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Neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease are aging-associated diseases with irreversible
damage of brain tissue. Oxidative stress is commonly detected in neurodegenerative diseases and related to neuronal injury and
pathological progress. Exosome, one of the extracellular vesicles, is demonstrated to carry microRNAs (miRNAs) and build up a
cell-cell communication in neurons. Recent research has found that exosomal miRNAs regulate the activity of multiple
physiological pathways, including the oxidative stress response, in neurodegenerative diseases. Here, we review the role of
exosomal miRNAs and oxidative stress in neurodegenerative diseases. Firstly, we explore the relationship between oxidative
stress and neurodegenerative diseases. Secondly, we introduce the characteristics of exosomes and roles of exosome-related
miRNAs. Thirdly, we summarized the crosstalk between exosomal miRNAs and oxidative stress in neurodegenerative diseases.
Fourthly, we discuss the potential of exosomes to be a biomarker in neurodegenerative diseases. Finally, we summarize the
advantages of exosome-based delivery and present situation of research on exosome-based delivery of therapeutic miRNA. Our
work is aimed at probing and reinforcing the recognition of the pathomechanism of neurodegenerative diseases and providing
the basis for novel strategies of clinical diagnosis and treatment.

1. Introduction

The incidence of neurodegenerative diseases, which include
Alzheimer’s disease (AD), Parkinson’s disease (PD), Hunting-
ton’s disease (HD), and amyotrophic lateral sclerosis (ALS),
has been shooting up due to the extended lifespan and
environment pollution. Neurodegenerative diseases are a
group of refractory diseases and have loaded a huge medical,
social, and economic burden to the world. Despite the massive
efforts into the pathological mechanisms and therapeutic

strategies of neurodegenerative diseases, few sufficiently
effective treatments have been generated thus far [1]. Most
neurodegenerative diseases are inherited diseases with some
genome mutant in the neurons; meanwhile, environmental
insults are also fundamental to the disease progression. Accu-
mulating evidence has shown that the pathology of neurode-
generative diseases has a strong contact with the production
of oxidative stress, which in turn, contributes to the further
progress of neurodegenerative diseases [2–4]. Oxidative stress
is characterized as the imbalance between the production of
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reactive oxygen species (ROS) and the ability to scavenge them
[5, 6]. The ROS accumulation in neurons can induce
mitochondria dysfunction and cell apoptosis, thereby yielding
neuronal injury [7].

Exosomes are extracellular vesicles (EVs) secreted by a
variety of cells and carry cargos including protein, lipid, and
noncoding RNA (ncRNA) [e.g., long noncoding RNA
(lncRNA), microRNA (miRNA), and messenger RNA
(mRNA)]. Following the release, exosomes will transfer to
specific targets such as immune cells or the central nervous
system (CNS) to exert pleiotropic effects [8, 9]. In this context,
exosomes can take part in many biological processes and set
up intracellular communication among cells, which makes
them important in diverse diseases, e.g., immunological
diseases, tumorigenesis, and neurodegenerative diseases [10].
Exosomes involved in neurodegenerative diseases are gener-
ated from manifold sources, such as human mesenchymal
stem cells (MSCs), immunity cells, and microglia [9, 11–14],
and exosomes derived from different sources with different
cargos seem to have a different impact on neurodegenerative
diseases [15]. Notably, exosome-derived miRNAs have the
potential to interact with oxidative stress response during the
neurodegenerative processes [16]. More importantly, exoge-
nous exosomes can cross the blood-brain barrier (BBB) and
target the brain tissue [17], while endogenous exosomes can
be secreted by brain cells and reflect brain injury [9], indicat-
ing their promise as drug carriers and biomarkers for neurode-
generative diseases, respectively. Accordingly, this review
attempts to briefly summarize the potential advantage of
exosomal miRNA-based management in the treatment and
diagnosis of neurodegenerative diseases.

2. Oxidative Stress and
Neurodegenerative Diseases

Oxidative stress is a reactive process posed by the aggregation
of free radicals arising from the changed environment
including inflammation and mitochondria dysfunction [18].
Reactive oxygen species (ROS) are identified as fundamental
free radicals exacerbating oxidative stress and aggravating
tissue dysfunction [19]. The production and clearance process
of ROS are a dynamic balance in vivo. In a normal situation,
the proper ROS level is thought to be necessary to maintain
the activation of certain signaling pathways (e.g., EGFR path-
way, Ras/AMPK pathway, and PKC pathway), stimulate the
cell proliferation, and regulate the cell metabolism. However,
when the production of ROS seriously exceeds the scavenging
capacity, the ROS will accumulate and have an effect on cells,
leading to DNA [nuclear and mitochondria DNA (mtDNA)]
damage, protein misfolding, and chromosome instability,
among others [20–23].

Neurodegenerative diseases are specifically characterized
by apoptosis/necrosis and dysfunction of neuronal cells,
leading to compromised motor or cognitive function. Given
its high metabolic rate and high-lipid content, CNS is
particularly vulnerable to oxidative stress, and the relation-
ship between the neurodegenerative diseases and oxidative
stress, therefore, has attracted great interest. Correspond-
ingly, accumulating evidence has shown that oxidative stress

is critically involved in the pathogenesis of neurodegenera-
tive diseases as high levels of oxidative stress are commonly
observed in the brain of patients with neurodegenerative
conditions [24, 25] and may represent one of the potential
pathological processes for targeted intervention (Figure 1)
[26, 27]. In this section, we focus on the critical role of ROS
and oxidative damage in major neurodegenerative diseases
including AD, PD, HD, and ALS and discuss in-depth the
latest and most recent advances in the field of neurodegener-
ative diseases.

2.1. Alzheimer’s Disease (AD). AD is characterized by the
pathological accumulation of Aβ and resultant cerebral
amyloid angiopathy, neurofibrillary tangles comprising
hyperphosphorylated neuronal tau, and neuronal loss [28].
The production of Aβ peptide and oxidative stress seems to
be inseparable. Although the determinant of Aβ production
is aging, studies have shown that Aβ can be induced when
the brain is exposed in an environment of ROS overload, fur-
ther bringing about the development of AD [29, 30]. The
mechanisms through which oxidative stress triggers the Aβ
production remain elusive, and some research showed that
the oxidative stress contributed to cerebral Aβ production
and accumulation in Aβ-rich environment through the p38
mitogen-activated protein kinase signaling pathway [31], the
nuclear factor-κ-gene binding pathway activation [32], or the
increase of lipid peroxidation [33]. Reciprocally, Aβ has
several pathways to induce cells to overexpress ROS and then
increase oxidative stress. For instance, metal ion-chelate Aβ
can restore the O2 through a three-step cycle where O2 is grad-
ually reduced to superoxide and oxygen peroxide, eventually
forming OH radicals and generating ROS as byproducts
[34–36]. Moreover, Aβ can also directly stimulate oxidative
stress through endoplasmic stress, lipid peroxidation, and
mitochondria dysfunction [37–39]. Furthermore, researchers
suggest that it is the monomers and small oligomer Aβ, rather
than Aβ plaques, that induce oxidative stress and result in the
cell toxicity and neuron injury [40].

2.2. Parkinson’s Disease (PD). Compared to AD, PD is more
relevant to oxidative stress. PD is a multifactorial neurodegen-
erative disease with the impairment of voluntary motor
control evolving over time and has a preferential dopaminer-
gic neuronal loss in the substantia nigra. PD patients present
with a wide range of motor symptoms including postural
instability, bradykinesia, tremor, and rigidity. Histopathologi-
cally, α-synuclein boosts the formation of the Lewy bodies and
Lewy neurites in the brain, which are also a hallmark of PD
and can be induced by oxidative stress [41–43]. Although
the exact etiology and natural course of this disease have yet
been fully determined, it appears likely that dysfunction of
numerous processes, such as mitochondria functioning,
autophagy, dopamine homeostasis, and calcium homeostasis,
is strictly involved [44]. In the pathogenesis of PD, the
mitochondria dysfunction is the major source of ROS, and
mitochondria are, in turn, the targets of ROS [45].

mtDNAmutant is the first step of mitochondria dysfunc-
tion. The mtDNA is partly independent of nuclear DNA.
Although the nuclear DNA encodes most of the proteins
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needed for mitochondria functioning, the mtDNA itself also
encodes the essential protein and RNAs, such as cyclooxy-
genase (COX) and ribosome, in the mitochondrial
respiratory chain. Thus, mtDNA is indispensable in the
mitochondria function. In the patient with PD, the mtDNA
in neurons, especially in nigra, is found to have a high level
of mutant and deletion, which may explain the involvement
of oxidative stress in PD [46, 47]. In addition, mitophagy
defects are present in PD patients. In this case, mitophagy
cannot process correctly due to the mutant mitophagy-
relevant genes, leading to the accumulation of impaired
mitochondria and eventually inducing the pathological
process of PD. These mutant genes include LRRK2, PINK1,
Parkin, and DJ-1, among which PINK1/Parkin mutant
primarily contributes to the mitophagy deficiency and
ensuing oxidative stress [48, 49].

2.3. Huntington’s Disease (HD). HD is a human autosomal
dominant neurodegenerative disease with a CAG repeat
expansion mutation in the exon 1 of the Huntingtin gene
(Htt) [50]. In the clinic, patients with HD have some
characteristic behaviors including choreiform movements,
behavioral abnormalities, and cognitive decline. Some
research has shown that the mutant Huntingtin protein
(mHtt) has proteotoxicity and is the major cause of HD
development. The expression of mHtt is influenced by some
ecological factors such as age and environment, mainly age
[51]. Importantly, mHtt can induce multiple injurious
effects, including aberrant gene transcription, defective
autophagy, abnormal mitochondrial biogenesis, and anoma-
lous mitochondrial dynamics and trafficking, which will
impair the oxidative metabolism, generate ROS, and finally
cause the neuron damage and death [52]. The correlation
between mHtt and oxidative stress is principally reflected in
mitochondria impairment and Ca2+ handling. Studies have
found that mHtt could alter the mitochondria dynamic
(fusion and fission) and further damage the mitochondria
morphology through oxidative stress, leading to the apparent
mitochondrial fragmentation and dysfunction [53–55].
Moreover, some researchers argued that mHtt indirectly

impairs mitochondrial function by hindering the mitophagy,
as the induced mitochondria dysfunction can be relieved by
the overexpression of PINK1, which regulates Parkin-
mediated mitophagy [49]. In terms of Ca2+ handling, mHtt
can increase the intracellular Ca2+ loading and cause a tran-
scriptional dysregulation, resulting in the mitochondrial
impairment which includes a decrease in mitochondrial Ca2+

uptake capacity, ATP production, and ROS defense [56].

2.4. Amyotrophic Lateral Sclerosis (ALS). ALS, also named
motor neuron disease, Lou Gehrig disease, or Charcot
disease, is a kind of serious devastating neurodegenerative
disease. ALS mainly involves the motor neurons regardless
of the upper or lower ones. The progressive motor deficits
are the characteristic symptom of patients with ALS, quickly
spreading from focal to other body regions in weeks or
months. Patients usually die from the complication and
paralysis of skeletal muscles, particularly bulbar and respira-
tory muscles [57]. Quite a lot of studies have indicated that
oxidative stress is critically implicated in ALS, given that
oxidative stress has already been recognized as a biomarker
of ALS and oxidative stress seems to increase the neuronal
death and boost the ALS progress [58]. However, how oxida-
tive stress is triggered and subsequently accelerates the ALS
pathogenesis is still far away from understanding. Indeed,
approximately 10% of ALS cases are familial and 20% of
those cases have a mutant of Cu/Zn superoxide dismutase
(SOD1), a member of the SOD family, which are the major
enzymes to scavenge ROS. Thus, the mutant of SOD1 is
adequate to induce oxidative stress and damage the neurons.
Correspondingly, in animal models of ALS, the SOD1
mutant exactly changes the CNS lipid peroxidation, increases
the ROS, and damages the cells irrespective of neurons or
muscular cells [59]. Furthermore, antioxidant drugs or
restoring the SOD1 can reverse these processes, relieve the
ALS progress, and extend the ALS model lifespan [60, 61].
Similar to the other neurodegenerative diseases, mitochon-
dria dysfunction is also a probable source of oxidative stress
in ALS [62]. Some studies suggest that lifestyle changes and
more exercise can have beneficial effects on ALS by
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Figure 1: Oxidative stress and miRNAs are critically involved in the pathogenesis of neurodegenerative diseases. The pathology of
neurodegenerative diseases is closely related to the generation of oxidative stress, which in turn promotes the further progression of
neurodegenerative diseases. miRNAs can interact with the oxidative stress response and other pathophysiological processes underlying
neurodegenerative diseases.
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ameliorating oxidative stress [63, 64]. Taken collectively, the
oxidative stress response can be a candidate for precaution,
biomarker, and therapeutic target of ALS.

3. Exosomes and Exosome-Associated miRNA

3.1. The Definition, Generation, Transport, and Biology of
Exosomes. The EVs are some kinds of vesicles actively
released by a variety of mammal cells. These vesicles are
heterogeneous andmade of membrane-bound phospholipids
and have numerous functions [65]. The EVs are divided into
two major species, the ectosomes and exosomes, although
sometimes they are thought to be the same kind of vesicle.
Indeed, they are quite different in location, size, markers,
and other aspects [66]. Since first introduced in 1970 [67],
exosomes have been studied for quite a long time. Exosomes
are 40~160nm in diameter and consist of phospholipid
membrane and inner complex cargo (Figure 2). To identify
exosomes, scientists have found some specific biomarkers
on exosomes which can help to differentiate them from the
other EVs. From then on, the cluster of differentiation
(CD)9, CD63, and CD81 have been reported as membrane
hallmarks of exosomes; notably, different exosomes may
have a different cluster of biomarkers [68]. Besides the
membrane protein, the exosomal content, such as the heat
shock protein (HSP) family (e.g., HSP70, HSP90, and
HSP72), which are enriched in cancer-derived exosome,
can be used to identify the exosomes [10].

Exosomes have a different pattern in generation from
other EVs. Most EVs are generated by direct outward
budding and fission of the plasma membrane. But the forma-
tion of exosomes is a three-step process. Firstly, plasma
membrane forms the endocytic vesicles (endosomes);
secondly, the inward budding of endosomal membranes
results in some small vesicles, which, coupled with specific
protein and nuclear acid, are then assembled into exosomes
in a larger vesicle called multivesicular bodies (MVBs); and
thirdly, the MVBs release the exosomes to the extracellular
environment when fusing with the plasma membrane
(Figure 2) [17, 67]. Once released, exosomes from different
sources will be accepted by recipient cells and yield different
effects depending on what they carry and what they target.
Exosomes secreted by some kinds of cells such as MSCs will
directly target the near cells and function as paracrine [69].
Some will be released to the blood and transferred to distant
target cells with the blood circulation. Of particular interest
here, the BBB prevents the CNS from diverse pathogenic
factors while blocking the drug entry into the brain, making
it hard to cure the CNS disease. Fortunately, exosomes have
been demonstrated to have the potential to cross the BBB,
enter the target cells, and realize intended functionality,
indicating their therapeutic potential for CNS diseases
(Figure 3) [67, 70, 71].

How exosomes are recognized and endocytosed by
specific cells is an important aspect to be investigated.
Although there is still no consensus concerning the main
pathway by which EVs or a given EV subtype deliver content
in the cytosol of specific acceptor cells, researchers have
indeed found some evidence to support the specificity of

exosome uptake. For example, exosomes released by cortical
neurons upon synaptic activation bind exclusively to other
neurons, not to glial cells [72]. Moreover, exosomes from
oligodendrocytes tend to be selectively captured by microglia
[73]. To date, there have been some assumptions explaining
these specificities. The size and membrane components of
exosomes may determine their recognition and engulfment
by target cells [74, 75]. For instance, CD47 in exosome
membranes can protect it from captured by macrophage
and monocytes [76]. In addition, the membrane proteins of
acceptor cells are also responsible for the recognition. Corre-
spondingly, dendritic cell-surface CD11a and CD54 and
exosome-surface CD9 and CD81 mainly mediate the
targeting of exosomes to dendritic cells and the subsequent
endocytosis [77]. Furthermore, although there is insufficient
evidence that supports this view, the cargos that exosomes
carry may also lead the exosome to target cell. For instance,
a study by Nabet et al. showed that unshielded RN7SL1
RNA in stromal-derived exosomes can stimulate a tumor-
promoting pathway within a subset of breast cancer cells,
which are primarily basal/triple-negative breast cancers
[78]. The molecular mechanisms underlying exosomes’
selectivity merit further research to uncover their bigger
and more wide application prospects as option for targeted
therapy.

3.2. Exosomal miRNAs

3.2.1. Characteristics of Exosomal miRNAs. Recently,
miRNAs have been identified in exosomes, which can be
taken up by neighboring or distant cells and subsequently
modulate recipient cells. miRNAs are a class of 17–24nt
small, noncodingRNAs, which mediate posttranscriptional
gene silencing by binding to the 30-untranslated region
(UTR) or open reading frame (ORF) region of target mRNAs
[79]. There is growing evidence showed that exosomal miR-
NAs play an important role in disease progression, especially
in neurodegenerative diseases [80–86]. miRNAs contribute
to neurodegenerative diseases primarily by three pathways:
(1) targeting the regulatory-related gene mRNA to inhibit
the protein translation or degrade protein, (2) participating
in neuroinflammation by directly binding to toll-like recep-
tor or regulating its mRNA expression, and (3) yielding
miRNA formation disorder [87]. Among these pathophysio-
logic processes, a tight interaction between miRNAs and
oxidative stress has been revealed.

3.2.2. Roles of Exosomal miRNAs in
Neurodegenerative Diseases

(1) Potential New Method for Gene Therapy. Exosome is
capable to transport functional miRNAs, and this endogenic
carrier inspired people to replace virus-based gene therapy
[88]. Compared with convention methods applied in RNA
interference, exosomes have potential to be an ideal carrier
of miRNAs for it can be up taken by recipient cell without
evoking immune response and its ability to cross the blood-
brain barrier [84]. Moreover, feasibility of exosome-based
delivery system in miRNA treatment has been confirmed in
animal model [89]. miRNA expression alters in different
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neurodegeneration disease, and some of them was proved to
be involved in progression of diseases [90, 91]. Intervention
regulating in these miRNAs with exosomes is also a new
direction of gene therapy.

(2) NewWay of Intercellular Communication. The most well-
known intercellular communication mechanisms are chemi-
cal receptor-mediated event [92]. Exosome transportation
between different cells broaden people’s understanding on
cell to cell communication. miRNAs, as one important cargo,
also participate in intercellular communications [93]. For
instance, exosomal miRNAs released from cancer cell could
transfer functional information in paracrine level and influ-
ence the tumor microenvironment which includes various
cells such as cancer-associated fibrosis and pericytes [94].
In addition, it has been reported that neurons can transport
miRNAs by exosomes to astrocytes and in turn regulate
protein expression of astrocytes indirectly [95]. In light of
the central role played by astrocytes in the function of the
CNS, it is not surprising that they have also been implicated
in the onset and progression of neurodegenerative diseases.
The above evidence suggested that neurons may regulate
the protein expression of astrocytes through the secretion
of exosomal miRNA, thereby involved in the pathophysio-
logical process of neurodegenerative diseases. This may also
provide a new direction for studying the relationship between
exosomal miRNA and neurodegenerative diseases.

(3) Biomarker for Diagnosis. In neurodegenerative diseases,
pathological changes occur several years before the onset of
symptoms; thus, predictor for detection of diseases in early
stage is always important but challenging. Concerning that
exosomes have been recognized as nature carriers of miR-
NAs, its capability to cross the blood-brain barrier and

miRNA expression altered in different neurodegenerative
diseases; it is reasonable to infer exosomal miRNAs in
peripheral blood change in different diseases. Exosomal miR-
NAs from blood sample of PD and AD patients were ana-
lyzed [96, 97]. Previous studies have already analyzed
exosomal miRNA profiles in CSF of PD and AD patients,
and its changes in miRNAs compared with healthy control
were all observed [98, 99]. In the future, with miRNA profiles
analyzed repeatedly and integration of different miRNA
expresses data over time, exosomal miRNAs are likely to
show its value as a biomarker of neurodegenerative diseases.

4. The Crosstalk between Exosomal miRNAs
and Oxidative Stress in
Neurodegenerative Diseases

As mentioned above, both oxidative stress and exosome-
derived miRNAs are closely involved in neurodegenerative
diseases. Intriguingly, oxidative stress can affect the expres-
sion levels of numerous miRNAs, and conversely, miRNAs
are able to regulate manifold genes involved in the oxidative
stress response as well [16]. Accordingly, oxidative stress and
miRNA networks are inextricably intertwined during the
neurodegenerative processes. In this section, we will intro-
duce the crosstalk between exosomal miRNAs and oxidative
stress in neurodegenerative diseases.

4.1. AD. miR-34a, a tumor suppressor transcript, is highly
expressed in autopsied brain tissue of AD patients and has
a strong pertinence to the pathogenesis of a cognitive
disorder. During AD pathogenesis, miR-34a facilitates the
amyloid precursor protein (APP) amyloidogenic processing,
while miR-34a knockdown can inversely mitigate the APP
accumulation in brain tissue [100, 101]. One mechanism
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Figure 2: Schematic representation of the formation and composition of extracellular vesicles. Ectosomes are generated by direct outward
budding of the plasma membrane, while exosomes are derived from endosomes. The plasma membrane of the parent cell forms the
endocytic vesicles (endosomes), which inward bud and recruit protein and RNA cargo to form multivesicular bodies (MVBs). Eventually,
MVBs fuse with the plasma membrane to release cargo-enriched exosomes into the extracellular space or get degraded by lysosomes. The
membrane-type structure of the exosome is made of a lipid bilayer. Exosomes encompass cytosol of the parent cell from which they are
derived and express the extracellular domain of distinct transmembrane proteins, such as integrin, tetraspanins, major histocompatibility
complex (MHC), and cluster of differentiation (CD), which reflect the type of parent cell.
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would be the interaction between miR-34a and oxidative
stress through the inhibition of the normal autophagy and
the succeeding mitochondrial dysfunction, ultimately result-
ing in the aggregation of APP and progression of AD [102].

miR-141-3p, a potential serum plasma biomarker for
Alzheimer’s disease, has been reported to be observed with
low concentrations in the plasma exosomes of Alzheimer’s
disease patients [97]. However, it has also been found to be
abundant in exosomes of inflammation-stimulated astro-
cytes [103]. This phenomenon may explain the difference

in pathological processes between acute and chronic neuro-
inflammation. miR-141-3p has also been shown to disrupt
antioxidant defense systems, modulate mitochondrial func-
tion, and upregulate oxidative stress by inhibiting PTEN
[104]. Nonetheless, its ability to affect oxidative stress was
confirmed in human hepatocellular carcinoma cells. There-
fore, it is necessary to verify its ability in neurons or glial cells.

miR-125b-5p is one of the most abundant microRNAs in
the brain [105] and is predominantly expressed in neurons,
astrocytes, and microglia [106]. Compared to healthy
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controls, upregulated miR-125b-5p was observed in cerebro-
spinal fluid-derived exosomes of patients with AD [107].
Evidences showed that over expression of miR-125b-5p can
lead to significant hyperphosphorylation at T231/S235, which
is related to progression of AD. [108] It was found that
transfection with miR-125b significantly enhanced the
apoptosis of neurons cells and phosphorylation of Tau by acti-
vation of cyclin-dependent kinase 5 (CDK5) and p35/25 [109].
Meanwhile, Lugli et al. [97] found that overexpression of miR-
125b-5p can cause defective associative memory in mice.
However, recent study found that miR-125b-5p can attenuate
Aβ-induced oxidative stress. This effect is probably due to
downregulation of the expression of beta-site amyloid precur-
sor protein cleaving enzyme 1 (BACE1) [110]. Another study
reported that inhibition of miR-125b-5p reduced ROS levels
and lowered mitochondrial membrane potential, thereby
demonstrating neuroprotective effects against oxidative stress
[111]. The above evidence showed that miR-125b-5p may be
a novel regulator of AD progress and could be as a therapeutic
target for AD therapy.

4.2. PD. Studies in recent years have found that miR-34a
appears to act in the neurotoxic pathways of PD-associated neu-
rotoxins such as paraquat, rotenone, and 6-hydroxydopamine
(6-OHDA). The mood stabilizing drug lithium chloride pro-
tects SH-SY5Y cells from paraquat-induced neurotoxicity by
activating the antioxidant protein expression regulator nuclear
factor 2-related factor 2 (NRF2) and miR-34a inhibition [112,
113]. Similarly, the dibenzocyclooctadiene lignin Schisandrin
B, which is an antioxidant, reversed the 6-OHDA-induced
increase in miR-34a expression and inhibition of NRF2 in cells
[114]. Meanwhile, Ba et al. [114] also observed that behavioral
improvement effected by Schisandrin B was reversed by
lentiviral-mediated miR-34a overexpression in a 6-OHDA
mouse PD model. In addition, stress conditions can induce
increased miR-34a secretion in astrocytes [115].The release of
miR-34a from astrocytes, delivered via exosomes, can enhance
the sensitivity of dopaminergic neurons to neurotoxins by
targeting Bcl-2 in a PD model [116]. Recent study also showed
that upregulation of miR-34a can alleviate oxidative stress-
induced neuronal apoptosis [117]. However, we still know little
about what role does this effect plays in PD genesis for the
moment. In view of the above findings and as far as cellular
and animal models of PD are concerned, mounting evidence
suggests that miR-34a has a pathophysiological role in PD.

MiR-137 is a highly conserved miRNA. It is enriched in
Drosophila’s brain and is reported upregulated in early PD
flies [118]. Similar increase has been observed in the plasma
of PD patients [119, 120]. Jiang et al. [121] revealed that
downregulation of exosomal miR-137 can upregulate oxida-
tion resistance 1 (OXR1), thereby exerting a neuroprotective
effect against oxidative stress in PD mouse model.

Let-7 is a series of miRNAs which was first discovered in
C. elegans and highly conserved across animal species.
Disorders of Let-7 can lead to many diseases including neu-
rodegenerative diseases, diabetes, and cancer [122]. Let-7
was reported to be overexpressed in PD model [123]. Previ-
ous report showed that upregulated exosomal Let-7 can be
observed in the CSF of PD patients [98, 124], indicating that

these miRNAs can be transported by exosomes. When exoso-
mal Let-7 is taken up by neurons, it causes neurodegenera-
tion through activation of toll-like receptor 7 (TLR7) [125].
Meanwhile, the Let-7 family has been reported to reduce
the effects of leucine-rich repeat kinase 2 (LRRK2) functional
mutations, which is involved in the pathogenesis of PD [126].
Moreover, in the C. elegans PD model, silencing of Let-7
leads to a mild increase in ROS levels, inducing neuronal
autophagy, reducing the accumulation of α-synuclein
protein, thereby alleviating disease progression in PD [127].

4.3. HD.Compared to AD and PD, relatively few studies have
targeted the interaction between microRNAs and oxidative
stress in ALS and HD. Downregulation of miR-124 expres-
sion is observed in both mouse models of HD and in the
brains of human HD sufferers [128]. Cyclin A2 is one of
the targets of miR-124, and Cyclin A2 expression increases
as miR-124 expression decreases, which may reveal that
miR-124 is involved in cell cycle dysregulation in HD cell
models by regulating Cyclin A2 expression [129]. Recent
studies have attempted to apply exosomal miR-124 as a
therapy to alleviate HD symptoms in animal models.
Although the result did not show an obvious improvement
in HD animal symptoms, the feasibility of exosome-based
miR-124 in an HDmodel was confirmed [89]. Though, there
are a lack of studies specifically target on interaction between
miRNA and oxidative stress in HD, given that oxidative
stress can alter the expression levels of miRNAs [130],
interaction between miR-124 and oxidative stress may play
an important role in HD pathophysiological process and
more research is needed in the future to confirm this.

4.4. ALS. Rizzuti et al. observed miR-34a expression down-
regulated in vitro model of ALS and confirmed the significant
role of miR-34a in neurodegeneration and ALS [131]. Sirtuin
1 (SIRT1), one of the specific targets of miR-34a, is a protec-
tive factor against oxidative stress-induced apoptosis [132].
Along with downregulation of miR-34a, increased SIRT1 is
also observed in vitro model of ALS [131]. This phenomenon
suggests that inhibition of miR-34a can exert a protective role
in ALS via increasing SIRT1 expression to against oxidative
stress-induced apoptosis. In ALS, environmental signals can
induce the liberation of free radicals, leading to oxidative
stress and alteration of epigenetic mechanisms [133]. In
addition, epigenetic modifications regulate miR-34a expres-
sion through demethylation of the promoter region of the
miR-34a gene. Upregulation of miR-34a promotes the
expression of TP53, which is associated with ALS, thereby
activating multiple genes involved in the cell cycle [134].

miR-142-5p is a member of miR-142 family microRNAs.
The decreased regulation of miR-142-5p in the CSF of ALS
patients was reported [135]. Wang et al. found that inhibition
of miR-142-5p can activate Nrf2, which in turn inhibits
oxidative stress and cell damage via the OGD/R pathway
[136]. Besides, this microRNA is also related to inflamma-
tion. Given the important role of inflammation and oxidative
stress in ALS, validating the function of miR-142 in ALS will
help expand our understanding of ALS pathogenesis and
development.
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5. Exosomal miRNAs as Biomarkers

Cell-derived active substances that can steadily be detected in
cells, body fluids, or tissues are called molecular markers.
Exosomal miRNAs in the body fluids of subjects can exist
stably due to the fact that they are free from the degradation
by ribonuclease (RNase), and further, they can be stably
stored for 48 h at 4°C in vitro [137]. These characteristics
favor the quality of the specimens before tested, underlying
the clinical application of exosomal miRNAs as biomarkers
of certain diseases. To date, many studies have attempted to
utilize miRNAs as biomarkers for neurodegenerative disease
(Table 1) [96–98, 107, 138–147].

5.1. Exosomal miRNAs as AD Biomarkers. Liu et al. identified
a lower expression of exosomal miR-193b in the blood and
cerebrospinal fluid (CSF) of AD patients compared with
controls, indicating the potential of exosomal miR-193b as
a unique and noninvasive biomarker for AD [138].
Moreover, significant differences in the expressions of miR-
605-5p, miR-451a, miR-125b-5p, and miR-16-5p in the
CSF-derived exosomes have been detected in young-onset
AD patients [107]. Ting et al. assessed upregulated contents
of miR-135a and miR-384 and downregulated miR-193b in
the exosomes from AD patients’ blood and suggested that
serum exosomal miR-193b, together with miR-135a and
miR384, could be utilized as reliable markers for AD [139].
Furthermore, another study revealed significant changes of
20 plasma exosome-derived miRNAs in the AD group;
however, none of the aforementioned exosomal miRNAs
was involved except miR-125b-5p [97]. These distinct find-
ings may be due to the different techniques of separation
and identification in each study [148], which implies further
research, as well as unified standards, is warranted.

5.2. Exosomal miRNAs as PD Biomarkers. Gui et al. discov-
ered that in the early stages of PD, there were 27 exosomal
miRNAs derived from CSF of patients presenting with
abnormal expression, among which miR-153, miR-409-3p,
miR-10a-5p, and Let-7g-3p were significantly increased, while
miR-1 and miR-19b-3p were significantly decreased, indicat-
ing their potential values as biomarkers for early diagnosis of
PD [98]. In addition, downregulated miR-19b and upregu-
lated miR-24 andmiR195 in serum exosomes are also thought
to serve as diagnostic markers for patients with PD [96].
Another study suggested that plasma exosomal miR-331-5p
and miR-505 might represent promising biomarkers [145].
Similar to the AD-related research, these results are highly
inconsistent. More control studies with larger samples are
needed in the future to validate these miRNAs.

5.3. Exosomal miRNAs as HD Biomarkers.HD is a hereditary
and slow-progressing neurodegenerative diseases. Diagnosis
mainly relies on family genetic history and genetic testing.
Although HD is an untreatable disease, biomarkers remain
important to patients by providing early diagnostic clues or
reflecting disease progression. Related researches found
elevated levels of miR-100-5p and decreased levels of miR-
330-3p and miR-641 correlate with total functional capacity
in HD patients [149]. Gaughwin et al. [150] found signifi-

cantly lower plasma miR-34b levels in presymptomatic HD
patients compared to healthy controls, suggesting that miR-
34b is a new potential biomarker for HD that can be stably
expressed in plasma and detected before the onset of clinical
symptoms. Moreover, it is reported that miR-124 expression
is reduced in HD patients and can lead to upregulation of
neuron-restrictive silencing factor (NRSF) expression,
thereby suppressing the expression of brain-derived neuro-
trophic factors, suggesting that abnormal expression of
miR-124 plays a key role in the pathogenesis of HD [129,
151, 152]. Although the use of exosome-based delivery
method not significantly improving motor symptoms in an
animal model of HD, it provides feasibility for exosomal
miRNA-based treatment of HD [89].

5.4. Exosomal miRNAs as ALS Biomarkers. ALS is the most
common and severe form of motor neuron disease in adults.
The mechanism by which ALS occurs is currently unknown,
and the lack of specific biomarkers makes clinical diagnosis
difficult. Increasing evidence suggests that RNA metabolism
including miRNAs may play an important role in the patho-
physiological process of ALS. A global downregulation of
miRNAs is a frequent molecular denominator for multiple
forms of human ALS [153]. De Felice et al. [154] suggested
that miR-338-3p was increased in peripheral leukocytes,
serum, and cerebrospinal fluid (CSF) from sporadic ALS
patients and considered the miRNA to be a potential
biomarker for early diagnosis of sporadic ALS [149].
Meanwhile, plasma miR-130a-3p, miR-151b, and miR-221-
3p levels were also decreased in patients with sporadic ALS
and positively correlated with sporadic ALS progression, sug-
gesting that these miRNA can be used not only as diagnostic
biomarkers, but also for monitoring disease progression
[155]. Moreover, in the later stages of ALS, increased expres-
sion levels of miR-155, miR-146a, and miR-124 further exac-
erbating the inflammatory response, leading to a disturbed
intracellular environment and motor neuron degeneration
and necrosis [156]. The above evidences demonstrate that
exosomal miRNAs have potential biomarker functions of ALS.

6. The Promise of Exosome-Based Delivery of
Therapeutic miRNA for Neurodegenerative
Disease Therapy

The BBB has always been an impregnable obstacle to the
therapeutic development of CNS disorders, hindering the
clinical application of many promising agents [157]. As
mentioned above, exosomes are able to cross the BBB [70].
Indeed, studies have found that exosomes have many
additional advantages as a novel type of drug delivery
vehicles. Specifically, they have low immunogenicity, high
transport efficiency, and can inhibit inflammatory response
as well as be administered over long distances [17, 157]. In
addition, the small size of exosomes prevents them from
phagocytosis of the mononuclear phagocyte system [158].
Although extensive preclinical models have been designed
to investigate the value of the exosome-based delivery system
for therapeutics, exosomes are still in the early stages of being
used to treat neurodegenerative diseases [159]. Only one
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clinical trial using focused ultrasound delivery of intrave-
nously infused exosomes to deliver growth factors and anti-
inflammatory agents for the treatment of neurodegenerative
dementias is being carried out (ClinicalTrials.gov Identifier:
NCT04202770). Transcranial focused ultrasound adminis-
tered immediately prior to exosome treatment is in an
attempt to enhance the deployment of exosomes to the
hippocampus of patients.

Exosome-based delivery of therapeutic miRNA for CNS
diseases has become a hot research topic. Experimental studies
have indicated that MSC-derived exosomes transferring
functional miRNAs (e.g., miR-133b and miR-17-92 cluster)
to neurons can promote neural plasticity and functional recov-
ery after stroke [160–162]. Research has also been conducted
to deliver exogenous miR-21 by MSC-derived exosomes to
prevent nucleus pulposus cells from apoptosis and mitigate
intervertebral disc degeneration [163]. Mechanically, miR-21
promotes cell survival possibly by binding to mRNA 3′
untranslated regions of PTEN to hinder its function, which
activates Akt and Bcl-2 and suppresses Bad, Bax, and
caspase-3, ultimately inhibiting cell apoptosis [164]. Similarly,
exosomal-based delivery of exogenous functional miRNAs has
the promise to be a novel therapeutic strategy for other CNS
diseases, such as traumatic brain injury [165].

To date, a few preclinical studies have been carried out on
the use of exosomal miRNA in the treatment of neurodegen-
erative disease. Lee et al. [89] transfected the miR-124 vector
into HEK 293 cells to produce a cell line that stably expresses
miR-124. These miR-124-overexpressed cells were cultured in
Dulbecco’s modified Eagle’s medium without exosomes, and
then the exosomes were harvested from these cells by an opti-
mized protocol. Whereafter, exosomes encapsulated with
miR-124 were injected into both striatums of HD models,
and the results demonstrated that these exosomes exhibited
high expression of miR-124 and successfully reduced the
expression of target genes in recipient cells. Though this
treatment did not significantly improve the behavioral symp-
toms of experimental animals, it has laid the foundation for
the clinical application of exosome-based delivery of miRNA
in neurodegenerative diseases. Considering the crosstalk
between exosomal miRNAs and oxidative stress in neurode-
generative diseases, exosomal delivery of aforementioned
miRNAs intertwined with oxidative stress may also hold
therapeutic potential and merit further exploration.

Notably, although exosomes hold great promise as
rational vehicles for RNA delivery, in particular miRNAs
and/or siRNAs, the loading efficiency is limited. Recently,
Li et al. [166] invented a novel strategy for loading therapeu-
tic substances into exosomes. They fused exosomal mem-
brane protein CD9 with RNA binding protein, which has a
high affinity with miR-155, to enrich miR-155 into exosomes
with a high loading efficiency. Hereby, encapsulated miR-155
could be effectively delivered to recipient cells and recognized
endogenous targets. Moreover, enhanced loading efficiencies
were also revealed by the exosomes enriched with the func-
tional miRNA inhibitor and CRISPR/dCas9. These findings
have shown the prospects these engineered exosomes hold
for enhanced RNA cargo encapsulation.

In the future, more clinical studies verifying the clinical
efficacy of exosome-based drug delivery systems as well as
oxidative stress-associated exosomal miRNAs for neurode-
generative diseases and more preclinical studies exploring
better methods for loading therapeutic miRNAs into exo-
somes are warranted.

7. Conclusion and Perspectives

In the past decades since exosomes and miRNAs were found
in neurons, researchers have tried to explain cell-cell com-
munication in CNS with an exosome cargo system. And
through the cell-cell communication system, exosomes and
miRNAs seem to have enormous potential in neurodegener-
ative diseases especially as we have found that exosomes have
a cell specificity. Currently, the value of exosomes and
exosome-derived miRNAs in neurodegenerative diseases
have been extensively studied, such as early diagnosis of dis-
eases through blood/CSF-based specific miRNA detection,
and targeted therapy through exosomes carrying agents
across the BBB. Notably, as an irreversible disease, preventive
measures or ways to slow the progression of neurodegenera-
tion tend to be more achievable. In this context, the oxidative
stress response is one of the crucial targets. Some antioxi-
dants have been used to treat neurodegenerative diseases
and appear to have an impressive effect [4, 167]. Intriguingly,
exosomal miRNAs can regulate manifold genes involved in
oxidative stress, providing more ideas for revealing the oxida-
tive stress response during neurodegenerative processes, yet
there is not enough related research that uncovers the precise
mechanisms. We can propose a reasonable assumption that
miRNAs can build up a regulation network between neurons
and other brain cells through an exosome cargo way and act
on oxidative stress in different neurodegenerative diseases,
which merits further research and may provide the basis for
novel strategies of neurodegenerative disease management.
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