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Sorafenib is a tyrosine kinase inhibitory drug with multiple molecular specificities that is
approved for clinical use in second-line treatments of metastatic and advanced renal cell
carcinomas (RCCs). However, only 10–40% of RCC patients respond on sorafenib-
containing therapies, and personalization of its prescription may help in finding an
adequate balance of clinical efficiency, cost-effectiveness, and side effects. We
investigated whether expression levels of known molecular targets of sorafenib in RCC
can serve as prognostic biomarker of treatment response.We used Illumina microarrays to
profile RNA expression in pre-treatment formalin-fixed paraffin-embedded (FFPE) samples
of 22 metastatic or advanced RCC cases with known responses on next-line sorafenib
monotherapy. Among them, nine patients showed partial response (PR), three
patients—stable disease (SD), and 10 patients—progressive disease (PD) according to
Response Evaluation Criteria In Solid Tumors (RECIST) criteria. We then classified PR + SD
patients as “responders” and PD patients as “poor responders”. We found that gene
signature including eight sorafenib target genes was congruent with the drug response
characteristics and enabled high-quality separation of the responders and poor
responders [area under a receiver operating characteristic curve (AUC) 0.89]. We
validated these findings on another set of 13 experimental annotated FFPE RCC
samples (for 2 PR, 1 SD, and 10 PD patients) that were profiled by RNA sequencing
and observed AUC 0.97 for 8-gene signature as the response classifier. We further
validated these results in a series of qRT-PCR experiments on the third experimental set of
12 annotated RCC biosamples (for 4 PR, 3 SD, and 5 PD patients), where 8-gene
signature showed AUC 0.83.

Keywords: renal cell carcinoma, kidney cancer, gene signature, mRNA expression, RNA sequencing, microarray
profiling, sorafenib response, tyrosine kinase inhibitor

Edited by:
William C. Cho,

QEH, Hong Kong SAR, China

Reviewed by:
Byeong Hwa Yun,

United States Food and Drug
Administration, United States

Mahendra K. Singh,
University of Miami, United States

Yuriy L. Orlov,
I. M. Sechenov First Moscow State

Medical University, Russia

*Correspondence:
Maksim Sorokin

sorokin@oncobox.com

Specialty section:
This article was submitted to

Molecular Diagnostics and
Therapeutics,

a section of the journal
Frontiers in Molecular Biosciences

Received: 04 August 2021
Accepted: 28 January 2022
Published: 14 March 2022

Citation:
Gudkov A, Shirokorad V, Kashintsev K,

Sokov D, Nikitin D, Anisenko A,
Borisov N, Sekacheva M, Gaifullin N,
Garazha A, Suntsova M, Koroleva E,
Buzdin A and Sorokin M (2022) Gene

Expression-Based Signature Can
Predict Sorafenib Response in

Kidney Cancer.
Front. Mol. Biosci. 9:753318.

doi: 10.3389/fmolb.2022.753318

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 7533181

ORIGINAL RESEARCH
published: 14 March 2022

doi: 10.3389/fmolb.2022.753318

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.753318&domain=pdf&date_stamp=2022-03-14
https://www.frontiersin.org/articles/10.3389/fmolb.2022.753318/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.753318/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.753318/full
http://creativecommons.org/licenses/by/4.0/
mailto:sorokin@oncobox.com
https://doi.org/10.3389/fmolb.2022.753318
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.753318


INTRODUCTION

According to the estimates for 2020, globally there were ~431,000
new cases of kidney cancer and ~179,000 associated deaths (Sung
et al., 2021). Renal cell carcinoma (RCC) is the most common
subtype of kidney cancer in adults, responsible for nearly 90% of
all cases and prone to distant metastasis (He et al., 2021). RCC
arises from the renal parenchyma, and the incidence of RCC is
still increasing in most countries (Bhatt and Finelli, 2014; Du
et al., 2020). Approximately 25–30% of RCC patients are
diagnosed at a metastatic or locally advanced disease stage,
and another third of RCC patients will recur after receiving a
successful first-line treatment (Sánchez-Gastaldo et al., 2017).
RCC includes several different histological subtypes with distinct
biological behaviors and prognoses.

RCCs are frequently characterized by inactivation of the VHL
tumor suppressor gene. This leads to deficiency of its encoded
protein, which is part of an E3 ubiquitin ligase complex that
degrades alpha subunit of hypoxia inducible factor 2 (HIF-2α).
The resulting excessive accumulation of HIF-2α can
transcriptionally upregulate oncogenic hypoxia-responsive
genes, including platelet-derived growth factor (PDGF) and
vascular endothelial growth factor (VEGF) (Choueiri and
Kaelin, 2020). In turn, VEGF and PDGF promote
angiogenesis, cell growth and survival, and RCC progression
by activating the respective tyrosine kinase receptors PDGFR
and VEGFR. This leads to high vascularization of RCC and to its
high metastatic potential (He et al., 2021). Patients with
metastatic RCC are insensitive to chemotherapy and
radiotherapy, and have a poor survival prognosis (Choueiri
and Motzer, 2017).

Sorafenib is a tyrosine kinase inhibitor with multiple
specificities that targets at least ten tyrosine kinase molecules:
RAF1, BRAF, RET, FLT1, FGFR1, KIT, PDGFRB, FLT3, FLT4,
and KDR (Adnane et al., 2006). Sorafenib is thought to have a
dual suppressive effect on tumors by blocking both angiogenesis,
and cell proliferation and survival through the inhibition of
VEGFR/PDGFR and BRAF/RET/FLT/FGFR/KIT/KDR
signaling axis, respectively (Wilhelm et al., 2004, 2006). It is
the first targeted drug approved for treatment of metastatic or
locally advanced RCC by US FDA, which revolutionized
treatment of kidney cancer and accelerated development and
registration of other targeted therapeutics (Escudier et al., 2019).
Since then, several other specific agents against VEGF, PDGF,
and their receptors have been approved for the treatment of RCC,
including sunitinib, axitinib, cabozanitinib, lenvatinib,
pazopanib, and bevacizumab (Dizman et al., 2020). In
addition, mTOR-specific inhibitors temsirolimus and
everolimus were also approved for the treatment of this
disease (Dizman et al., 2020). According to the National
Comprehensive Cancer Network (NCCN) guidelines, sorafenib
and sunitinib are recommended as drugs for metastatic RCC,
where sorafenib has a lower toxicity than sunitinib (Deng et al.,
2019). Moreover, sorafenib is also approved as the first-line
treatment of metastatic RCC according to the latest guidelines
of Chinese Society of Clinical Oncology (He et al., 2021). In
clinical practice, it is also effective in hepatocellular and thyroid

cancers (Escudier et al., 2019), myeloid leukemia, mesothelioma,
and prostate cancer (Méndez-Blanco et al., 2018).

However, only 10–40% of RCC patients respond on
sorafenib-containing therapeutic schemes (Larkin and Eisen,
2006; Escudier et al., 2007; Guevremont et al., 2009), and
personalization of its prescriptions may help in finding an
adequate balance of clinical efficiency, cost-effectiveness, and
side effects. Nowadays, there are no clinical biomarkers of
response on sorafenib treatment in RCC, and the molecular
mechanisms of sorafenib resistance in RCC are not sufficiently
understood (He et al., 2021). Currently, several RCC sorafenib
resistance biomarkers were identified by RNA expression assays
in drug responder and non-responder tumors: long non-coding
RNAs GAS5 (Liu et al., 2019) and SRLR (Xu et al., 2017),
microRNA miR-21, and genes ANGPTL3 (Bao et al., 2018),
CXCR4, CD34 (Aziz et al., 2014), FGFR1 (Ho et al., 2015),
FRS2A, GLUT1, HO-1 (Zheng et al., 2015), SOX5, and SOX9 (Li
et al., 2015; He et al., 2021). In addition, expression of AKT
protein was reported to be a biomarker of enhanced resistance
against sorafenib in RCC patients (Jonasch et al., 2010).
However, despite those important observations, no diagnostic
settings were constructed to predict effectiveness of sorafenib
for RCC patients.

Drug target expression levels, e.g., determined by
immunohistochemistry, are already used as the biomarkers of
treatment response in some solid cancers (Hechtman et al., 2017)
including breast cancer (Nicolini et al., 2018) and gastric cancer
(Abrahao-Machado and Scapulatempo-Neto, 2016). In addition,
profiling of gene expression at RNA level is a powerful tool for
discovery of drug efficiency biomarkers and for cancer therapy
personalization (Buzdin et al., 2019). Previously, we showed that
gene expression levels established from standardized RNA
sequencing data can be used as robust estimators of the
corresponding protein levels for several cancer biomarkers in
tumor biosamples, including formalin-fixed paraffin-embedded
(FFPE) specimens (Sorokin et al., 2020b).

In this study, we investigated FFPE biosamples of pre-
treatment RCC tissues from 47 patients with known response
status on next-line monotherapy with sorafenib. Illumina
microarrays were used to profile RNA expression in FFPE
samples of 22 metastatic or advanced RCC cases. Among
them, nine patients showed partial response (PR), three
patients—stable disease (SD), and 10 patients—progressive
disease (PD) according to RECIST criteria. We then classified
PR + SD patients as “responders” and PD patients as “poor
responders”. We found that gene signature including eight
sorafenib target genes was congruent with the drug response
characteristics, and enabled high-quality separation of the
responders and poor responders [area under a receiver
operating characteristic curve (AUC) 0.89]. We validated these
findings on another set of 13 experimental annotated FFPE RCC
samples (for 2 PR, 1 SD, and 10 PD patients) that were profiled by
RNA sequencing and observed AUC 0.97 for 8-gene signature as
the response classifier. We further validated these results in a
series of qRT-PCR experiments on the third experimental set of
12 annotated RCC biosamples (for 4 PR, 3 SD, and 5 PD patients),
where 8-gene signature showed AUC 0.83.
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MATERIALS AND METHODS

Patients and Samples
All patients enrolled in this study have previously signed written
informed consents to participate in the observational clinical
investigation, and for publication of depersonalized molecular
profiles and study results in the form of gene activity profiles
associated with age, sex, and results of sorafenib monotherapy
treatment estimated according to RECIST criteria (Eisenhauer
et al., 2009). The patients provided written informed consent that
their tumor samples will be subjected to gene expression profiling
using either microarray technology or next-generation
sequencing or qRT-PCR. Twenty-two patients signed
agreement that their biosamples are profiled with the Illumina
HT-12 bead arrays (Table 1). Thirteen patients signed agreement

that their biosamples are profiled by RNA sequencing using
Illumina HiSeq3000 next generation sequencing platform
(Table 2). Twelve patients signed agreement that their
biosamples are profiled by qRT-PCR, but not using expression
microarrays or RNA sequencing (Table 3).

The study was conducted in accordance with the Declaration
of Helsinki ethical principles. The patient groups, design of this
study, and its public presentation in the form of a research paper
were approved by the local ethical committees at I.M. Sechenov
First Moscow StateMedical University, Moscow City Oncological
Hospital №. 62, and Moscow City Clinical Oncological
Dispensary №. 1.

Biosamples were collected prospectively in the period from
May 2015 until July 2020. All biosamples obtained from all the
patients in this study were FFPE RCC tumor blocks obtained
from primary tumor sites and evaluated by a pathologist, with
cancer cell content of at least 60%. All patients were treated with
sorafenib in first-line therapy and their responses were assessed
according to RECIST criteria (Eisenhauer et al., 2009).

Twenty-two samples from kidney cancer patients were
analyzed using Illumina HumanHT-12 WG-DASL V4.0 R2
gene expression array (Table 1). Among them, patients with
progressive disease were considered as poor responders (n = 10),
whereas patients with partial response and stable disease were
classified as the responders (n = 12).

Gene expression for 13 other RCC samples was profiled by
RNA sequencing using Illumina HiSeq3000 next generation
sequencing platform (Table 2). Similarly, patients with
progressive disease were considered as poor responders (n =
10), whereas patients with partial response and stable disease
were classified as the responders (n = 3).

Finally, patients in the third set of 12 RCC patients were
profiled by quantitative reverse transcription PCR (qRT-PCR)
assay (Table 3). According to the aforementioned criteria, five
patients were considered poor responders, and seven
patients—treatment responders.

Gene Expression Assays
RNA Extraction
To isolate RNA, 10-µm-thick paraffin slices were trimmed from
each FFPE RCC tissue block using microtome. RNA was

TABLE 1 | Clinical information for RCC patients profiled using Illumina HumanHT-
12 WG-DASL V4.0 R2 gene expression arrays

Patient ID Response status Age Gender T N M Grade

18 Partial response 66 Male 2 0 1 4
26 Stable disease 64 Female 3 2 1 4
27 Progressive disease 53 Male 3 0 1 4
31 Partial response 62 Male 2 2 0 3
36 Progressive disease 60 Male 2 0 0 2
37 Partial response 49 Female 3 1 1 4
46 Progressive disease 45 Male 3 0 0 3
49 Progressive disease 66 Female 3 0 0 3
54 Partial response 55 Female 2 0 0 2
58 Progressive disease 65 Female 3 1 0 3
60 Progressive disease 59 Male 2 0 0 2
62 Progressive disease 58 Male 1 0 0 1
72 Partial response 56 Female 3 1 0 3
73 Progressive disease 48 Male 3s 0 0 3
74 Partial response 53 Male 4 2 1 4
88 Stable disease 59 Female 3 0 0 3
91 Stable disease 67 Female 3 2 1 4
94 Progressive disease 74 Female 3 1 1 4
97 Partial response 70 Female 3 0 0 3
122 Partial response 61 Male 3a 0 0 3
128 Partial response 68 Female 3 0 1 4
135 Progressive disease 50 Male 3 0 0 3

TABLE 2 | Clinical information for RCC patients profiled using Illumina
HiSeq3000 next-generation sequencing platform in this study

Patient ID Response Age Gender T N M Grade

KC11 Progressive disease 62 Female 3 1 1 4
KC14 Progressive disease 68 Female 3 0 1 4
KC19 Partial response 46 Female 3 0 0 3
KC21 Progressive disease 41 Male 3 0 1 4
KC23 Progressive disease 53 Male 3 0 1 4
KC26 Stable disease 55 Male 3 0 1 4
KC36 Progressive disease 64 Female 3a 0 1 4
KC37 Partial response 54 Male 3a 0 1 4
KC46 Progressive disease 55 Male 3b 2 1 4
KC57 Progressive disease 58 Male 3b 0 1 4
KC92 Progressive disease 55 Male 3 0 0 3
KC93 Progressive disease 65 Female 2 0 0 2
KC96 Progressive disease 47 Male 3 0 0 3

TABLE 3 | Outline of clinical information of patients whose samples were profiled
using RT-PCR platform in this study

Patient ID Response Age Gender T N M Grade

III-1 Partial response 67 Male 3 0 1 4
III-2 Stable disease 45 Female 2 0 0 2
III-3 Partial response 48 Female 3 0 0 3
III-4 Progressive disease 65 Female 1 0 1 4
III-5 Progressive disease 59 Male 3 1 1 4
III-6 Progressive disease 53 Female 4 0 0 3
III-7 Progressive disease 58 Male 1 0 0 1
III-8 Progressive disease 51 Male 3b 2 1 4
III-9 Partial response 71 Female 4 1 0 3
III-10 Stable disease 59 Male 1 0 0 1
III-11 Stable disease 70 Male 3 1 1 4
III-12 Partial response 47 Male 3 1 1 4
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extracted from FFPE slices using QIAGEN RNeasy FFPE Kit
following the manufacturer’s protocol. RNA 6000 Nano or Qubit
RNA Assay kits were used to measure RNA concentration. RNA
Integrity Number (RIN) was measured using Agilent 2100 bio-
Analyzer.

Microarray Gene Expression Profiling
Gene expression profiling was done according to Lezhnina et al.
(2014) at Dr. Olga Kovalchuk’s laboratory, University of
Lethbridge, Alberta, Canada. The profiling was done using
Illumina HumanHT-12 WG-DASL V4.0 R2 gene expression
bead arrays. BeadChips were scanned using Illumina
BeadArray Reader and the Bead Scan Software (Illumina).

RNA Sequencing
RNA sequencing was done according to Suntsova et al. (2019)
and Sorokin et al. (2020d) at the Department of Pathology and
Laboratory Medicine, University of California Los Angeles. For
depletion of ribosomal RNA and library construction, KAPA
RNA Hyper with rRNA erase kit (HMR only) was used.
Different adaptors were used for multiplexing samples in one
sequencing run. Library concentrations and quality were
measured using Qubit ds DNA HS Assay kit (Life
Technologies) and Agilent Tapestation (Agilent). RNA
sequencing was done using Illumina HiSeq 3000 equipment
for single-end sequencing, 50 bp read length, for approximately
30 million (mln) raw reads per sample. Data quality check was

done on Illumina SAV. De-multiplexing was performed with
Illumina Bcl2fastq2 v 2.17 program.

Quantitative Reverse Transcription PCR
Quantitative reverse transcription PCR (qRT-PCR) panel was
developed to measure the expression level of eight target and six
housekeeping genes in kidney cancer samples using Evrogen
Reverse transcription polymerase and Evrogen Taq polymerase
kit with SYBR Green for the PCR product detection. PCR mix
composition included (25 µl total volume)

Buffer (HS-qPCRmix-HS SYBR; Evrogen, Moscow,
Russia)—5 μl;
Primers 1 µl (0.4 µM each);
RNA solution—1–3 µl (2–6 ng total RNA per mix);
MMLV-RT (Evrogen)—2 µl;
Water—13–15 µl.

The oligonucleotide sequences for PCR primers are listed in
Table 4. Following reverse transcription reaction, the PCR mix
was melted at 95°C for 5 min, and then the following cycling
conditions were applied using CFX Touch Real-Time PCR
Detection System (BioRad):

95°C—30 s.
60°C—30 s.
72°C—30 s.

Each experiment was carried out in quadruplicate.

Processing of Gene Expression Data
Illumina HumanHT-12 WG-DASL V4.0 R2 Gene
Expression Array
Probe IDs were mapped to HGNC gene symbols (Yates et al.,
2017) using the manufacturer’s annotation table. Gene expression
values were normalized using quantile normalization protocol
(Bolstad et al., 2003) prior to further processing. R package
preprocessCore was used to perform quantile normalization.

Illumina HiSeq3000 RNAseq Profiles
RNA sequencing FASTQ files were processed with STAR aligner
(Dobin et al., 2013) in “GeneCounts” mode with the Ensembl
human transcriptome annotation (Build version GRCh38 and
transcript annotation GRCh38.89). Ensembl gene IDs were
converted to HGNC gene symbols using Complete HGNC
dataset (https://www.genenames.org/, accessed on 2017 July
13). In total, expression levels were established for 36,596
annotated genes with the corresponding HGNC identifiers.
Raw gene counts were normalized using R DESeq2 package
(Love et al., 2014).

Quantitative Reverse Transcription PCR
For each sorafenib target gene from the RCC drug sensitivity gene
signature (RAF1, BRAF, FLT1, FGFR1, KIT, PDGFRB, FLT3,
FLT4, KDR), we performed normalization using expression of
six housekeeping genes selected according to Chang et al. (2011)
(ACTB, GAPDH, POLR2C, PSMB2, DIABLO, VCP). For each

TABLE 4 | Sequences of qRT-PCR primers used in this study

Target gene Oligonucleotide sequencea (59–39)

RAF1 F, CTGGCTCCCTCAGGTTTAAGAA
R, AAGCTCCCTGTATGTGCTCC

FLT3 F, CTCAAGGAAACGGCCATCCT
R, AACACGGCCATCCACATTCT

FLT1 F, TGTCGTGTAAGGAGTGGACC
R, GCACCTGCTGTTTTCGATGT

FGFR1 F, GAGTGACTTCCACAGCCAGA
R, GGATGCACTGGAGTCAGCAG

BRAF F, CAGAGGACAGTGGTACCTGC
R, CAGCACAGCACTCTGGGATT

PDGFRB F, GCAAAACCACCATTGGGGAC
R, TGCGTTCACAGAGACGTTGA

KDR F, GAAACTGACTTGGCCTCGGT
R, CACGACTCCATGTTGGTCACT

KIT F, GCACAATGGCACGGTTGAAT
R, GGTGTGGGGATGGATTTGCT

ACTB F, ACAGAGCCTCGCCTTTGC
R, CGCGGCGATATCATCATCCA

VCP F, TGGAAGCGTATCGACCCATC
R, CTTTGAACTCCACAGCACGC

DIABLO F, AATGGCGGCTCTGAAGAGTT
R, AAACTCGAGCCAAGCAGGAA

EIF3B F, GGCGAACACCATCTTCTGGA
R, TGTCCACAAACGCTAAGGCA

PSMB2 F, GCAGCAGCTAACTTCACACG
R, AGCCAGGAGGAGGTTCACAT

POLR2C F, TCTTCATCGCTGAGGTTCCC
R, ATCCAAGCCTGTGAGCAATGA

aF—forward, R—reverse.
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gene, we calculated ΔCt by subtracting the value of the threshold
cycle of cDNA amplification of a target gene from the geometric
mean value of the threshold cycle of cDNA amplification of the
housekeeping genes. The gene signature score was calculated as
sum of ΔCt values for all genes included in the signature.

Gene Expression Analysis and Visualization
Differential gene expression analysis was performed using
Student t-test. The observed clinical responses were used for
investigation of molecular signature using ROC-AUC analysis
(Fawcett, 2006). Area under a receiver operating characteristic
curve (ROC-AUC) values were calculated using ROCR package
in R environment (Sing et al., 2005). Patient survival analysis and
visualization were performed using R packages survival,
survminer, and ggplot2.

Sorafenib In Vitro Efficiency Data
From Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org/downloads/bulk_download,
accessed on 2021 March 30), we downloaded log10-
transformed IC50 values for sorafenib in 732 cancer cell lines
corresponding to 13 different tumor types and 50 subtypes
(Supplementary Table S1). For each cell line, we downloaded
raw gene expression data from ArrayExpress database (https://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3610/) in CEL
format, experimentally profiled using Affymetrix Human
Genome U219 Array. CEL files were normalized and background
correction was applied using rma function of affy R package.

Mutation Analysis
For mutation analysis, we used gene expression and genetic
features data from GDSC database (https://www.cancerrxgene.
org). We used data for 802 solid and 167 blood cancer cell lines
with available genetic mutational profiles. For each mutation,
we compared IC50 values for sorafenib between mutant and
wild-type cell lines using non-parametric Mann–Whitney U
test. Then we applied false discovery rate (FDR) correction to
adjust for comparing multiple genetic features. Genetic features
with FDR-corrected p-values <0.1 and more than 2-fold IC50

differences were considered as significant. Mann–Whitney U
tests and FDR correction were performed using scipy and
statsmodels Python libraries implemented in GDSC web
interface.

RESULTS

Study Population
In total, 47 RCC patients were enrolled in this study (21 female
and 26 male patients, age range 41–74, mean 58 y.o.). The
biosamples were FFPE RCC tumor tissue blocks collected in
the period from May 2015 until July 2020. Gene expression was
profiled using three different methods: microarray hybridization
using Illumina HT-12 bead array, Illumina RNA sequencing, and
qRT-PCR. Each patient provided a written informed consent and
agreed that his/her biosample is profiled with one of the
aforementioned methods. In the microarray group, there were

22 patients including 11 women and 11 men, age range 45–74,
mean 59 y.o.; in RNAseq group—13 patients including 5 women
and 8 men, age range 41–68, mean 56 y.o.; in qRT-PCR group,
there were 12 patients including 7 men and 5 women, age range
45–71, mean 58 y.o. (Tables 1–3). The patients whose response
status on next-line sorafenib monotherapy treatment according
to RECIST criteria was “Progressive disease” were considered as
poor responders, and the patients with statuses “Partial response”
and “Stable disease” were considered as the responders. No
“Complete response” outcomes according to RECIST
(disappearance of all target lesions) were detected. This is in
line with a previous study by Escudier et al., where only 1 out of
451 RCC patients treated with sorafenib had a complete response
(Escudier et al., 2007). In total, 25 patients were classified as the
poor responders, and 22—as the responders (Tables 1–3).

Specifically, there were 10 non-responders and 12 responders
in the microarray group, 10 non-responders and three responders
in the RNAseq group, and five non-responders and seven
responders in the qRT-PCR group.

Differential Gene Expression Analysis and
Generation of Sorafenib Response
Signature
In the samples profiled by Illumina microarrays, we screened
differential gene expression between the responder and poor
responder biosamples. We aimed to generate sorafenib
response gene signature and focused on expression levels of
sorafenib target genes to avoid over-training. Using prior
knowledge such as biological function of the genes is a well-
established technique for feature selection as reviewed in Hira and
Gillies (2015). At the single gene level, we observed a significant
difference between the responders and poor responders only for
FLT1 and PDGFRB genes, which were both upregulated in the
responders group (Table 5; Figure 1). Multiple logistic regression
analysis did not provide significant coefficients for any of the
sorafenib target genes.

In the previous studies, drug response statuses could correlate
with the drug target gene expression levels (Tkachev et al., 2020),
and for generating sorafenib drug response signature, we selected
sorafenib target genes whose expression levels were greater in the
responders than in the poor responders. Except two genes that
were downregulated in the responders (RET and FLT4), the
remaining eight sorafenib target genes that were upregulated
were used to construct the molecular signature. Complex models
with relatively small number of samples are often overfitted;
therefore, we calculated the signature score as sum of log10-
transformed normalized gene expression values, thus reducing
data dimensionality.

This signature was tested to predict sorafenib response status
in the microarray-profiled dataset. To assess the signature
biomarker quality, we used AUC value as the measure. AUC
reflects biomarker robustness and depends on its sensitivity and
specificity (Borisov et al., 2020). It varies between 0.5 and 1, and
the typical discrimination threshold is 0.7, where greater values
denote high-quality biomarkers, and vice versa (Boyd, 1997).
AUC is often used for scoring different types of molecular
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TABLE 5 | Differential expression analysis of sorafenib responders (n = 12) and poor responders (n = 10) in microarray-profiled RCC samples

HGNC gene ID T-test p-value Log2(fold change responders vs. poor responders)

RAF1 0.56 0.072
BRAF 0.37 0.071
RET 0.54 −0.037
FLT1 0.0032* 1.155
FGFR1 0.1 0.149
KIT 0.72 0.029
PDGFRB 0.013 0.273
FLT3 0.67 0.011
FLT4 0.54 −0.010
KDR 0.2 0.119

*p < 0.05.

FIGURE 1 | Distribution of sorafenib target gene expressions, and of the gene signature generated, among the sorafenib responder and poor responder groups of
22 RCC samples profiled by microarrays. For every gene, log10-transformed normalized expression is shown.
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biomarkers in oncology (Liu et al., 2018; Tanioka et al., 2018;
Chen et al., 2019; Sorokin et al., 2020a).

For the gene signature biomarker capacity, we obtained AUC
value 0.89 (Figure 2B), which evidences its high prediction
robustness. Using an assumption of equal frequency of type I
and type II errors, we obtained threshold gene signature score of
16.41. This threshold corresponded to sensitivity 0.83, specificity
0.8, and Matthew’s correlation coefficient (MCC) 0.63; error
matrix is shown on Supplementary Table S2. Interestingly,
t-test p-value of the gene signature for comparison between
the good and poor sorafenib responders (p = 0.00046) was
lower than the respective p-value for any of the single
sorafenib target genes (Figure 1).

We then tested the ability of the sorafenib response gene
signature to predict good/poor response status using two
alternative experimental platforms (RNAseq and qRT-PCR)
and different sets of annotated RCC biosamples (n = 13 and
n = 12, respectively).

Specifically, the signature score for RNAseq data was
calculated in the same way as for the microarray dataset: sum
of the log-transformed expression values for the same eight
sorafenib target genes. For the qRT-PCR dataset, we totalized
ΔCt values for the selected sorafenib targets. For those two
platforms, we obtained AUC scores of 0.97 and 0.83,
respectively (Figures 3, 4; error matrices are shown on
Supplementary Tables S3, S4, respectively).

FIGURE 2 | Performance of sorafenib response gene signature in microarray-profiled RCC set. (A) Distribution of gene signature score in 22 RCC samples profiled
by expression microarrays. (B) ROC (receiver operating characteristic) curve for prediction of response status by gene signature score in 22 RCC samples profiled by
expression microarrays. Validation of sorafenib response gene signature.

FIGURE 3 | Performance of sorafenib response gene signature in RNAseq-profiled RCC set. (A)Distribution of gene signature score in 13 RCC samples profiled by
RNA sequencing. (B) ROC (receiver operating characteristic) curve for prediction of response status by gene signature score in 13 RCC samples profiled by RNA
sequencing.
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For the RNAseq dataset, we also used an assumption of equal
frequency of type I and type II errors and obtained threshold gene
signature score of 14.35, sensitivity 1.00, specificity 0.9, and MCC
0.82. Similarly, in the case of qRT-PCR dataset, a threshold of
−8.03 was obtained, which corresponded to sensitivity 0.71,
specificity 1.0, and MCC 0.71.

The high scores of AUC, MCC, sensitivity, and specificity
values observed for all three cohorts suggest in favor of the
proposed sorafenib response gene signature usefulness as the
new combinatorial expression biomarker.

We further validated the sorafenib response gene signature using
bioinformatics analysis of publicly available cell line gene expression
data annotated with sorafenib sensitivity information.We calculated

molecular signature scores for 735 samples of different cancer cell
lines extracted through the GDSC database (Yang et al., 2013).

We then compared gene signature scores with the log10-
transformed IC50 micromolar values of sorafenib. IC50 shows
sorafenib concentration that reduces cell viability by 50%, and
therefore IC50 is an inverse measure of drug efficiency (high IC50

suggests strong drug resistance, and low IC50 means high
sensitivity to a drug). We observed a statistically significant
negative correlation between sorafenib IC50 and gene signature
score (Figure 5), Spearman correlation −0.195, p = 10−7.

We then modeled ability of the gene signature to predict
sorafenib IC50 in the tumor cell lines. Using GDSC data, we
selected top and bottom 5% cell lines by sorafenib IC50, and
associated them with the sorafenib poor and good responders,
respectively. In this test, AUC value for prediction of high or low
sorafenib IC50 by gene signature score was 0.77 (Figure 6).

Based on the assumption of equal importance of type I and type II
errors, in this setting we obtained gene signature score threshold of
9.8, MCC coefficient 0.32, sensitivity 0.63, and specificity 0.66; error
matrix for this analysis is shown on Supplementary Table S5.

Mutations Associated With Sorafenib
Activity In Vitro
Using the GDSC dataset, we further investigated the connection
between sorafenib IC50 and annotated mutations in the GDSC cell
lines. P-value cut-off was set according to GDSC default parameters
(threshold FDR corrected p < 0.1 and fold change >2). With the
internal GDCS analytic interface, we identified mutations in two
genes that were statistically significantly linked with IC50 of
sorafenib: FLT3 and SMARCA4 (Figure 7; Table 6). The
observed genetic features contained different driver mutations in
both genes. Noteworthy, FLT3 gene product is one of the molecular
targets of sorafenib. Thus, strong linkage of driver mutations in this
gene with the sensitivity to sorafenib directly confirms its implication

FIGURE 4 | Performance of sorafenib response gene signature in microarray-profiled RCC set. (A) Distribution of gene signature score in 22 RCC samples profiled
by expression microarrays. (B) ROC (receiver-operator characteristic) curve for prediction of response status by gene signature score in 22 RCC samples profiled by
expression microarrays. In vitro validation of sorafenib response gene signature.

FIGURE 5 | Dependence of sorafenib resistance gene signature score
and sorafenib IC50 in GDSC pan-cancer dataset. Blue line and shadow around
it show linear approximation and 5% confidence interval. Figure built using
ggplot function in R.
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FIGURE 6 | Performance of sorafenib response gene signature in 76 cancer cell lines (top 5% and bottom 5% cell lines from GDSC dataset, sorted by sorafenib
IC50). (A) Distribution of gene signature score in 76 cancer cell lines. (B) ROC (receiver operating characteristic) curve for prediction of response status by gene signature
score in 76 cancer cell lines. (C) Distribution of gene signature score in all cancer cell lines.

FIGURE 7 |Distribution of log10-transformed p-value and IC50 difference between groups with and without gene-specificmutations and copy number alternations
in GDSC database.
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in the mechanisms of cancer cells’ resistance to sorafenib. For the
second gene (SMARCA4), we found no previous associations with
sorafenib efficacy in the literature. However, molecular function of
this gene product is ATP-dependent chromatin remodeling and
overall transcriptional activation, and SMARCA4 mutations are
linked with many cancers (Fountzilas et al., 2021; Nambirajan
and Jain, 2021; Pastorczak et al., 2021).

DISCUSSION

Sorafenib is a targeted tyrosine kinase inhibitor (TKI) with
multiple molecular specificities, which is widely used to treat
kidney cancer due to relative clinical efficacy and affordability
(Sheng et al., 2016; Cai et al., 2017). However, sorafenib response
rate in RCC varies between 10 and 40% (Larkin and Eisen, 2006;
Escudier et al., 2007; Guevremont et al., 2009), thus personalized
approach is needed to select the patients who would more likely
benefit from the treatment with this drug.

High-throughput gene expression profiling is becoming a
powerful tool for finding new cancer biomarkers (Buzdin
et al., 2019; Tsimberidou et al., 2020). Moreover, aggregating
gene expression levels into functional groups like molecular
pathways or gene signatures can increase efficiency of the
biomarkers and even enhance stability of experimental data
(Borisov et al., 2017; Buzdin et al., 2018). Previously we used
this approach to establish biomarkers of trastuzumab response in
metastatic/recurrent HER2-positive breast cancers (Sorokin et al.,
2020a), ramucirumab response in gastric cancer (Sorokin et al.,
2020d), and for building gene signature for ganglioside GD2
expression in cancer cells (Sorokin et al., 2020c).

In this study, we identified and validated an 8-gene expression
signature that predicts sorafenib response in RCC patients. The
signature was validated on the independent patient groups using
three different methods of gene expression profiling: by Illumina
HT-12 microarrays, by RNA sequencing, and by qRT-PCR. The
sorafenib response signature includes eight sorafenib target genes:
RAF1, BRAF, FLT1, FGFR1, KIT, PDGFRB, FLT3, and KDR.
Among them, increased expressions of single genes FLT1 and
PDGFRB were positively associated with the sorafenib response,
whereas other genes showed similar trends, which were however
not statistically significant. At the same time, the gene signature
could show better efficacy than any of the separately taken
enclosing genes, thus evidencing better efficacy of a cumulative
complex expression biomarker. On the other hand, significant
association of sorafenib target gene FLT3 was confirmed at the
level of driver mutations in GDSC data, thus implying a peculiar
role for this gene in the sorafenib activity mechanism.

Sorafenib has a strong overlap in the molecular specificities with
regorafenib (Granito et al., 2021) and with several other TKI drugs

(Shah et al., 2020; Das et al., 2021), and theoretically the same drug
target–based gene signature approach can be translated on finding
new response biomarkers for other TKIs as well, and for different
cancer types. However, such an approach would require
accumulating enough tumor gene expression data connected with
the specific drug response statuses, which is frequently a difficult task
to implement. For example, to the best of our knowledge, the high-
throughput experimental expression profiles that were associated
here with the sorafenib response are the first such RCC dataset
published in the literature. Accumulation and publishing of more
molecular profiles connected with the TKI response statuses in RCC
and other tumors would clearly enhance development of next-
generation drug response prediction biomarkers.

For the current sorafenib 8-gene expression signature, we
developed a qRT-PCR–based diagnostic panel that enables
cost-effective molecular profiling. The panel was validated on
an independent cohort of RCC patients with AUC = 0.83, which
opens an avenue for further molecular testing on bigger patient
cohorts and, if successful, for the development of diagnostic tools
supporting personalized sorafenib prescriptions. Such a study
would also be needed to validate the exact threshold developed for
qRT-PCR signature established herein.

Interestingly, the same 8-gene signature was also validated
using GDSC project cell line gene expression data connected with
the tested drug sensitivities (Yang et al., 2013): a modest (−0.195)
yet highly statistically significant (p = 10−7) correlation was
observed for the gene signature score and sorafenib IC50. The
GDSC collection accumulated data for various cancer cell lines.
Cell lines are heterogeneous and derived from tumors of various
origin, not only kidney cancer. In addition, in vitro culturing may
have an impact on gene expression. Despite all these factors, we
still obtained statistically significant performance of the gene
signature. Potentially, this may indicate that this gene
signature is not specific to RCC but may be also predictive for
the other cancer types. Thus, further clinical investigations are
needed to assess its performance in cancers other than RCC.
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