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Human head and neck cancer (HNC) is a highly heterogeneous disease. Understanding the biology of HNC progression is
necessary for the development of novel approaches to its prevention, early detection, and treatment. A current evolutional
progression model has limitations in explaining the heterogeneity observed in a single tumor nest. Accumulating evidence supports
the existence of cancer stem cells (CSCs) as small subpopulations in solid tumors, including HNC. These CSCs can be selected
by appropriate cell surface markers, which are cancer type specific and have been confirmed by unique in vitro and in vivo
assays. Selected CSC populations maintain a self-renewal capability and show aggressive behaviors, such as chemoresistance and
metastasis. In addition to introducing the CSC concept in solid tumors, this short review summarizes current publications in HNC
CSC and the prospective development and application of the CSC concept to HNC in the clinic.
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1. Introduction

Head and neck cancer is the sixth most common cancer
and is responsible for almost 200,000 deaths around the
world each year [1–3]. In the United States, head and
neck squamous cell carcinoma (HNSCC) accounts for more
deaths annually than cervical cancer, melanoma, or lym-
phoma. Although recent molecular studies have advanced
our understanding of the disease and provided a rationale
for the development of novel therapeutic strategies, HNSCC
is still associated with severe mortality. Its 5-year survival
rate has not been improved in more than 30 years [4]. In
addition, the 5-year survival rate is even lower for HNSCC
patients with a single homolateral lymph node metastasis
(LNM) and is less than 25% for patients with bilateral LNM.
Understanding the biology of HNSCC, progression will
greatly assist in treatment decisions and in the development
of new strategies for prevention and control of this disease.

Human neoplastic tumors, particularly HNSCC, are
highly heterogeneous [5–7]. Currently, the progression of
HNSCC is considered to result from evolution through step-
wise alterations in multiple molecular and cellular pathways

[8, 9]. However, this evolution concept has limitations in
explaining the heterogeneity observed in a single tumor
nest. It has been known for a long time that there are
subpopulations of cells within solid tumors that contain
different biological behaviors, such as metastatic potential
[10, 11].

Accumulating evidence supports the subpopulation
observation, particularly, the existence of so-called cancer
stem cells (CSCs) [12–17]. Although CSCs in solid tumors
including HNSCC have not been precisely identified, the
CSC hypothesis opens a new era in understanding the
initiation and progression of cancers. This short review will
briefly introduce the CSC concept, summarize the current
progress of CSC studies in HNSCC, and discuss the potential
application of the CSC concept to the clinical management
of HNSCC.

2. Cancer Stem Cell Concept

CSCs are defined as a small subset of cancer cells that
constitute a pool of self-sustaining cells with the exclusive
ability to maintain the tumor. Currently, there are two
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hypothetical explanations for the existence of CSCs. CSCs
may arise from normal stem cells by mutation of genes
that render the stem cells cancerous. Or, they may come
from differentiated tumor cells that experience further
genetic alterations and, therefore, become dedifferentiated
and acquire CSC-like features.

The CSC concept is “an old idea reemerging at an
important time” [12]. If the CSC hypothesis is true, many
aggressive behaviors of cancer cells, such as chemoresistance
and metastasis, may be better understood. Current CSC
research is focusing on the identification of CSC in solid
tumors, since stem cells in hematopoietic malignancies such
as leukemia have been well characterized [12–16]. However,
many difficulties are encountered when exploring the exis-
tence of CSCs in solid tumors, due to the inaccessibility of
tumor cells and the lack of appropriate functional assays
[17]. An important breakthrough in the study of solid
tumor CSCs was the identification of breast cancer CSCs
and their biomarkers by Clarke and his colleagues in 2003
[18]. Since then, CSCs have been reported in neoplasms of
brain, prostate, lung, colon, pancreas, liver, melanoma, and
skin [19–33]. Among them, the breast CSC model with well-
defined biomarkers is more advanced than in other types of
cancers [34–36]. Using this model, molecular signatures and
signaling pathways have been further explored [34, 37].

There are three main characteristics that define CSCs: (1)
differentiation, which provides the ability to give rise to a het-
erogeneous progeny, (2) self-renewal capability that main-
tains an intact stem cell pool for expansion, and (3) homeo-
static control that ensures an appropriate regulation between
differentiation and self renewal according to the environ-
mental stimuli and genetic constraints of each organ tissue,
which accounts for the tissue specificity of CSCs. Currently,
xenograft assays for different organ sites have been estab-
lished for testing CSCs. As suggested by the AACR Workshop
on Cancer Stem Cells in 2006, the orthotopic xenograft assay
is considered the golden standard for the identification of
CSCs [12]. This type of assay allows reliable testing for all
three characteristics of CSCs. In current studies, cancer cells
from either tumor tissues or cell lines are initially sorted by
specific cell surface markers. The selected cell population is
then injected into experimental animals for tumorigenesis
testing. If as few as 100–500 cells of the selected cell popu-
lation are tumorigenic, the featured cell surface markers can
serve as CSC-specific biomarkers. In a breast cancer study
by Al-Hajj et al. [38], human breast cancer tissues or cells
with or without expression of CD44 and CD24 were injected
into the mammary fat pad of immune-deficient nonobese
diabetic/severe combined immune-deficient (NOD/SCID)
mice, which have greater immune deficiency than nude
mice. Using this model, the breast CSC-specific biomarkers
CD44+/CD24− were determined. Similar xenograft assays
in NOD/SCID mice were used to identify CSCs of brain,
colon, and lung with a CD133+ profile [19, 21, 39–41].
Not only the NOD/SCID mouse models but also nude mice
are choices for an orthotopic xenograft assay. Visvader and
Lindeman have recently summarized mouse models and
CSC markers used for isolation of CSC, including CD133,
CD44, ALDH1A1, and epithelial cell adhesion molecule

(EpCAM) [17]. As shown in Table 1, there is no universal
CSC marker for all types of cancer. CSC markers may be
tumor type specific, depending on the niche of each type
of CSC. In addition to in vivo assays for CSC identification,
many in vitro experiments have also provided evidence for
the existence of CSCs. For example, studies by Collins et
al. focused on a cell population in patients’ tumor tissues
featuring CD44+/integrinα2β1high/CD133+ [22]. These cells
were examined by colony-formation and long-term serial
culture assays and showed self renewal and regeneration of
phenotypically mixed populations.

3. CSC-Related Cancer Progression Models

Accumulating evidence suggests that CSCs contribute not
only to tumor initiation, but also to aggressive tumor
behaviors such as chemoresistance and metastasis.

3.1. CSC-Like Cells Constitute Part of a Chemoresistant Pop-
ulation. It has been noted that although chemotherapy kills
the majority of cancer cells in tumor tissues, it may leave
a population of cells behind. These cells overexpress the
ATP-binding casstte (ABC) drug transporters which protect
cancer cells from damage by cytotoxic agents. Coincidently,
a side population (SP) of tumor cells which are defined by
their inability to accumulate the fluorescent dye Hoechst
33342 due to overexpression of the ABC transporter ABCG2
has been confirmed to hold CSC features in several types of
cancers including hematopoietic, prostate, and glioma CSCs
[42–44]. ABCG2 and other ABC transporter proteins, there-
fore, have served as CSC markers [45] (Table 1). Chemore-
sistant activity has been identified in some CSC-like cell
populations. For example, a study of a colorectal cancer cell
line that is resistant to 5-fluorouracil (5FU) and oxaliplatin
by Dallas et al. showed 5- to 22-fold enrichment of a double
CSC marker CD133+/CD44+ population [46]. Another study
by Hermann et al. showed that human pancreatic cells that
survived prolonged treatment with gemcitabine had a 50-
fold increase in a CD133+ population [32].

Considering CSCs a target population for the treatment
of human cancer has opened new directions for research
efforts in the field. The development of inhibitors against the
ABC transporter ABCG2 has been explored in clinical studies
[47]. On the other hand, targeting specifically activated
signaling pathways in CSCs may provide an effective strategy
to eliminate this cell population. Dallas et al. reported
that chemoresistant colorectal cancer CSC-like cells showed
increased expression of insulin-like growth factor-1 receptor
(IGF-1R). This cell population responded to inhibition by
an IGF-1R monoclonal antibody more effectively than its
nonresistant counterpart [46]. Several signaling pathways,
including the Wnt, TGF-β, and CXCR4 pathways, have been
suggested to be activated in CSCs [17, 48, 49]. Therapeuti-
cally targeting these pathways deserves further investigation.

3.2. Migrating or Metastatic Cancer Stem Cells (mCSCs).
The existence of mCSCs was first hypothesized in 2005 by
Brabletz et al., based on their observations in colorectal
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Table 1: Putative CSC makers in solid tumors.

CSC markers Tumor types
% CSC markers Minimal cell no.

Refs
in tumor cells for tumor formation

CD44+/CD24−/low Breast 11–35 200 [18]

CD44+ Head and neck 0.1–42 5000 [57]

Prostate 0.3–38 100 [26]

CD44+/EpCAMhi Colon 0.03–38 200 [31]

CD44+/CD24−/ESA+ Pancreas 0.2–0.8 100 [27]

ALDH1+ Breast 3–10 500 [71]

CD133+ Brain 6–29 100 [21]

Brain 2-3 500 [39]

Colon 1.8–25 200 [40]

Colon 0.7–6 3000 [27]

Head and neck 0.8–4.2 1000 [60]

Pancreas 1–3 500 [32]

Lung 0.32–22 104 [19]

Side population Prostate 0.05–0.2 100 [33]

ABCG5+ Melanoma 1.6–20 106 [30]

cancer [50, 51]. They proposed that there are two forms
of CSCs in tumor progression—stationary CSC (sCSC)
and mobile or migrating CSC (mCSC). They proposed
that sCSCs are embedded in epithelial tissues or epithelial-
based tumors and cannot disseminate. In contrast, mCSCs,
which are derived from sCSC by acquiring a transient
epithelial-mesenchymal transition (EMT), are located at
the tumor-host interface and mediate tumor cell metastasis.
In a colorectal cancer model, Brabletz et al. observed that
not only the expression levels of EMT-related biomarkers
but also their locations in the tumor nest were significantly
associated with metastasis. They found that loss of E-
cadherin (E-cad) usually resulted in nuclear localization of
β-catenin, which is a typical feature of EMT, and nuclear
β-catenin was accumulated in dedifferentiated tumor cells at
the tumor-host interface. The authors then interpreted these
observations in the context of the sCSC and mCSC hypothe-
ses, suggesting that sCSC and mCSC are responsible for
formation of the primary tumor and metastasis, respectively.
Both sCSC and mCSC can lead to differentiation and tumor
heterogeneity. Particularly, metastatic tumors generated
from mCSC may experience a mesenchymal-epithelial
transition (MET) in the metastatic organ site, which may
explain why EMT can not be clearly observed pathologically
in many metastatic lesions. In fact, the mCSC hypotheses
can be used to explain the “heterogeneous morphology of
the primary tumor and how metastases can recapitulate the
heterogeneity in differentiation” and “tumor-cell dormancy
and disease recurrence” [50]. Two recent publications
support the mCSC hypotheses. Mani et al. reported
that the stem-like cells identified in breast cancer were
associated with EMT markers [49, 52]. A CD133+/CXCR4+

stem-like population isolated by Hermann et al. was
suggested to be essential for metastasis of pancreatic cancer
[32, 53].

3.3. Hierarchical and Stochastic Models of CSCs in Solid
Tumors. Although the concept of developmental hierarchy
of solid tumors has been discussed in several papers, the
hypothetical hierarchical model of CSC/progenitors was
clearly proposed in 2007 by Tang et al. based on their
studies in prostate CSCs [43, 54]. This model described a
hierarchical organization of phenotypically and functionally
distinct cells at different stages of prostate tumor maturation.
Their study demonstrated that a highly purified CD44+ pop-
ulation was still heterogeneous and enriched in tumorigenic
and metastatic progenitors. That is, not only CSC but also
progenitors can be tumorigenic in the NOD/SCID mouse
model. These two types of tumor cells share the common
marker CD44+, but they can be distinguished by other
well-defined markers including ABCG2+ and α2β1+, which
are specific for tumor progenitors. Recently, Odoux et al.
identified chromosomal instability that usually supports a
stochastic model in the mCSC population isolated from liver
metastasis of colon cancer [55]. They, therefore, proposed
a new model which suggested that both stochastic and
hierarchical models can be used to explain the mCSC
population (Figure 1).

4. CSC Studies in HNSCC

To date, only a few studies of HNSCC CSC have
been reported [56]. Using both NOD/SCID mice and
Rag2/cytokine receptor common γ-chain double knockout
(Rag2γDKO) mice, Prince et al., the same group that
identified breast CSCs, reported that as few as 5 × 103

CD44+ HNSCC cells could generate tumors in the mice
and demonstrated tumor heterogeneity [57]. Examining
samples from human HNSCC tissues revealed that the
CD44+ population varied from 0.1% to 41.7%. This cell
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Figure 1: Hierarchical and stochastic models of CSC in progression of solid tumors.

population also inclusively expressed BMI1, a nuclear protein
that also plays a role in self renewal in other CSCs, while
exclusively expressed the differentiation marker involucrin.
Unlike breast CSCs, this group found that epithelial-specific
antigen (ESA) expression was not enriched in the tumori-
genic cells, suggesting that HNSCC has CSC biomarkers
distinct from those in breast cancer. A CD44+ population
was also reported by Okamoto et al. to characterize HNSCC
CSC-like cells [58]. It was found that CD44+ cells possessed
not only a capacity for forming tumor spheres, proliferation,
migration, and invasion in vitro, but also a resistance to
chemotherapeutic agents. Supporting this observation, four
relevant chemoresistant genes, ABCB1, ABCG2, CYP2C8,
and TERT, were upregulated in the CD44+ population.
Recently, an SP was identified by Zhang et al., and proved
to enhance the capability of tumor formation in nude mice
as compared with non-SP [59]. In another study, oral cancer
stem-like cells were enriched through sphere formation
and found to express Oct-4, Nanog, CD133, and ABCG2
[60]. Nanog/Oct-4/CD133 triple-positive status predicted a
poor prognosis for patients with oral cancer. CD133 is also
reported as an HNSCC stem-like cell marker by studies
using a head and neck cancer cell line [61]. These data can
be supported by many observations showing that a small
population of HNSCC tumor cells exists and demonstrates
strong self-renewal and proliferation capabilities, even in the
early stage of tumor development [62–64]. In tumor cells of
epithelial origin, this subpopulation shows a dedifferentia-
tion phenotype and plasticity, which facilitates metastasis of
HNSCC. In fact, this tumor subpopulation is also responsible
for more aggressive phenotypes, such as resistance to cancer
therapeutic drugs and metastasis [50, 51].

Whether putative CSCs play a role in metastasis of
HNSCC or not the existence of mCSC has not been reported.
But our previous study provides indirect evidence support-
ing the existence of such a population. We found that a highly
metastatic subpopulation selected from a xenograft mouse
model expressed high levels of CSC markers, including
CXCR4 and integrin β1, and altered levels of EMT markers

such as E-cadherin and vimentin [65–67]. CXCR4 has been
investigated as a putative CSC marker and is also an ideal
target for the treatment of metastatic HNSCC. Integrin β1 is
mainly expressed in the basal layer of the normal epithelium
as an epithelial stem cell marker [64, 68]. In abnormal
epithelium (hyperplasia and dysplasia), integrin β1 is found
to be expressed in the upper layers of the epithelial tissues.
It is also expressed in a variety of tumor tissues. Integrin
β1 overexpression has been suggested to expand the CSC
compartment by inhibiting differentiation and apoptosis,
therefore contributing to tumor progression and metastasis
[68]. A recent study by Kirkland and Ying showed that
α2β1 integrin regulated lineage commitment in multipotent
human colorectal cancer cells [69]. Whether the metastatic
populations contain CSC-like features or not is currently
under investigation.

5. Implications of CSC in the Development of
Biomarkers and Therapy for HNSCC

From a clinical perspective, if the CSC or CSC-like popula-
tion represents the more aggressive HNSCC population, the
early detection and targeted treatment of these cells become
an urgent need in order to better manage this disease.
CSC-specific markers provide unique tools for identifying
these putative aggressive cell populations. An immunohisto-
chemistry study of primary HNSCC reported by Prince and
Ailles showed that CD44 staining was associated with more
basal-appearing cells [56]. CD44+ cells were costained with
markers for the basal normal squamous epithelium, CK5/14,
while CD44− cells were associated with the differentiation
marker involucrin, supporting the organization of HNSCC
by developmental hierarchy, as predicted by the CSC theory
of carcinogenesis. However, some studies of CD44 as a
CSC marker in human HNSCC tissues contradict these in
vitro and in vivo studies. A recent study by Mack and
Gires reported CD44s and CD44v6 expressions in head and
neck epithelial tissues [70]. They found a similarly high
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Figure 2: ALDH1 expression in HNSCC tissues: (a) nonmetastatic
primary tumor with negative ALDH1 expression, (b) metastatic
primary tumor with positive ALDH1 expression, and (c) corre-
sponding lymph node metastases. (Magnification: 400x).

level of CD44s and CD44v6 expression in normal, benign,
and malignant epithelia of the head and neck. A similar
observation was also obtained in our laboratory (data not
shown). Therefore, the value of CD44s as a marker for a
small CSC population in HNSCC needs to be reconsidered.
We believe that there is a necessity to precisely define more
HNSCC CSC markers with an aim of further improving our
ability to isolate HNSCC CSCs.

Another possible CSC marker expressed in HNSCC is
ALDH1. ALDH1 has been considered a marker of normal
and malignant human mammary stem cells and a predictor
of poor clinical outcome [71]. Expression of ALDH1 in
HNSCC and dysplastic mucosa tissue samples was examined
by Visus et al. [72]. They found that 12 of 17 HNSCC and
30 of 40 dysplastic mucosa tissues expressed this protein.

However, this study did not correlate ALDH1 expression
status with aggressiveness or prognostic features of the
disease, such as metastasis, chemoresistance, or survival. Our
recent study of HNSCC tissues demonstrated a statistically
significant increase in ALDH1 expression in tumors with
LNM compared to tumors without LNM (P < .0003,
Figure 2). Although ALDH1 has not been reported as a
marker for HNSCC CSC, our study suggests that ALDH1
may be a potential marker for tumor progression and
metastasis in HNSCC.

In addition to their predictive and prognostic value,
the identification of CSCs in HNSCC will also provide
target populations that require more aggressive treatment
than can be achieved with conventional therapies, such as
a combination treatment with chemotherapy and an agent
targeting CSC-specific signaling pathways. As discussed in
Section 3.1., a combination of chemotherapy with inhibitors
of the ABC transporters overexpressed by CSCs may have
potential clinical application. Furthermore, recent progress
in nanotherapeutics has shown the ability of nanoparticles
to bypass ABC transporters when delivering anticancer
drugs to tumor cells, providing a new strategy to overcome
chemoresistance of CSCs [73].

6. Conclusions

Recent progress in the study of CSCs in solid tumors has
provided researchers and clinicians in head and neck cancer
new concepts to better understand the heterogeneity of this
disease with. Once CSC or CSC-like populations are defined
with appropriate biomarkers, these biomarkers can be used
for accurately detecting tumor-initiating cells or metastatic
cells in primary tumor biopsies, which will aid clinicians in
their treatment decisions and in the accurate prognosis of
HNSCC.

Currently, there are no consistently well-defined bio-
markers or matured technologies to identify CSC or CSC-like
populations in HNSCC. Efforts are being made to improve
this situation by developing in vitro models and appropriate
HNSCC CSC culture systems and refining techniques for
the selection of well-defined cell populations from clinical
samples. Furthermore, major signaling pathways in CSC or
CSC-like populations of HNSCC are under investigation.
The major cellular signaling mediators should be ideal targets
for the development of new therapeutic agents to specifically
eradicate high-risk HNSCC cells, which may also hold drug-
resistant phenotypes. These studies are part of a growing
interest toward personalized treatment for HNSCC.
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