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CAPN1 encodes calpain-1, a large subunit of µ-calpain, a calcium-activated cysteine

protease widely present in the central nervous system. Mutations inCAPN1 have recently

been identified in a complicated form of Hereditary Spastic Paraplegia (HSP) with a

combination of cerebellar ataxia and corticomotor tract disorder (SPG76). Therefore,

CAPN1 is now considered one of those genes that clinically manifest with a spectrum

of disorders ranging from spasticity to cerebellar ataxia and represent a link between

Spinocerebellar Ataxia and HSP, two groups of diseases previously considered separate

but sharing pathophysiological pathways. We here describe clinical and molecular

findings of two Italian adult siblings affected with a pure form of HSP and harboring the

novel homozygote c.959delA variant (p.Tyr320Leufs∗73) in the CAPN1 gene. Although

the reason why mutations in CAPN1 may cause heterogeneous clinical pictures remains

speculative, our findings confirm that the spectrum of the CAPN1-linked phenotypes

includes pure HSP with onset during the third decade of life. Further studies are

warrantied in order to clarify the mechanism underlying the differences in CAPN1

mutation clinical expression.
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INTRODUCTION

Hereditary spastic paraplegias (HSP) are a heterogeneous group of genetically inherited diseases
characterized by weakness and spasticity in the lower limbs, which may or may not be associated
with other neurological symptoms (1).

The prevalence of the different forms of HSP has been estimated around 1.8 per 100,000,
although some studies predicted a prevalence of between 2 and 10 subjects per 100,000 depending
on the considered populations (2–5).

Based on the phenotype, HSP can be classified into pure and complicated forms (6).
Pure forms are characterized by signs of involvement of the pyramidal tract, such as weakness,

spasticity, and brisk deep tendon reflexes at lower limbs with extensor plantar response. Hypertonic
bladder and various grade of deep sensory impairment are also possibly associated (7).

Complicated forms present with a more heterogeneous phenotype, in which the classic spastic
paraparesis/plegia is accompanied by various neurological and non-neurological disturbances,
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including cerebellar dysfunction, intellectual disability, axonal, or
demyelinating peripheral neuropathy, seizures, extrapyramidal
features, eyelid ptosis, ophthalmoplegia, opthalmological
abnormalities, facial dysmorphism, and foot deformities (8, 9).

The age of onsetmay vary and both early- and late-onset forms
have been described. Most HSP phenotypes become clinically
evident between adolescence and the third decade of life (1).

HSP are also genetically heterogeneous conditions. They
can be inherited in an autosomal- dominant (AD-HSP),
autosomal-recessive (AR-HSP) or X-linked (XL-HSP) fashion.
Maternal inheritance is also possible, despite very rarely, usually
in complicated HSP phenotypes suggesting an underlying
mitochondrial DNA defect (10).

To date, more than 80 types of HSP have been genetically
defined by linkage analysis and identification of HSP-related gene
variants (11).

Some genes are associated with pure or complicated HSP,
while other genes are linked to both forms of HSP, indicating that
othermodifying genetic or environmental factors can be involved
in determining the disease course (10, 11).

Neuropathological studies indicated that HSP are typically
characterized by a length-dependent “dying back” axonopathy,
with more pronounced axonal degeneration in the distal
segments of the corticospinal tract and in the proximal tract of
sensory fibers (12). These findings correlate with the evidence
that HSP-related genes may be involved in multiple cell pathways
leading to axonal dysfunction, such as endosomal trafficking,
mitochondrial regulation, lipid metabolism, and regulation of the
endoplasmic reticulum (5).

Very recently, CAPN1, the gene encoding calpain-1, has been
identified as a HSP-related gene (13–16).

Although CAPN1 mutations usually cause an autosomal-
recessive complicated form of HSP, named SPG76, few
recent studies reported defects in CAPN1 also in pure HSP
subjects (16–18).

We here describe clinical and molecular findings in two adult
siblings affected with an uncomplicated HSP and harboring a
novel mutation in CAPN1.

PATIENTS AND METHODS

Patients
A 33-year-old man (Patient 1) complained, since he was 25, of
pain and yielding at the right foot after standing for a long time.

The symptoms remained stable over the years until age 29,
when he began to present spasticity involving both lower limbs,
with a slowly worsening course.

His 42-year-old sister (Patient 2) complained of similar
symptoms since age 30.

Two other brothers of age 40 and 36, as well as the 71 year-
old father and the 68-year-old mother were asymptomatic and
were not examined. Parents were consanguineous (first cousins)
(Figure 1A).

Patient 1

In the past medical history, congenital thyroid hemi-hypoplasia
and levothyroxine intake were noticed.

Neurological examination disclosed severe spastic gait with
increased muscle tone in the lower limbs, very brisk ankle jerks,
and knee tendon reflexes, ankle clonus and Babinski sign. No
tactile, stocking pin-prick, vibratory, and proprioception sensory
reduction was observed. Romberg sign was absent. Cerebellar
signs were absent. General physical examination was normal.

Routine laboratory tests (including blood cell count, blood
glucose, vitamin B12 and folate) were in the normal range. Brain
and spinal cord MRI was normal. Nerve conduction studies and
needle electromyography were normal.

Motor evoked potentials were markedly slowed while sensory
evoked potentials showed a mild increase of central conduction
time from lower limbs.

After clinical evaluation, the patient started neuromotor
rehabilitation treatment.

Patient 2

Her past medical history was unremarkable. She had two healthy
children. Neurological examination did not differ from that of the
younger brother.

Routine laboratory tests (including blood cell count, blood
glucose, vitamin B12, and folate) were in the normal range. EMG-
ENG and brain MRI findings were normal. Spinal cord MRI
showed some disc protrusions without signs of myelopathy.

Motor evoked potential showed decreased amplitude
and increased latency at four limbs with increased central
conduction time.

Genetic Analysis
The study was conducted in accordance to the ethical standards
of the Declaration of Helsinki (1964).

After obtaining an informed consent from the probands
and parents, their DNA was extracted from peripheral blood
using GenElute Blood Genomic DNA Kit (Sigma St.Louis,
Missouri, USA).

Libraries were prepared using a custom gene panel from
Agilent (Santa Clara, California, USA), which enables the
capturing of 202 genes known to cause hereditary spastic
paraparesis and other motor neuron disorders (gene list is
provided as Supplementary Material). The coding regions and
flanking intronic regions of the 202 genes were enriched using
the SureSelect XT Target Enrichment System from Agilent
(Santa Clara, California, USA), following the manufacturer’s
protocol. Sequencing, was performed on the Illumina Next-
Seq500 platform.

After capturing enrichment and sequencing, data were aligned
to the reference sequence of the human genome (University of
California Santa Cruz (UCSC) hg19/GRCh37) with BWA (the
Burrows-Wheeler Alignment algorithm) and variant were called
with GATK through the BaseSpace app, BWAEnrichment v.2.1.0
(Illumina, California, USA). Called variants were annotated with
ANNOVAR (Wang Genomics Lab 2010-2019).

In a diagnostic setting, variants were filtered for allele
frequencies <1% in the Exome Aggregation Consortium (ExAC)
data set (http://exac.broadinstitute.org/) and basing on their type
and genomic localization, thus synonymous and intronic variants
were discarded.
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FIGURE 1 | (A) Pedigree of the family; the patient is depicted by a black arrow. (B) Electropherograms of CAPN1 sequence in patient and control. (C) Structure

of CAPN1 protein, Calpain 1, its domains with location of the mutations previously identified (under the gray bar) and the mutation identified in the current study (on

top of the gray bar). At the N-terminus of the protein, an a-helix domain is followed by two Protease core domain, 1 and 2 (PC1and PC2), constituting the Peptidase-

Cystein Protease core Peptidase (CysPC); the Calpain domain III- also known as C2-like Ca2+ −Binding domain (C2L) precedes the PEF (Penta EF-hand) domain at

the C terminus containing 5 EF-hand motifs.

On average, 98.23% and 99.5 % of bases were covered by at
least 10 and 20 sequence reads, respectively. Themean read depth
of the targeted regions was 1245.34X. We used Polyphen2 and
SIFT to assess the functional effects of the variants. After filtering,
we performed Sanger sequencing to confirm the variants detected
through targeted sequencing analysis.

RESULTS

Genetic analysis in patient 1 showed the presence of the
homozygous c.959delA variant (p.Tyr320Leufs∗73) in the
CAPN1 gene (Figure 1B). The single base deletion leads to a
frameshift with a stop codon 73 amino acid residues downstream.
The protein truncation occurs within the Cysteine Protease Core
domain (CysPC) located in the N-terminus of the protein (19)
(Figure 1C).

The premature truncation leads to a putative protein missing
the Ca-binding domains typical of calpains, i.e., Calpain domain

III, also known as C2-like Ca2+-binding domain (C2L), and the
PEF (Penta EF-hand) domain at the C terminus containing 5
EF-hand motifs. This modification is likely to lead to a loss of
protein function.

Segregation analysis was then conducted on proband’s
family members and the same homozygous variant was
identified in the affected sister. As expected, both parents were
heterozygous carriers. The analysis was not conducted on the two
healthy brothers.

DISCUSSION

Calpain-1 is one of the two major isoforms of calpains, together
with calpain-2 (15, 19, 20).

Calpain-1 and−2 have opposite functions within the CNS,
due to their associations with different signaling cascades (19).
Many experimental studies have suggested that the activation of
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calpain-1, as opposed to activation of calpain-2 which is neuro-
damaging, may promote neuroprotection and synaptic plasticity
processes (15, 19, 20).

In flies, worms, mice and zebrafish knockdown or
knockout models, the absence of Calpain-1 orthologs led
to neurodegeneration and motor impairment (15, 16).
Particularly, in CAPN-1 knockout zebrafish, brain and
spinal cord microtubule network appeared disorganized
and regions with abnormal accumulation of tubuline close
to regions with complete depletion were observed (16).
Impaired neuron migration and positioning, increased
neurotoxicity and disruption of brain development were
described, thus supporting a neuroprotective role for
calpain-1 (16).

On the other hand, some findings have suggested that
overactivation of calpains, including Calpain-1, might be
detriment and contribute to the pathogenesis of traumatic
brain injury and Alzheimer’s disease although it have
been postulated that the over-activation of Calpain-
1 in these conditions may be a response aimed to
control the damage rather than the cause of the cellular
damage (21).

Certainly, CAPN1 is involved in many essential neural
processes and functional pathways common to corticospinal
and cerebellar tracts and represents a link between hereditary
ataxia and HSP, two groups of diseases considered separate
so far (22). It is one of the so called “ataxia–HSP spectrum
disease genes,” a group of more than 60 genes encoding
proteins which share many physical interactions and form
several highly connected “protein communities” (22).
The three major functional clusters are lipid metabolic
processes, acid metabolic processes and intracellular transport
processes (22).

Particularly, CAPN1 shares a role in regulation of the
autophagy process with other 8 genes (GFAP, NPC1, PSEN1,
ARSA, PSAP, UCHL1, POLR3A, ATP13A2), in cellular catabolic
processes with 15 genes (ABCD1, HEXA, UCHL1, MTPAP,
EXOSC3, GAN, ATP13A2, STUB1, PNPLA6, GLB1, AUH, GBA2,
PSEN1, GALC, ABHD12) and in protein maturation processes
with 4 genes (FXN, PSEN1, AFG3L2, STUB1) (22).

Given these premises, it seems obvious that mutations in this
gene may lead to a complex spastic- ataxia phenotype with early
onset (16, 23–26).

However, this assumption was recently challenged by the
report of few patients with an involvement limited to the
corticospinal tract: in one case, a congenital-onset pure HSP and,
in the other two subjects, an adult-onset spastic paraparesis with
no additional symptoms (17, 18).

Our study supports these recent observations by identifying
a HSP phenotype with no cerebellar signs in a novel CAPN1-
mutated family. The c.959delA mutation here reported is a
novel variant which causes protein truncation within the CysPC
domain with loss of the Ca binding domains located downstream,
thereby leading to a likely loss of protein function.

As for many other widely expressed genes, the reason why the
molecular defects inCAPN1 lead to a clinical expression confined
to a single system in some patients remains unknown.

TABLE 1 | List of the variants described so far. Mutations spread along the entire

gene irrespectively of the phenotype.

PURE HSP ATAXIA/HSP HSP/OTHER SYSTEM INVOLVEMENT

c.221G>A c.1534C>T c.2118+1G>T

c.397C>T c.759+1G c.884G>C

c.911C>T c994G>A c.1579C>T

c.1418G>T c1176G>A c.1579C>T

c.843+1G>C

c.183dupC

1534C>T

c.C463T

c.C1142T

c.1579C>T

c.406delC

c.1605+5G>A

A role for the location of the mutations seems unlikely.
In fact, hot spot regions were not observed so far and the
mutations spread along the entire gene irrespectively of the
phenotype (Table 1) although a higher concentration is observed
in the first two thirds of the protein corresponding to the
protease domains.

Although our patients are adult subjects, we cannot fully
exclude that they will develop other neurological system
involvement later in the disease progression. However, it
should be noted that the HSP-ataxia patients described so
far presented with a complicated phenotype already at young
age, thus suggesting an early complete expression of the
molecular defect.

These findings allow us to confirm that the spectrum of
phenotypes linked to mutations in CAPN1 includes pure HSP
with onset in adulthood.

This evidence, although limited to few cases so far, leads to
relevant implications in genetic counseling and in genotype-
phenotype correlation in CAPN-1-related disorders.

Further studies are mandatory in order to clarify the
pathophysiological mechanisms underlying the different clinical
expression of mutations in the same gene.
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