harvested via centrifugation (10,000 × g, 3 min) and washed twice with PIPES buffer (pH 6.8). One aliquot was resuspended in 10 mL of PIPES buffer and incubated at 37°C for 1 hr. The other aliquot was resuspended in H<sub>2</sub>O<sub>2</sub> adjusted to 0.5 mM with PIPES buffer and incubated at 37°C for 1 hr. The 10 mL cultures were added to 20 mL of RNAprotect Bacteria Reagent (Qiagen). The mixtures were kept at room temperature for 5 min. The cells were then harvested via centrifugation for 10 min at 5000×g, suspended in 500 µL of TE buffer (50 mM Tris–HCl, pH 8.0) containing 5 mg/mL lysozyme and 20 µL/mL mutanolysin, and incubated at 37°C for 30 min. Total RNA was purified using a Direct-zol<sup>™</sup> RNA MiniPrep kit (Zymo Research) according to the manufacturer's protocol. DNA was digested using DNase I in the purification step. RNA was isolated from three independent cultures.

#### Quantitative real-time PCR assays

cDNA was synthesized using a PrimeScript RT reagent kit (Takara) according to the manufacturer's protocol. In total, 0.1 mg of total RNA was used as a template. Quantitative realtime PCR assays were performed using a CFX96 Real-Time PCR Detection System (Bio-Rad) with THUNDERBIRD SYBR qPCR Mix (Toyobo). The primers were designed to amplify products of approximately 80 bp in length (Table 2). The reaction mixture contained 25  $\mu$ L of THUNDERBIRD SYBR qPCR Mix, 1  $\mu$ L of 15  $\mu$ M forward primer, 1  $\mu$ L of 15  $\mu$ M reverse primer, 1  $\mu$ L of 50× ROX reference dye, 20  $\mu$ L of dH<sub>2</sub>O, and 2.5  $\mu$ L of diluted cDNA templates. All reactions were run in duplicate for each of the three independent RNA samples. The gene expression values were normalized using the elongation factor Tu and glyceraldehyde 3-phosphate dehydrogenase as an internal standard. Standard curves for both the internal standard and target genes were generated by amplifying 10-fold serial dilutions of cDNA. The gene expression data from quantitative real-time PCR were analyzed using Student's t-test.

#### RESULTS

# Construction of mutants deficient in genes involved in oxygen and ROS tolerance in L. casei IGM394

To elucidate the mechanisms of oxygen and ROS tolerance in *L. casei* IGM394, we constructed gene-deficient mutants targeting enzymes or factors that are expected to be involved in oxygen tolerance (Table 3). The target gene was completely deleted via the double-crossover method using a thermosensitive suicide vector. Fourteen out of 16 targeted genes were successfully disrupted in mutants. However, disruptants were not obtained for trxB2 and the chaperone protein gene groEL.

# Growth of deficient mutants under static and shaking conditions

We evaluated the growth rates of 23 deficient mutants under static and shaking conditions (Fig. 1A, 1B). The growth rate of  $\Delta nox$ , which is an NADH oxidase (nox, H<sub>2</sub>O-forming) genedeficient mutant, was decreased under both culture conditions. Compared with the findings for the wild type, the OD decreased from 2.2 to 1.5 under the static condition and from 2.2 to 1.6 under the shaking condition after 24 hr of culture. In the  $\Delta npr$ mutant, the growth rate was decreased only under shaking culture. Under the static condition, the OD of  $\Delta npr$  was 2.0, which was similar to that of the wild type (2.2). However, under the shaking condition, the OD of  $\Delta npr$  was 1.5, whereas that for the wild type was 2.2. Conversely, the ODs of four strains, namely the NADH oxidase (nox5, H<sub>2</sub>O<sub>2</sub>-forming) gene-deficient mutant  $\Delta nox5$ , pyruvate oxidase gene-deficient mutants  $\Delta poxF$  and  $\Delta cidC$ , and DNA-binding protein gene-deficient mutant  $\Delta dpsB$ , were slightly increased (approximately 0.1–0.2) under the shaking condition. The other eight deficient mutants did not exhibit different growth rates versus the wild type under either of the culture conditions. Decreased growth under shaking was observed only for  $\Delta npr$ . Therefore, we constructed mutants deficient in multiple genes using  $\Delta npr$  as a host and evaluated the effect on viability. We constructed six double-deficient mutants, one triple-deficient mutant, and two quadruple-deficient mutants. The target genes of the six double-deficient mutants were nox, nox5, sod, glutathione reductase (gshR1 or gshR2), and iron-dependent peroxidase (ipr). The triple-deficient mutant featured mutations of gshR1 and gshR2. Finally, the quadruple-deficient mutants featured mutations of *sod* or *ipr* using the triple-deficient mutant  $\Delta gshR1::\Delta gshR2::\Delta npr$ as a host. However, these deficient mutants exhibited the same growth rate as  $\Delta npr$  (Fig. 1B). These results indicated that the Npr gene is important for the growth of L. casei IGM394 under the shaking condition. Measuring the amount of H2O2 accumulated

 
 Table 3. Targeting enzymes or factors that are expected to be involved in oxidative stress tolerance

|                                                                    | Gene name |
|--------------------------------------------------------------------|-----------|
| NADH peroxidase                                                    | npr       |
| Organic hydroperoxide resistance protein transcriptional regulator | ohrR      |
| NADH oxidase (H <sub>2</sub> O - forming)                          | nox       |
| NADH oxidase ( $H_2O_2$ - forming)                                 | nox5      |
| Pyruvate oxidase                                                   | poxF      |
| Pyruvate oxidase                                                   | cidC      |
| Alkyl hydroperoxide reductase subunit C                            | ahpC      |
| Superoxide dismutase                                               | sod       |
| Fe-S cluster assembly protein                                      | suf       |
| Probable transcriptional regulator                                 | flp       |
| DNA binding protein                                                | dpsB      |
| Cytochrome bd ubiquinol subunit I, II                              | cydAB     |
| Glutathione reductase                                              | gshR1     |
| Iron-dependent peroxidase                                          | ipr       |
| Thioredoxin reductase                                              | trxB2     |
| Chaperon protein                                                   | groEL     |

in LAPTg medium after 24 hr,  $H_2O_2$  was detected only in  $\Delta npr$  and nine multiple-deficient mutants (data not shown). In addition, the evaluation by bacterial turbidity included dead cells, and there was a possibility that the results might be inaccurate. Therefore, we measured colony-forming units, and the results were in line with the measured OD values. Thus, only the results for turbidity are presented.

# Growth of the wild-type and $\Delta npr$ strains under the shaking condition and $H_2O_2$ concentrations in the culture

 $H_2O_2$  concentrations in the MRS culture medium of wild-type and  $\Delta npr$  cultures were measured over time under the shaking condition (Fig. 2). Although  $H_2O_2$  was not detected in the wildtype culture, following overnight culture of  $\Delta npr$ , approximately 1,000  $\mu$ M  $H_2O_2$  had accumulated. In addition, no accumulation of  $H_2O_2$  was observed in either strain under the static condition (data not shown). These results suggest that *L. casei* IGM394 converts oxygen in its growth process under shaking and that the generated  $H_2O_2$  is degraded by NADH peroxidase.

#### Growth suppression by $H_2O_2$

The effect of H<sub>2</sub>O<sub>2</sub> on the growth of each mutant was evaluated under various H<sub>2</sub>O<sub>2</sub> concentrations (0-2.0 mM) in MRS medium (Fig. 3). The suppressive effect of  $H_2O_2$  on growth was concentration dependent. In particular, 0.5 mM H<sub>2</sub>O<sub>2</sub> had little effect on growth, whereas 1.0 mM H<sub>2</sub>O<sub>2</sub> reduced proliferation. Bacterial growth was completely inhibited by 2.0 mM H<sub>2</sub>O<sub>2</sub>. The influence of 0.5 and 1.0 mM  $H_2O_2$  on the growth rates of nine mutants was similar to that observed in the wild-type strain. However, the growth rate of  $\Delta npr$  was reduced by 0.5 mM H<sub>2</sub>O<sub>2</sub>, and the rate was significantly lower than that of the wild type in the presence of 1.0 mM H<sub>2</sub>O<sub>2</sub>. The growth of  $\Delta ohrR$  was not suppressed by 1.0 mM  $H_2O_2$ . In addition,  $\Delta ohrR$  also proliferated in the presence of 2.0 mM H<sub>2</sub>O<sub>2</sub>, and H<sub>2</sub>O<sub>2</sub> resistance was improved by the deletion of *ohrR*. From these findings, it was presumed that ohrR is one of the tolerance mechanisms in L. casei IGM394.



■ static 24 h □ aerobic 24 h

Fig. 1. (A) Growth rates of wild type and deficient mutants under static and shaking conditions. Strains precultured overnight at  $37^{\circ}$ C were inoculated into fresh LAPTg medium at a final OD<sub>600</sub> of 0.05. After 24 hr, we measured the OD<sub>600</sub> using a spectrophotometer. The black bar shows the static condition, and the gray bar shows the shaking condition. (LAPTg medium has no ability to consume H<sub>2</sub>O<sub>2</sub>.) The data are shown as the mean ± SE of three independent experiments. asterisk (\*) Student's t-test; p<0.05. (B) Growth rates of  $\Delta$ npr and multiple deficient mutants under static and shaking conditions. Strains precultured overnight at  $37^{\circ}$ C were inoculated into fresh LAPTg medium at a final OD<sub>600</sub> of 0.05. After 24 hours, we measured the OD<sub>600</sub> using a spectrophotometer. The black bar shows the static condition, and the gray bar shows the shaking condition. (LAPTg medium has no ability to consume H<sub>2</sub>O<sub>2</sub>.) The data are shown as the mean ± SE of three independent experiments. At a final OD<sub>600</sub> of 0.05. After 24 hours, we measured the OD<sub>600</sub> using a spectrophotometer. The black bar shows the static condition, and the gray bar shows the shaking condition. (LAPTg medium has no ability to consume H<sub>2</sub>O<sub>2</sub>.) The data are shown as the mean ± SE of three independent experiments. asterisk (\*) Student's t-test; p<0.05.

#### $H_2O_2$ consumption in PIPES buffer

 $H_2O_2$  accumulation in the medium was estimated for 14 deficient mutants under the shaking condition, and  $H_2O_2$  was only detected in the  $\Delta npr$  culture. This illustrated that only  $\Delta npr$  could not consume  $H_2O_2$ .  $H_2O_2$  accumulation in the medium under the shaking condition was confirmed for  $\Delta npr$ , and  $\Delta npr$  could not consume  $H_2O_2$  generated during the growth process

(Fig. 4). Therefore, the ability to consume added  $H_2O_2$  in PIPES buffer was measured. In this experiment, the wild-type,  $\Delta npr$ , and  $\Delta ohrR$  strains were used after 5 hr of logarithmic growth. After the cells were exposed to 0, 50, 100, or 300  $\mu$ M  $H_2O_2$  for 1 hr under the static condition,  $H_2O_2$  concentrations in PIPES buffer were measured. On average, the  $H_2O_2$  concentration was decreased by 84% compared with the initial concentration in the



Fig. 2. Growth and accumulated  $H_2O_2$  concentration of wild type and  $\Delta npr$  under the shaking condition.

Strains precultured overnight at 37°C were inoculated into fresh MRS medium at a final  $OD_{600}$  of 0.05. We measured the  $OD_{600}$  using a spectrophotometer every 3 hr. Subsequently, 1 mL of the culture was collected and centrifuged (10,000 g, 3 min), and 20  $\mu$ L of the supernatant was used for measuring the H<sub>2</sub>O<sub>2</sub> concentration. After measuring the wavelength at 727 nm, chromogenic reagent DA64 was used to quantify H<sub>2</sub>O<sub>2</sub> based on the standard curve. The black square represents the OD value of wild type, and the black triangle represents that of  $\Delta npr$ . The gray bar shows the concentration of H<sub>2</sub>O<sub>2</sub> in the  $\Delta npr$  culture. The data are shown as the mean ± SE of three independent experiments.





presence of wild-type cells. The wild-type strain decreased the supplemented  $H_2O_2$  concentration from 50 to 0  $\mu$ M, from 100 to 25  $\mu$ M, and from 300 to 204  $\mu$ M. The  $\Delta npr$  strain could not consume  $H_2O_2$  efficiently. The  $H_2O_2$  concentration for the  $\Delta npr$  strain after 1 hr of incubation was similar to or slightly higher

than the control level. In  $\Delta ohrR$  culture buffer, H<sub>2</sub>O<sub>2</sub> could not be detected after adding 50 or 100  $\mu$ M H<sub>2</sub>O<sub>2</sub>. The  $\Delta ohrR$  strain completely consumed 100  $\mu$ M H<sub>2</sub>O<sub>2</sub> and decreased the H<sub>2</sub>O<sub>2</sub> concentration from 300 to 174  $\mu$ M. This indicated that the H<sub>2</sub>O<sub>2</sub> consumption ability of the  $\Delta ohrR$  strain was greater than that of



**Fig. 4.**  $H_2O_2$  concentration of wild type and  $\Delta npr$  in PIPES buffer.

Strains precultured overnight at 37°C were inoculated into fresh MRS medium at a final  $OD_{600}$  of 0.05. The cells were used after static culture at 37°C for 5 hr. They were washed twice with PIPES buffer (pH 6.8) and resuspended in 10 mL H<sub>2</sub>O<sub>2</sub> adjusted to 0 to 300  $\mu$ M with PIPES buffer. After incubation at 37°C for 2 hr, the cells were harvested by centrifugation (10,000 g, 3 min). Twenty microliters of the supernatant was used for measuring the H<sub>2</sub>O<sub>2</sub> concentration. After measuring the wavelength at 727 nm, the chromogenic reagent DA64 was used to quantify H<sub>2</sub>O<sub>2</sub> based on the standard curve. The data are shown as the mean ± SE of three independent experiments.

the wild-type strain.

# Gene expression analysis of NADH peroxidase via quantitative real-time PCR

The aforementioned results revealed that  $H_2O_2$  consumption was mainly performed by Npr and that deletion of *ohrR* eliminated the growth-suppressing effects of  $H_2O_2$  in *L. casei* IGM394. It was presumed that OhrR was involved in  $H_2O_2$  consumption; therefore, we examined the expression level of *npr* in the wildtype and  $\Delta ohrR$  strains via quantitative real-time PCR. In addition, we observed that the expression level changed depending on the presence or absence of  $H_2O_2$ . In this experiment, the treatment conditions were exposure to  $H_2O_2$  adjusted to 0.5 mM with PIPES buffer for 1 hr at 37°C. In the wild-type strain, the expression level of *npr* was constant regardless of the presence of  $H_2O_2$ . However, the expression level of *npr* in the  $\Delta ohrR$  strain was 2.5fold higher in the absence of  $H_2O_2$  and 3-fold higher than that of the wild-type strain in the presence of  $H_2O_2$ .

#### DISCUSSION

Aerobic organisms have various tolerance mechanisms against oxygen and ROS. Lactic acid bacteria, which are facultative anaerobes, do not require oxygen to grow, but they can grow in the presence of oxygen. Several factors have been reported to be involved in oxidative stress tolerance, but the mechanisms differ by species and strain. The similar growth of *L. casei* IGM394 (wild type) under static and shaking conditions observed in this study indicated that this strain has multiple mechanisms to respond to oxidative stress.

SOD, which converts highly toxic superoxide substrates into  $H_2O_2$ , is important in the mechanism of oxidative tolerance. Serata *et al.* reported that *sod* of *L. casei* Shirota was transcribed but that its protein was inactive, and they reported that superoxide was eliminated via the intracellular accumulation of  $Mn^{2+}$  [34]. The possibility that *L. casei* IGM394 has the same  $Mn^{2+}$  accumulation

mechanism as *L. casei* Shirota could explain why *sod* disruption did not affect the growth rate of the former bacterium (Fig. 1A).

Higuchi *et al.* reported that AhpC degrades  $H_2O_2$  into water and that  $H_2O_2$  is produced by Nox as a byproduct of oxygen consumption in *S. mutans* [3]. *L. casei* IGM394 expresses Nox5, which produces  $H_2O_2$  in a manner similar to that observed in S. mutans. However,  $H_2O_2$  was not detected in the culture medium of  $\Delta ahpC$  under shaking. It is predicted that *L. casei* IGM394 carries a number of enzymes for degrading  $H_2O_2$ , such as NADH peroxidase, and that these enzymes complement the function of AhpC to degrade  $H_2O_2$  under shaking.

There are reports that Fnr-like protein (Flp) is a potential sensor protein and regulator, although the genes it regulates in Lc. lactis and L. casei remain to be clarified [35, 36]. When Flp is oxidized, an intramolecular disulfide bond is formed, thereby conferring the ability to bind to the promoter region. Although double deletion of flpA and flpB leads to hypersensitivity to  $H_2O_2$ in Lc. lactis ssp. cremoris MG1363 [37], Aflp of L. casei IGM394 exhibited the same growth rate as the wild type under static and shaking conditions (Fig. 1A) or in the presence of  $2 \text{ mM H}_2\text{O}_2$ . It is unclear whether the different responses of the two strains are due to different functions of Flp. The DNA-binding protein Dps is an H<sub>2</sub>O<sub>2</sub> resistance factor in *E. coli* that has been identified as a nonspecific DNA-binding protein accumulated in stationary cells [38]. It has been reported that Dps forms a ferritin-like complex, binds to DNA to form an extremely stable complex, and protects DNA against  $H_2O_2$  [39, 40]. The suf cluster may participate in Fe-S cluster assembly or repair. Under oxidative stress, OxyR (regulator protein) activates the expression of the suf cluster in E. coli [41]. Cytochrome bd oxidase (CydAB) is the terminal electron acceptor that finally reduces oxygen to water. In all lactic acid bacteria, cydAB is clustered [42, 43]. GshR is one of the enzymes constituting the glutathione-ascorbic acid cycle, a metabolic pathway that detoxifies H<sub>2</sub>O<sub>2</sub> generated in the process of metabolism. Yamamoto et al. reported that GshR may be important in protecting S. mutans against oxidative stress

53

[44, 45]. Despite reports of their involvement in oxidative stress resistance, deletion mutants of these genes ( $\Delta dpsB$ ,  $\Delta suf$ ,  $\Delta cydAB$ ,  $\Delta gshR$ ) had similar growth rates as the wild-type strain under static and shaking conditions. It is presumed that the mechanisms of oxygen consumption or tolerance were complemented by other mechanisms in L. casei IGM394.It should be noted, however, that we predicted the presence of genes that are essential for growth under oxidative stress conditions but are not complemented by other mechanisms. In addition, we tried to disrupt trxB2, which plays a significant role in cellular redox processes, including protein repair and defense against oxidative stress, but these efforts were unsuccessful. Serata et al. succeeded in constructing a trxB2-deficient mutant in L. casei Shirota, and the ability of this strain to grow under aerobic conditions was significantly reduced. This suggested that TrxB2 is an important enzyme for oxygen tolerance in L. casei Shirota [13]. Our different findings may be due to the fact that we did not perform experimentation under an anaerobic condition.

Our finding that only  $\Delta nox$  exhibited decreased growth versus the wild type indicated that Nox may have different functions than other oxygen-consuming enzymes. One reason for this is that Nox converts oxygen to water without producing H<sub>2</sub>O<sub>2</sub>. Other oxygenconsuming enzymes, such as NADH oxidase (Nox5, H<sub>2</sub>O<sub>2</sub>forming) and pyruvate oxidase (PoxF, CidC), convert oxygen to H<sub>2</sub>O<sub>2</sub>. It is considered that the oxygen consumption function depends on the H<sub>2</sub>O<sub>2</sub>-generating enzyme following the deletion of Nox, and that the influence of H<sub>2</sub>O<sub>2</sub> or ROS produced by the Fenton reaction explains the decreased growth rate of  $\Delta nox$ . One other reason is that Nox works to maintain the redox potential in cells. Futhermore, the increased growth rates observed for  $\Delta nox5$ ,  $\Delta poxF$ , and  $\Delta cidC$  suggested that the decreased production of H<sub>2</sub>O<sub>2</sub> by these proteins eased the stress on cells.

 $\Delta npr$ , in which the NADH peroxidase gene was disrupted, only displayed decreased growth under the shaking condition relative to the wild type. As NADH peroxidase is an H<sub>2</sub>O<sub>2</sub>-degrading enzyme, it was considered that  $\Delta npr$  could not degrade the H<sub>2</sub>O<sub>2</sub> generated as a byproduct of oxygen consumption under the shaking condition. A high concentration of  $H_2O_2$  was detected in the  $\Delta npr$ culture under the shaking condition. The H<sub>2</sub>O<sub>2</sub> concentration increased with the incubation time and reached about 500  $\mu$ M after 15 hr and about 950 µM after 24 hr. However, in cultures of the wild-type and all other deficient mutant strains, H<sub>2</sub>O<sub>2</sub> was not detected under either condition (Fig. 2). This revealed that the loss of H2O2 degradation could not be compensated for by other genes in L. casei IGM394. Other mutants featuring deficiencies of multiple genes displayed no changes in phenotype under shaking. From this finding, it was suggested that the oxidative stress tolerance mechanisms of L. casei IGM394 are multiple and diverse, and thus, no effect on growth was observed because missing functions could be complemented by other genes. However, the data indicated that H<sub>2</sub>O<sub>2</sub> consumption is critical for the oxidative stress tolerance mechanism in this strain because decreased growth under the shaking condition was only observed for  $\Delta npr$ . As lactic acid bacteria cannot synthesize heme, there is no catalase-based H<sub>2</sub>O<sub>2</sub> degradation system. Previous studies reported that L. plantarum carries manganese catalase, which uses manganese as a cofactor [46], and that *L. sakei* synthesizes heme catalase when heme is added to the medium [47]. Genomic data revealed that L. casei IGM394 possesses four peroxidases: NADH peroxidase, iron-dependent peroxidase, glutathione

peroxidase, and thiol peroxidase; however, the bacterium does not carry manganese catalase. Our findings revealed that peroxidases other than NADH peroxidase cannot efficiently degrade  $H_2O_2$ .

Interestingly,  $\Delta ohrR$ , which is a deficient mutant of the transcriptional regulator gene (ohrR), showed strong resistance to  $H_2O_2$  (Fig. 3). The  $\triangle ohrR$  could grow under 0.5 mM and 1.0 mM H<sub>2</sub>O<sub>2</sub> supplemented conditions as well as 0 mM supplemented conditions. Furthermore,  $\Delta ohrR$  could grow under even 2.0 mM supplemented conditions, that is, conditions in which wild type could not grow. OhrR is a transcriptional repressor of organic hydroperoxide resistance protein (OhrA). As the ohrR disruption resulted in the constitutive expression of the OhrA protein, it induced strong resistance to  $H_2O_2$  in  $\Delta ohrR$ . The OhrR gene was first identified in Xanthomonas campestris [20] and subsequently reported in many gram-negative bacteria. In gram-positive bacteria, the Ohr family was reported to be involved in resistance to organic peroxide and H<sub>2</sub>O<sub>2</sub> in *Bacillus subtilis* [21], and OhrA overexpression induced H<sub>2</sub>O<sub>2</sub> tolerance. In B. subtilis, OhrR repressed ohrA expression by binding to the inverted repeat (IR) sequence (TACAATT-N-AATTGTA) presented upstream of ohrA. However, there is no detailed report on the Ohr family in lactic acid bacteria, and a similar IR sequence upstream of ohrA was not detected in L. casei IGM394. Our results suggested that deletion of ohrR induced greater H2O2 resistance, and these effects appear to be related to the constitutive expression of ohrA. Meanwhile, deletion of ohrR induced higher expression of NADH peroxidase (Fig. 5). In L. casei IGM394, ohrA expression might be regulated by the recognition of different IR sequences or a different mechanism from that observed for *ohrR* in *Bacillus*. The association between the constitutive expression of ohrA and the higher expression of NADH peroxidase is unclear at present. However, it was suggested that the OhrR protein participates in the mechanisms combating oxygen and ROS in lactic acid bacteria. Analyses of ohrA expression control and function will be required in the future.

The findings of decreased growth under the shaking condition



Fig. 5. NADH peroxidase expression level with and without  $H_2O_2$  in the wild type and  $\Delta ohrR$ .

Target gene: NADH peroxidase gene (npr).

Housekeeping gene: elongation factor Tu gene and glyceraldehyde 3-phosphate dehydrogenase gene.

The relative expression levels were calculated using 2 housekeeping genes. Black bars represent untreated; gray bars represent  $H_2O_2$  treated. The data are shown as the mean  $\pm$  SE of three independent experiments.

and the loss of  $H_2O_2$  consumption following disruption of *npr* were similar to those reported for *L. casei* Shirota [16]. Although *npx* expression was increased by approximately 10-fold in *L. casei* Shirota in response to  $H_2O_2$  exposure according to quantitative real-time PCR, the expression level of *npr* in *L. casei* IGM394 was constant under the shaking condition. Serata *et al.* reported that *L. casei* Shirota exhibited the ability to consume  $H_2O_2$  only after 1 hr of pretreatment with 0.5 mM  $H_2O_2$  added to the culture medium. However, *L. casei* IGM394 could consume  $H_2O_2$  without this pretreatment. This difference in the regulation of  $H_2O_2$  consumption remains to be clarified.

According to our study, *L. casei* IGM394 has multiple oxygen consumption mechanisms, and disruption of a single gene is not sufficient to eliminate the ability to consume oxygen or alter growth. It is presumed that NADH oxidase efficiently converts oxygen to water in the wild-type strain, and thus, multiple  $H_2O_2$  consumption mechanisms may not be necessary. NADH peroxidase plays a key role in  $H_2O_2$  consumption, and other genes could not compensate for its function. Thus, it was concluded that the NADH peroxidase has a critical role in the oxidative stress response mechanisms in *L. casei* IGM394.

#### REFERENCES

- Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755–776. [Medline] [CrossRef]
- Higuchi M, Shimada M, Yamamoto Y, Hayashi T, Koga T, Kamio Y. 1993. Identification of two distinct NADH oxidases corresponding to H2O2-forming oxidase and H2Oforming oxidase induced in *Streptococcus mutans*. J Gen Microbiol 139: 2343–2351. [Medline] [CrossRef]
- Higuchi M, Yamamoto Y, Poole LB, Shimada M, Sato Y, Takahashi N, Kamio Y. 1999. Functions of two types of NADH oxidases in energy metabolism and oxidative stress of *Streptococcus mutans*. J Bacteriol 181: 5940–5947. [Medline] [CrossRef]
- Lorquet F, Goffin P, Muscariello L, Baudry JB, Ladero V, Sacco M, Kleerebezem M, Hols P. 2004. Characterization and functional analysis of the *poxB* gene, which encodes pyruvate oxidase in *Lactobacillus plantarum*. J Bacteriol 186: 3749–3759. [Medline] [CrossRef]
- Sedewitz B, Schleifer KH, Götz F. 1984. Physiological role of pyruvate oxidase in the aerobic metabolism of *Lactobacillus plantarum*. J Bacteriol 160: 462–465. [Medline] [CrossRef]
- Sasaki Y, Horiuchi H, Kawashima H, Mukai T, Yamamoto Y. 2014. NADH Oxidase of Streptococcus thermophilus 1131 is required for the effective yogurt fermentation with Lactobacillus delbrueckii subsp. bulgaricus 2038. Biosci Microbiota Food Health 33: 31–40. [Medline] [CrossRef]
- Patton TG, Rice KC, Foster MK, Bayles KW. 2005. The *Staphylococcus aureus cidC* gene encodes a pyruvate oxidase that affects acetate metabolism and cell death in stationary phase. Mol Microbiol 56: 1664–1674. [Medline] [CrossRef]
- Chang SK, Hassan HM. 1997. Characterization of superoxide dismutase in Streptococcus thermophilus. Appl Environ Microbiol 63: 3732–3735. [Medline] [CrossRef]
- Sanders JW, Leenhouts KJ, Haandrikman AJ, Venema G, Kok J. 1995. Stress response in *Lactococcus lactis*: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J Bacteriol 177: 5254–5260. [Medline] [CrossRef]
- Miyoshi A, Rochat T, Gratadoux JJ, Le Loir Y, Oliveira SC, Langella P, Azevedo V. 2003. Oxidative stress in *Lactococcus lactis*. Genet Mol Res 2: 348–359. [Medline]
- Vido K, Diemer H, Van Dorsselaer A, Leize E, Juillard V, Gruss A, Gaudu P. 2005. Roles of thioredoxin reductase during the aerobic life of *Lactococcus lactis*. J Bacteriol 187: 601–610. [Medline] [CrossRef]
- Serrano LM, Molenaar D, Wels M, Teusink B, Bron PA, de Vos WM, Smid EJ. 2007. Thioredoxin reductase is a key factor in the oxidative stress response of *Lactobacillus plantarum* WCFS1. Microb Cell Fact 6: 29. [Medline] [CrossRef]
- Serata M, Iino T, Yasuda E, Sako T. 2012. Roles of thioredoxin and thioredoxin reductase in the resistance to oxidative stress in *Lactobacillus casei*. Microbiology 158: 953–962. [Medline] [CrossRef]
- Holmgren A. 1985. Thioredoxin. Annu Rev Biochem 54: 237–271. [Medline] [CrossRef]
- Yamamoto Y, Higuchi M, Poole LB, Kamio Y. 2000. Role of the dpr product in oxygen tolerance in *Streptococcus mutans*. J Bacteriol 182: 3740–3747. [Medline] [CrossRef]
- Yamamoto Y, Higuchi M, Poole LB, Kamio Y. 2000. Identification of a new gene responsible for the oxygen tolerance in aerobic life of *Streptococcus mutans*. Biosci

Biotechnol Biochem 64: 1106-1109. [Medline] [CrossRef]

- Serata M, Kiwaki M, Iino T. 2016. Functional analysis of a novel hydrogen peroxide resistance gene in *Lactobacillus casei* strain Shirota. Microbiology 162: 1885–1894. [Medline] [CrossRef]
- Brooijmans RJ, de Vos WM, Hugenholtz J. 2009. Lactobacillus plantarum WCFS1 electron transport chains. Appl Environ Microbiol 75: 3580–3585. [Medline] [CrossRef]
- Sijpesteijn AK. 1970. Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in *Streptococcus lactis* and *Leuconostoc mesenteroides*. Antonie van Leeuwenhoek 36: 335–348. [Medline] [CrossRef]
- Winstedt L, Frankenberg L, Hederstedt L, von Wachenfeldt C. 2000. *Enterococcus faecalis* V583 contains a cytochrome *bd*-type respiratory oxidase. J Bacteriol 182: 3863–3866. [Medline] [CrossRef]
- Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S. 1998. Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from *Xanthomonas campestris* pv. phaseoli. J Bacteriol 180: 2636–2643. [Medline] [CrossRef]
- Fuangthong M, Atichartpongkul S, Mongkolsuk S, Helmann JD. 2001. OhrR is a repressor of *ohrA*, a key organic hydroperoxide resistance determinant in *Bacillus subtilis*. J Bacteriol 183: 4134–4141. [Medline] [CrossRef]
- 23. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O'Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D. 2006. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103: 15611–15616. [Medline] [CrossRef]
- Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. 2009. Genome sequence and comparative genome analysis of *Lactobacillus casei*: insights into their nicheassociated evolution. Genome Biol Evol 1: 239–257. [Medline] [CrossRef]
- Mazé A, Boël G, Zúñiga M, Bourand A, Loux V, Yebra MJ, Monedero V, Correia K, Jacques N, Beaufils S, Poncet S, Joyet P, Milohanic E, Casarégola S, Auffray Y, Pérez-Martínez G, Gibrat JF, Zagorec M, Francke C, Hartke A, Deutscher J. 2010. Complete genome sequence of the probiotic *Lactobacillus casei* strain BL23. J Bacteriol 192: 2647–2648. [Medline] [CrossRef]
- Zhang W, Yu D, Sun Z, Wu R, Chen X, Chen W, Meng H, Hu S, Zhang H. 2010. Complete genome sequence of *Lactobacillus casei* Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China. J Bacteriol 192: 5268–5269. [Medline] [CrossRef]
- Ai L, Chen C, Zhou F, Wang L, Zhang H, Chen W, Guo B. 2011. Complete genome sequence of the probiotic strain *Lactobacillus casei* BD-II. J Bacteriol 193: 3160–3161. [Medline] [CrossRef]
- Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W, Guo B. 2011. Complete genome sequence of the probiotic bacterium *Lactobacillus casei* LC2W. J Bacteriol 193: 3419–3420. [Medline] [CrossRef]
- Hochwind K, Weinmaier T, Schmid M, van Hemert S, Hartmann A, Rattei T, Rothballer M. 2012. Draft genome sequence of *Lactobacillus casei* W56. J Bacteriol 194: 6638. [Medline] [CrossRef]
- Koryszewska-Baginska A, Aleksandrzak-Piekarczyk T, Bardowski J. 2013. Complete genome sequence of the probiotic strain *Lactobacillus casei* (formerly *Lactobacillus paracasei*) LOCK919. Genome Announc 1: e00758–e13. [Medline] [CrossRef]
- Wang S, Zhu H, He F, Luo Y, Kang Z, Lu C, Feng L, Lu X, Xue Y, Wang H. 2014. Whole genome sequence of the probiotic strain *Lactobacillus paracasei* N1115, isolated from traditional Chinese fermented milk. Genome Announc 2: e00059–e14. [Medline]
- Kajikawa A, Igimi S. 2011. Development of recombinant vaccines in lactobacilli for elimination of *Salmonella*. Biosci Microflora 30: 93–98. [Medline] [CrossRef]
- Komatsu A, Igimi S, Kawana K. 2018. Optimization of human papillomavirus (HPV) type 16 E7-expressing lactobacillus-based vaccine for induction of mucosal E7-specific IFNγ-producing cells. Vaccine 36: 3423–3426. [Medline] [CrossRef]
- Serata M, Yasuda E, Sako T. 2018. Effect of superoxide dismutase and manganese on superoxide tolerance in *Lactobacillus casei* strain Shirota and analysis of multiple manganese transporters. Biosci Microbiota Food Health 37: 31–38. [Medline] [CrossRef]
- Scott C, Guest JR, Green J. 2000. Characterization of the Lactococcus lactis transcription factor FlpA and demonstration of an *in vitro* switch. Mol Microbiol 35: 1383–1393. [Medline] [CrossRef]
- Gostick DO, Green J, Irvine AS, Gasson MJ, Guest JR. 1998. A novel regulatory switch mediated by the FNR-like protein of *Lactobacillus casei*. Microbiology 144: 705–717. [Medline] [CrossRef]
- Scott C, Rawsthorne H, Upadhyay M, Shearman CA, Gasson MJ, Guest JR, Green J. 2000. Zinc uptake, oxidative stress and the FNR-like proteins of *Lactococcus lactis*. FEMS Microbiol Lett 192: 85–89. [Medline] [CrossRef]
- Almirón M, Link AJ, Furlong D, Kolter R. 1992. A novel DNA-binding protein with regulatory and protective roles in starved *Escherichia coli*. Genes Dev 6 12B:

2646–2654. [Medline] [CrossRef]

- Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM. 1998. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5: 294–303. [Medline] [CrossRef]
- Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A. 1999. DNA protection by stress-induced biocrystallization. Nature 400: 83–85. [Medline] [CrossRef]
- Zheng M, Wang X, Templeton LJ, Smulski DR, LaRossa RA, Storz G. 2001. DNA microarray-mediated transcriptional profiling of the *Escherichia coli* response to hydrogen peroxide. J Bacteriol 183: 4562–4570. [Medline] [CrossRef]
- Giuffrè A, Borisov VB, Arese M, Sarti P, Forte E. 2014. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta 1837: 1178–1187. [Medline] [CrossRef]
- Cesslein B, Derrē-Bobillot A, Fernandez A, Lamberet G, Lechardeur D, Yamamoto Y, Pedersen MB, Garrigues C, Gaudu P. 2010. Respiration, a strategy to avoid oxidative

stress in *Lactococcus lactis*, is regulated by the heme status. Lactic Acid Bacteria 21: 10–15. [CrossRef]

- Sherrill C, Fahey RC. 1998. Import and metabolism of glutathione by *Streptococcus mutans*. J Bacteriol 180: 1454–1459. [Medline] [CrossRef]
- Yamamoto Y, Kamio Y, Higuchi M. 1999. Cloning, nucleotide sequence, and disruption of *Streptococcus mutans* glutathione reductase gene (*gor*). Biosci Biotechnol Biochem 63: 1056–1062. [Medline] [CrossRef]
- Barynin VV, Whittaker MM, Antonyuk SV, Lamzin VS, Harrison PM, Artymiuk PJ, Whittaker JW. 2001. Crystal structure of manganese catalase from *Lactobacillus plantarum*. Structure 9: 725–738. [Medline] [CrossRef]
- Hertel C, Schmidt G, Fischer M, Oellers K, Hammes WP. 1998. Oxygen-dependent regulation of the expression of the catalase gene katA of *Lactobacillus sakei* LTH677. Appl Environ Microbiol 64: 1359–1365. [Medline] [CrossRef]