
fnins-14-00268 April 4, 2020 Time: 18:27 # 1

REVIEW
published: 07 April 2020

doi: 10.3389/fnins.2020.00268

Edited by:
Riccardo Poli,

University of Essex, United Kingdom

Reviewed by:
Ranjana K. Mehta,

Texas A&M University, United States
Ryan McKendrick,

Northrop Grumman Corporation,
United States

*Correspondence:
Frédéric Dehais

frederic.dehais@isae-suapero.fr;
frederic.dehais@isae.fr

Specialty section:
This article was submitted to

Neural Technology,
a section of the journal

Frontiers in Neuroscience

Received: 11 December 2019
Accepted: 10 March 2020

Published: 07 April 2020

Citation:
Dehais F, Lafont A, Roy R and

Fairclough S (2020) A
Neuroergonomics Approach

to Mental Workload, Engagement
and Human Performance.

Front. Neurosci. 14:268.
doi: 10.3389/fnins.2020.00268

A Neuroergonomics Approach to
Mental Workload, Engagement and
Human Performance
Frédéric Dehais1,2* , Alex Lafont1, Raphaëlle Roy1 and Stephen Fairclough3

1 ISAE-SUPAERO, Université de Toulouse, Toulouse, France, 2 School of Biomedical Engineering, Science and Health
Systems, Drexel University, Philadelphia, PA, United States, 3 School of Psychology, Liverpool John Moores University,
Liverpool, United Kingdom

The assessment and prediction of cognitive performance is a key issue for any
discipline concerned with human operators in the context of safety-critical behavior.
Most of the research has focused on the measurement of mental workload but
this construct remains difficult to operationalize despite decades of research on the
topic. Recent advances in Neuroergonomics have expanded our understanding of
neurocognitive processes across different operational domains. We provide a framework
to disentangle those neural mechanisms that underpin the relationship between task
demand, arousal, mental workload and human performance. This approach advocates
targeting those specific mental states that precede a reduction of performance efficacy.
A number of undesirable neurocognitive states (mind wandering, effort withdrawal,
perseveration, inattentional phenomena) are identified and mapped within a two-
dimensional conceptual space encompassing task engagement and arousal. We argue
that monitoring the prefrontal cortex and its deactivation can index a generic shift
from a nominal operational state to an impaired one where performance is likely to
degrade. Neurophysiological, physiological and behavioral markers that specifically
account for these states are identified. We then propose a typology of neuroadaptive
countermeasures to mitigate these undesirable mental states.

Keywords: neuroergonomics, performance prediction, degraded attentional and executive mental states, task
engagement, mental workload

INTRODUCTION

A study of mental workload is fundamental to understanding the intrinsic limitations of the human
information processing system. This area of research is also crucial for investigation of complex
teaming relationships especially when interaction with technology necessitates multitasking or a
degree of cognitive complexity.

The Growth of Mental Workload
Mental workload has a long association with human factors research into safety-critical
performance (Moray, 1979; O’Donnell and Eggemeier, 1986; Hancock and Meshkati, 1988;
Hancock and Desmond, 2001; Wickens and Tsang, 2014; Young et al., 2015). Forty years have
passed since the publication of the seminal collection edited by Moray (1979) and the study of
mental workload remains an active topic in contemporary human factors research; a keyword
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search based on Google Scholar listed more than 200,000 articles
published on the topic since 2000, see also Table 1 in Young et al.
(2015). The significance of human mental workload for those
technological trends that are forecast during the second machine
age (Brynjolfsson and McAfee, 2014) guarantees its importance
for human factors research in future decades.

The lineage of mental workload incorporates a number of
theoretical perspectives, some of which precede the formalization
of the concept itself. Early work linking physiological activation
to the prediction of performance (Yerkes and Dodson, 1908;
Duffy, 1962) was formalized into an energetical model of
attentional resources (Kahneman, 1973) that emphasized a
dynamic relationship between finite information processing
capacity and variable cognitive demands (Norman and Bobrow,
1975; Navon and Gopher, 1979; Wickens, 1980). The descriptive
quality of the early work on attentional resources was sharpened
by cognitive models of control (Broadbent, 1971; Schneider
et al., 1984; Shallice and Burgess, 1993). Hybrid frameworks
that place cognitive processes within a resource framework
have been hugely influential in the field, such as the multiple
resource model (Wickens, 1984, 2002, 2008; Wickens and
Liu, 1988) whereas others introduced agentic features, such
as dynamic self-regulation and adaptation, within models of
human performance (Hockey et al., 1986; Hockey, 1997). For
instance, Hancock and Warm (1989)’s dynamic adaptive theory
(DAT) postulates that the brain seeks resource homeostasis
and cognitive comfort. However, environmental stressors can
progressively shift individual’s adaptive abilities from stability
to instability depending on one’s cognitive and psychological
resources. The DAT is an extension of the Yerkes and Dodson
inverted-U law, in a sense that very low (hypostress) and
very high (hyperstress) task demands can both degrade the
adaptability and consequently impair performance. All these
perspectives are united by a characterization of the human
information processing system as a finite resource with limited
capacity (Kramer and Spinks, 1991).

Mental Workload Measurement
Research into the measurement of mental workload has
outstripped the development of theoretical frameworks.
Measures of mental workload can be categorized as performance-
based, or linked to the process of subjective self-assessment,
or associated with psychophysiology or neurophysiology. Each
category has specific strengths and weaknesses (O’Donnell
and Eggemeier, 1986; Wierwille and Eggemeier, 1993) and the
sensitivity of each measurement type can vary depending on
the level of workload experienced by the operator (De Waard,
1996). The development of multidimensional measures led
inevitably to an inclusive framework for mental workload. The
cost of this integration is dissociation between different measures
of mental workload, e.g., Yeh and Wickens (1988), and an
integrated workload concept that remains poorly defined from a
psychometric perspective (Matthews et al., 2015).

There are a number of reasons that explain why mental
workload is easy to quantify but difficult to operationalize. The
absence of a unified framework for human mental workload,
its antecedents, processes and measures has generated a highly

abstract concept, loosely operationalized and supported by a
growing database of inconsistent findings (Van Acker et al., 2018).
The absence of a general explanatory model is complicated by
the fact that mental workload, like stress and fatigue (Matthews,
2002), is a transactional concept representing an interaction
between the capacities of the individual and the specific demands
of a particular task. Within this transactional framework, mental
workload represents a confluence between inter-individual
sources of trait variability (e.g., skill, IQ, personality), intra-
individual variation (e.g., emotional states, motivation, fatigue),
and the specific configuration of the task under investigation (see
also Table 2 in Van Acker et al., 2018).

For the discipline of human factors, the study of mental
workload serves two primary functions: (a) to quantify the
transaction between operators and a range of task demands
or technological systems or operational protocols, and (b)
to predict the probability of performance impairment during
operational scenarios, which may be safety-critical. One challenge
facing the field is delineating a consistent relationship between
mental workload measurement and performance quality on
the basis of complex interactions between the person and the
task. The second challenge pertains to the legacy and utility of
limited capacity of resources as a framework for understanding
those interactions.

In the following sections, we detail some limitations of mental
resources and advocate the adoption of a neuroergonomic
approach (Sarter and Sarter, 2003; Parasuraman and Rizzo, 2008;
Parasuraman and Wilson, 2008; Mehta and Parasuraman,
2013; Ayaz and Dehais, 2018) for the study of mental
workload and human performance. The neuroergonomic
framework emphasizes a shift from limited cognitive resources
to characterizing impaired human performance and associated
states with respect to neurobiological mechanisms.

Toward a Limit of the Theory of Limited
Resources
The concept of resources represents a foundational challenge to
the development of a unified framework for mental workload and
prediction of human performance. The conception of a limited
capacity for information processing is an intuitive one and has
been embedded within several successful models, e.g., multiple
resources (Wickens, 2002). But this notion has always been
problematic because resources are a general-purpose metaphor
with limited explanatory powers (Navon, 1984) that incorporate
both cognitive processes (e.g., attention, memory) and energetical
constructs (e.g., mental effort) in ways that are difficult to
delineate or operationalize. The allegorical basis of resources
almost guarantees an abstract level of explanation (Van Acker
et al., 2018) that is accompanied by divergent (Matthews et al.,
2015), and sometimes contradictory operationalizations (Yeh and
Wickens, 1988; Annett, 2002).

For example, the theory of limited cognitive resources predicts
that exposure to task demands that are sustained and demanding
can impair performance due to resource depletion via self-
regulation mechanisms at the neuron-level (i.e., local-sleep state
theory, see Van Dongen et al., 2011) or compromise access to
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resources mechanisms (Borragan Pedraz and Peigneux, 2016).
However, this type of explanation fails to clarify why non-
challenging tasks, such as passive monitoring (Matthews et al.,
2002, 2010) can promote episodes of mind wandering whereby
attention drifts from task-related to task-irrelevant thoughts
(Smallwood et al., 2008; Durantin et al., 2015; Smallwood and
Schooler, 2015). Although some propositions, such as the theory
of “malleable resources” (Young and Stanton, 2002), have intuited
this paradox, this theory is at a highly descriptive level and
remains difficult to operationalize.

Similarly, the occurrence of stressful and unexpected
operational scenarios is known to impair executive functioning
and provoke perseveration, see Dehais et al. (2019) for review.
Perseveration is defined as a tendency to continue an action after
cessation of the original stimulation, which is no longer relevant
to the goal at hand (Sandson and Albert, 1984). For example,
several studies conducted on emergency evacuation situations
reported irrational and perseverative behaviors even when tasks
were simple and undemanding (Proulx, 2001; Kobes et al., 2010).
A paradigmatic situation is the one in which people fail to
escape from fire because they push the door instead of pulling
it. Perseveration can also have devastating consequences during
safety-critical tasks, such as aviation (O’Hare and Smitheram,
1995; Orasanu et al., 1998; Reynal et al., 2017) and in the
medical domain (Bromiley, 2008). This category of performance
impairment cannot be explained solely through the prism
of limited mental resources. Operators who persist with an
erroneous strategy, such as an aircrew who attempt to land their
craft at all costs despite bad weather conditions, are generally
capable of performing the required actions and tend to invest
greater effort even as their task goal becomes difficult or even
impossible to achieve (Dehais et al., 2010, 2012).

The concept of limited cognitive resources could explain
failures of attention such as inattentional blindness (Brand-
D’Abrescia and Lavie, 2008) or deafness (Raveh and Lavie,
2015). Both categories describe an inability to detect unexpected
stimuli, such as alarms from the interface (Dehais et al., 2011,
2014), and represent breakdown of selective attention due to
the presence of competing demands on the human information
processing system. It has been demonstrated that individuals
with greater information processing capacity (i.e., higher working
memory span) exhibit superior ability with respect to divided
and sustained attention (Colflesh and Conway, 2007; Unsworth
and Engle, 2007), and therefore, should be less susceptible to the
effects of inattention during the performance of demanding tasks.
However, this hypothesis is contradicted by the absence of any
correlation between individual differences in processing capacity
and the occurrence of inattentional blindness (Bredemeier and
Simons, 2012; Beanland and Chan, 2016; Kreitz et al., 2016a) or
deafness (Kreitz et al., 2016b; Dehais et al., 2019).

This research suggests that the limited resource model cannot
account for critical lapses of attention and executive functioning
that are observed under conditions of high mental workload.
Therefore, we must go beyond the limitations of the resource
concept as an explanatory model of mental workload and turn
our attention to the neural underpinnings of attention and
behavior (Parasuraman et al., 1999).

RESOURCES: A NEUROERGONOMIC
PERSPECTIVE

The last three decades have witnessed a revolution in our
understanding of neural mechanisms that are fundamental
to attention and human performance. Progress in the
field has been driven by the development of advanced and
portable neuroimaging techniques, which permit non-invasive
examination of the “brain at work.” Neuroergonomics is a
multidisciplinary field born from these technical innovations
that is broadly defined as the study of the human brain in relation
to performance at work and in everyday settings (Parasuraman
and Rizzo, 2008). The goal of this field is to integrate both
theories and principles from ergonomics, neuroscience and
human factors in order to provide insights into the relationship
between brain function and behavioral outcomes in the context
of work and everyday life (Rizzo et al., 2007; Parasuraman and
Rizzo, 2008; Parasuraman and Wilson, 2008; Lees et al., 2010;
Ayaz and Dehais, 2018).

The Multiple Biological Substrates of
Mental Resources
The incorporation of neurophysiological measures of mental
workload offers a reductive pathway to the reification of resources
and those neurobiological states associated with impaired
performance. At a fundamental level, the functioning of neurons
within the brain is a form of limited resource (Beatty, 1986),
requiring oxygen and glycose to generate cellular energy in
the form of adenosine triphosphate (ATP) while having a
very limited capacity to store these energy substrates (Saravini,
1999). The same logic holds for ions (e.g., potassium, calcium,
sodium) that play a key role in nerve impulses. It is also
reasonable to consider neural networks as resources with respect
to their supporting glial cells (e.g., astrocytes), which ensure the
processing of information (Mandrick et al., 2016). Understanding
the interactions between neurobiological resources with reference
to fundamental processes in brain physiology represents a crucial
approach within neuroergonomic analysis of mental workload
(Parasuraman and Rizzo, 2008; Ayaz and Dehais, 2018).

Brain and Inhibitory Mechanisms
The brain must be considered to be a “noisy” organ, whereby
assembly of neurons are constantly responsive to environmental
stimulations, see Pandemonium architecture as an early example,
such as Selfridge (1959). Inhibitory mechanisms are implemented
to cancel out cerebral noise by mitigating the activation of
distracting neuronal assemblies (Polich, 2007). This process may
occur at a local level via lateral inhibition, whereby groups of
neurons can attenuate the activity of their neighbors in order to
be “better heard” (Coultrip et al., 1992). The same mechanism
can also take place via top-down regulation, known as inhibitory
control, wherein high-level cortical areas (e.g., prefrontal cortex)
reduce task- or stimulus-irrelevant neural activities (Munakata
et al., 2011). However, these inhibitory mechanisms can also
curtail the capacity of the brain to consider new or alternative
information, thus leading to perseveration (Dehais et al., 2019).
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An appropriate metaphor is to consider a group led by an
authoritarian leader who is totally engaged with one specific
goal or strategy and does not listen to alternative viewpoints of
other members of the group. Within this metaphor, information
processing resources are present (i.e., group members) but are
disregarded in the presence of an overriding directive (i.e., the
leader). In other words, high mental workload leads to impaired
performance, not because of limited resources per se, but because
of those neurological mechanisms designed to prioritize a specific
goal or directive.

The Non-linear Effects of
Neuromodulation
The prefrontal cortex (PFC) is a brain structure often identified
as the neurophysiological source of limited resources (Posner and
Petersen, 1990; Parasuraman, 2003; Ramsey et al., 2004; Modi
et al., 2017). The PFC serves a control function during routine
cognitive operations, such as: action selection, retrieval/updating
in working memory, monitoring and inhibition (Ramnani and
Owen, 2004; Ridderinkhof et al., 2004). It is often activated
during high levels of cognitive demand (Ayaz et al., 2012; Herff
et al., 2014; Racz et al., 2017; Gateau et al., 2018; Fairclough
et al., 2019) and dysfunction of this structure is known to
degrade performance (Sandson and Albert, 1984; Dolcos and
McCarthy, 2006). However, the PFC is complex and its function
is subject to the quadratic influence of neuromodulation via
the influence of noradrenaline and dopamine (Arnsten, 2009;
Arnsten et al., 2012). Noradrenaline is associated with the
mediation of arousal (Chrousos, 2009) whereas dopamine is
involved in the processing of reward with regard to the ongoing
tasks (Schultz, 2002). Both catecholamines exert an inverted-U
relationship with the PFC neurons (Vijayraghavan et al., 2007;
Robbins and Arnsten, 2009), a reduction of these neurochemicals
will depress the firing rate of noradrenergic and dopaminergic
PFC neurons (see Figure 1). This mechanism may explain why
unstimulating and non-rewarding tasks (e.g., passive supervisory
control over a sustained period) can inhibit executive functioning
and induce mind wandering. Conversely, excessive levels can also
have a deleterious effect by suppressing PFC neuron firing rate
(Birnbaum et al., 1999). In addition to decreasing the activity
of the PFC, dopamine and noradrenaline activate subcortical
areas, such as basal ganglia, that trigger automated schemes
and initiate automatic responses (Wickens et al., 2007). These
automated behaviors have an advantage of speed compared
to flexible but slower behaviors generated by the prefrontal
cortex (Dolan, 2002). This neurological switch from prefrontal
to subcortical areas, is presumed to derive from the early age
of humanity to ensure survival (Arnsten, 2009). In modern
times, it manifests itself as a process of defaulting to well-learned
behaviors, which are effective for only operational situations that
are simple and familiar. This is the mechanism that promotes
perseveration (Dehais et al., 2019) in task scenarios that are
complex and novel (Staal, 2004; Ellenbogen et al., 2006) or offer
intrinsic, short-term rewards, e.g., landing at all costs after a
long transatlantic flight (Causse et al., 2013). These fundamental
neurological mechanisms illustrate that impaired operational

performance cannot be simply explained in terms of limited
resources, such as a concentration of dopamine, but must be
viewed from a neuroergonomic perspective that emphasizes the
complexity of interactions between brain areas that evolved over
thousands of years.

Attentional Dynamics and Dominance
Effects
The existence of information processing resources can also
be conceptualized as functional attentional networks in the
brain. Michael Posner was the first to pioneer a network
approach to the operationalization of resources in the early
days of neuroimaging (Posner and Tudela, 1997). His influential
analysis (Posner and Petersen, 1990; Posner and Dehaene,
1994; Petersen and Posner, 2012; Posner, 2012) described how
specific networks were dedicated to the particular functions
of attentional regulation, e.g., alerting, orientation, focus. This
conceptualization developed into the delineation of a dorsal
fronto-parietal network (e.g., intraparietal cortex, superior
frontal cortex) that supports focused attention on specific task-
relevant stimuli and a corresponding ventral fronto-parietal
network (e.g., temporo-parietal cortex, inferior frontal cortex)
in the right hemisphere, which activates in a bottom-up fashion
to reorientate attention to interruptive stimuli (Corbetta and
Shulman, 2002; Corbetta et al., 2008). Under nominal conditions,
interaction between the dorsal and the ventral pathways ensure
optimal trade-off between those attentional strategies associated
with exploitation and exploration. However, under conditions
of high task demand or stress or fatigue, this mechanism may
become biased toward dominance of the dorsal over the ventral
network, leading to attentional phenomena associated with
inflexibility (Todd et al., 2005; Durantin et al., 2017; Edworthy
et al., 2018; Dehais et al., 2019a). A similar dynamic of bias
and dominance is apparent in the relationship between the
dorsal and ventral pathways and the default mode network
(Andrews-Hanna et al., 2014), which is associated with mind-
wandering, spontaneous thoughts and disengagement from task-
related stimuli (Fox et al., 2015).

Performance Monitoring and Effort
Withdrawal
The capacity of the brain to monitor performance quality
and progress toward task goals is another important function
of the PFC during operational performance. The posterior
medial frontal cortex (pMFC) is a central hub in a wider
network devoted to performance monitoring, action selection
and adaptive behavior (Ullsperger et al., 2014; Ninomiya et al.,
2018). The pMFC is sensitive to error and failure to achieve
a task goal (Ullsperger et al., 2007); the detection of failure
represents an important cue for compensatory strategies, such
as increased investment of mental effort (Hockey, 1997). This
network is particularly important when the level of task demand
experienced by the operator is associated with a high rate of error
and increased probability of failure. The model of motivational
intensity (Richter et al., 2016) predicts that effort is withdrawn
from task performance if success likelihood is appraised to be

Frontiers in Neuroscience | www.frontiersin.org 4 April 2020 | Volume 14 | Article 268

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 5

Dehais et al. A Neuroergonomics Approach to Performance

FIGURE 1 | The dopamine pathway exerts a quadratic control over the PFC. A low or a high release of this neurochemical depresses PFC activation whereas an
adequate concentration ensures optimal executive functioning (Vijayraghavan et al., 2007; Robbins and Arnsten, 2009). These neurobiological considerations bring
interesting highlights to understand the mechanisms underlying the Yerkes and Dodson inverted-U law and the dynamic adaptability theory (Hancock and Warm,
1989). They also provide a relevant prospect to relate motivational aspects to behavioral responses. The noradrenaline pathway mediates the PFC activity and
executive functioning in a similar fashion (see Aston-Jones and Cohen, 2005).

very low (Hopstaken et al., 2015); similarly, models of behavioral
self-regulation (Carver and Scheier, 2000) argue that task goals
can be adjusted downward (i.e., lower levels of performance are
tolerated as acceptable) or even abandoned if goal attainment
is perceived to be impossible. There is evidence that increased
likelihood of failure is associated with deactivation of the PFC
(Durantin et al., 2014; Ewing et al., 2016; Fairclough et al.,
2019), for operational performance where failure can often
jeopardize the safety of oneself and others, increased likelihood
of failure can also provoke strong emotional responses that are
associated with stress and cognitive interference (Sarason et al.,
1990), which can function as distractors from task activity in
their own right (Dolcos and McCarthy, 2006; Qin et al., 2009;
Gärtner et al., 2014).

This neuroergonomic approach provides a biological
basis upon which to develop a concept of limited human
information processing, with respect to competing neurological
mechanisms, the influence of neuromodulation in the
prefrontal cortex and antagonist directives between different
functional networks in the brain. The prominence of inhibitory
control coupled with competition between these neural
networks delineate a different category of performance
limitations during extremes of low vs. high mental workload,

i.e., simultaneous activation of functional networks with
biases toward mutually exclusive stimuli (external vs.
internal) or contradictory directives (focal attention vs.
reorientation of attention).

UNDERSTANDING PERFORMANCE
RELATED MENTAL STATES

The previous sections have highlighted the complexity of those
brain dynamics and networks that can introduce inherent
limitations on human information processing. On the basis
of this analysis, it is reasonable to target neurophysiological
states and their associated mechanisms that account for
impaired human performance (see Prinzel, 2002). This review
has identified a number of suboptimal neurocognitive states
that are predictive of degraded performance such as: mind
wandering, effort withdrawal, perseveration, inattentional
blindness and deafness. These states may be conceptually
mapped along orthogonal dimensions of task engagement
and arousal (Figure 2). Engagement is defined as an effortful
investment in the service of task/cognitive goals (Pope et al.,
1995; Matthews et al., 2002; Stephens et al., 2018), whereas
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FIGURE 2 | Performance, arousal and task engagement: the green zone
conceptually describes the operator’s “comfort zone” where performance is
optimal. The degraded mental states are mapped across a “task engagement”
axis and an “arousal” axis. Interestingly, this point of view makes it possible to
link the notion of engagement and degraded behavior in a simple way.

arousal represents a state of physiological readiness to respond to
external contingencies (Pribram and McGuinness, 1975).

The Transactional Dimensions of
Engagement and Arousal
The rationale for considering the dimension of task engagement
is that performance is driven by goals and motivation (Bedny
and Karwowski, 2004; Fairclough et al., 2013; Leontiev, 2014).
Goal-oriented cognition theorists argue for the existence of

mechanisms dedicated to maintain engagement (Atkinson and
Cartwright, 1964), which are associated with an activation
of an executive (Baddeley and Hitch, 1974) or task-positive
network (Harrivel et al., 2013) within which the dorsolateral
prefrontal cortex (DLPFC) exerts a crucial role (Goldman-
Rakic, 1987; Curtis and D’Esposito, 2003). This structure plays
a key role in the maintenance and updating of information
that is relevant for ongoing task performance. The same
structure interacts with dorsal and ventral attentional pathways
to shift and focus attention to the most relevant stream
of task-related information (Johnson and Zatorre, 2006). It
is argued that human performance can be assessed in the
context of a continuum of task engagement, ranging from
disengagement (effort withdrawal, mind wandering) to high-
engagement (perseveration, inattentional phenomena Lee, 2014).

Arousal makes an important contribution to the conceptual
space illustrated in Figure 2 because it modulates the homeostasis
of the executive (see Arnsten, 2009 for a review) and attentional
networks (see Coull, 1998 and Aston-Jones and Cohen, 2005 for
review) via the dopaminergic and noradrenergic pathways. For
instance, both extremes of low (Harrivel et al., 2013; Durantin
et al., 2015) and high arousal can disengage the DLPFC (Goldberg
et al., 1998; Arnsten, 2009; Qin et al., 2009; Causse et al.,
2013; Durantin et al., 2014; Fairclough et al., 2019) and impair
performance (see Figure 3 for summary). Similarly, low (Dehais
et al., 2018) and high levels of arousal (Hancock and Warm,
1989; Tracy et al., 2000; Pecher et al., 2011) can alter the
interactions between the dorsal and ventral attentional networks
and indistinctly that lead either to inattentional phenomena
(Molloy et al., 2015; Todd et al., 2005) or effort withdrawal (Oei
et al., 2012; Dehais et al., 2015).

Monitoring Performance Through
Degraded Mental States
Table 1 presents a mapping between extremes of high and low
engagement and arousal, their related neurocognitive states and
how these states may be operationalized using neurophysiological

FIGURE 3 | Left part: Several types of stressors can yield to the deactivation of the DLPFC and in return drastically induce collapse of performance. Right part: An
illustration with the N-Back task: the right-DLPFC deactivates when the task demands exceed mental capacity (7-Back condition) and is associated with reduced
performance efficacy and effort withdrawal (from Fairclough et al., 2019).
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measures in the laboratory and the field. Monitoring the
activation and deactivation of the DLPFC represents a promising
generic avenue to predict impaired performance across diverse
states such as: mind wandering (Christoff et al., 2009; Harrivel
et al., 2013), effort withdrawal (Ayaz et al., 2007; Izzetoglu et al.,
2007; Durantin et al., 2014; Modi et al., 2018; Fairclough et al.,
2018, 2019) and perseveration (Dehais et al., 2019). However,
other neurological networks and sites should be considered as
part of this analysis. Mind wandering is characterized by the
concomitant activation of the default network, which includes the
median prefrontal cortex (Christoff et al., 2009; Harrivel et al.,
2013) and areas of the parietal cortex (Christoff et al., 2009).

Secondly, attentional states, such as inattentional deafness
and blindness, result from the activation of an attentional
network involving the inferior frontal gyrus, the insula and the
superior medial frontal cortex (Tombu et al., 2011; Callan et al.,
2018; Dehais et al., 2019). These regions represent potential
candidates upon which to identify attentional failures that can be
complemented by monitoring dedicated primary perceptual (see
Hutchinson, 2019, for a review) and integrative cortices (Molloy
et al., 2015), as well as performing connectivity analyses (Callan
et al., 2018). In addition, inattentional phenomena may result
from the suppression of activity in the right temporo-parietal
junction (TPJ), a part of the ventral network, which also blocks
reorientation of attention and the processing of unexpected
stimuli (Marois et al., 2004; Todd et al., 2005).

Thirdly, measures of arousal are used to characterize high
engagement and delineate distinct mental states within the
category of low task engagement (Figure 2). Heart rate (HR) and
heart rate variability (HRV) can be used to assess the activation
or co-activation of the two branches of the autonomous nervous
system (i.e., sympathetic or parasympathetic) (Fairclough, 2008;
Qin et al., 2009; Kreibig, 2010). For instance, fluctuations in HR
are commonly observed during high task engagement and high
arousal (De Rivecourt et al., 2008; Qin et al., 2009; Dehais et al.,
2011). Moreover, spectral analyses computed over the EEG signal
revealed that shifts in parietal alpha [8–12] Hz and frontal theta
[4–8] Hz are relevant markers of arousal (see Borghini et al., 2014,
for a review, Senoussi et al., 2017).

Finally, behavioral metrics such as ocular behavior can
complement the detection of low and high levels of engagement
(Table 1). Hence, eye tracking metrics (e.g., fixation and
dwell times, saccadic activity, blink rate) can be used to
characterize mind wandering (He et al., 2011; Pepin et al.,
2016), inattentional blindness (Thomas and Wickens, 2004;
Wickens, 2005), perseveration (Régis et al., 2014), focal vs.
diffused attention (Goldberg and Kotval, 1999; Regis et al., 2012;
Dehais et al., 2015), and to characterize the level of attentional
engagement in a visual task (Cowen et al., 2002; Tsai et al., 2007).

These metrics provide some relevant prospects to identify
the targeted deleterious mental states for especially for field
studies as long as portable devices are concerned. It is worth
noting that the extraction of several features (e.g., time and
frequency domains) and the use of several devices is a way
for robust diagnosis. Moreover, contextual information (e.g.,
time of the day, time on task) should be considered as well
as actions on the user interface and system parameters (e.g.,

flight parameters) if available so as to better quantify the
user’s mental state.

SOLUTIONS TO MITIGATE DEGRADED
PERFORMANCE

This review has identified some undesired mental states that
account for degraded performance (see section “Understanding
Performance Related Mental States” and “Solutions to Mitigate
Degraded Performance”). A crucial step is to design cognitive
countermeasures to prevent the occurrence of these phenomena.
The formal framework that we proposed (see Table 1) paves
the way to design neuro-adaptive technology for augmented
cognition and enhanced human-machine teaming (Peysakhovich
et al., 2018; Krol et al., 2019; Stamp et al., 2019). The
implementation of such neuro-adaptive technology relies on a
pipeline that consists of a signal acquisition step, a preprocessing
step to improve the signal-to-noise ratio, a feature extraction
step, a classification step to diagnose the current mental states,
and lastly an adaptation step (Zander and Kothe, 2011; Roy
and Frey, 2016). This last step implies the implementation of
formal decisional unit (Gateau et al., 2018) that dynamically
close the loop by triggering the most appropriate cognitive
countermeasures (May and Baldwin, 2009). There are currently
three types of mitigating solutions to instigate a change in
behaviors via: (1) adaptation of the user interface, (2) adaptation
of the task and of the level automation, and the (3) “neuro-
adaptation” of the end-users.

Adaptation of the User Interface
The first category of neuroadaptive countermeasure consists of
triggering new types of notifications via the user interface to
alert of impeding hazards. The design of these countermeasures
is generally grounded on neuroergonomics basis so that these
warning can reach awareness when other means have failed.
Following this perspective, Dehais et al. (2010, 2012), Imbert
et al. (2014) and Saint Lot et al. (2020) have demonstrated
that very brief (∼200 ms) and located information removal
was an efficient mean to mitigate perseveration by forcing
disengagement from non-relevant tasks. Souza et al. (2016)
demonstrated that digital nudging (see Weinmann et al., 2016)
could be used to mitigate poor decision making and cognitive
bias associated with perseveration. Imbert et al. (2014) designed
attention-grabbing stimuli grounded on vision research and
demonstrated that yellow chevrons pulsing at a cycle of 1 Hz
can re-orientate attention and mitigate inattentional blindness.
Jahanpour et al. (2018) has explored the design of pop-up videos
that display the gestures to be performed by exploiting the
property of mirror neurons. This visual “motor cue” approach
was tested and drastically reduced reaction time to alerts during
complex situations and appears to be a promising method to
prevent effort withdrawal (Causse et al., 2012). In a similar
fashion, Navarro et al. (2010) implemented a force-feedback
steering wheel to prime the motor response from the driver.
This device was found to optimize drivers’ behavior during
demanding driving scenario. This latter study demonstrated
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TABLE 1 | Psycho-physiological and behavioral markers of different mental states related to engagement.

Disengagement Over-Engagement

Mind wandering Effort withdrawal Perseveration Inattentional
blindness

Inattentional deafness

Brain activity

MEG ↘ N400 (area V3)
(Scholte et al., 2006)

↘ N100 in STG and
STS (Molloy et al., 2015)

fMRI ↗ MPFC and PCC
(Mason et al., 2007;
Christoff et al., 2009; Fox
et al., 2015)↗ PTPC
(Christoff et al., 2009)↗
dorsal ACC and DLPFC
(Christoff et al., 2009)↗
RPFC, DACC, insula,
TPC, SSC & LG (Fox
et al., 2015)↗ MTL (Fox
et al., 2015)

↘ DLPFC (Birnbaum
et al., 1999; Qin et al.,
2009),↗ IFG and
amygdala (Oei et al.,
2012)

↘ DLPFC (Nagahama
et al., 2005; Causse
et al., 2013)↘ ACC (Lie
et al., 2006; Causse
et al., 2013)↘ bilateral
temporo-parietal junction
(Lie et al., 2006)

↘ fronto-parietal
network (including
DLPFC) (Beck et al.,
2001; Pessoa and
Ungerleider, 2004)
temporo-parietal junction
(Marois et al., 2004;
Todd et al., 2005)↗
activation of DMN
(Weissman et al., 2006)

↗ IFG and SMFC,↘
IFG-STG connectivity
(Durantin et al., 2017)

fNIRS ↗ MPFC (Harrivel et al.,
2013; Durantin et al.,
2015)↘ DLPFC (Harrivel
et al., 2013)

↘ DLPFC (Durantin
et al., 2014; Fairclough
et al., 2019)

↘ Left PFC (Kalia et al.,
2018)

↘ occipital lobe (Kojima
and Suzuki, 2010)

EEG ↗ α power over occipital
sites (Gouraud et al.,
2018)↘ (α and (β power
(auditory stimuli)
(Braboszcz and Delorme,
2011)↗ (θ power
(auditory stimuli)
(Braboszcz and Delorme,
2011)↘ N1 (Kam et al.,
2011)↘ N4 (O’Connell
et al., 2009)↘ P1 (Kam
et al., 2011)↗ P2
(Braboszcz and Delorme,
2011)↘ P3 (Schooler
et al., 2011)

↘frontal θ power
(Gärtner et al., 2014)↘
P3 (Dierolf et al., 2017)
↘ frontal (θ power and
↘ parietal (α power
(Ewing et al., 2016;
Fairclough and Ewing,
2017)

↘ Event Related
Coherence between
midfrontal and
right-frontal electrodes
(Carrillo-De-La-Pena and
García-Larrea, 2007)

↗ (α band power
(Mathewson et al., 2009)
↘ P1 (Pourtois et al.,
2006; Mathewson et al.,
2009)↘ P2 (Mathewson
et al., 2009)↗ N170
(Pourtois et al., 2006)↘
P3 (Pourtois et al., 2006;
Mathewson et al., 2009)

↘ N1 (Callan et al.,
2018; Dehais et al.,
2019a,b)↘ P3
(Puschmann et al., 2013;
Scannella et al., 2013;
Giraudet et al., 2015b;
Dehais et al., 2019a,b)
↘ (α power in IFG
(Dehais et al., 2019a)↘
phase synchony in (α
and (θ frequencies
(Callan et al., 2018)↗
engagement ratio
(Dehais et al., 2017)

ANS activity

ECG ↗ heart rate variability
(Smith, 1981)↗ heart
rate (Smith, 1981)

↘minimum LF/HF ratio
(Durantin et al., 2014)↘
minimum pre-ejection
period (Mallat et al.,
2019)

↗ heart rate (Dehais
et al., 2011)

↗ heart rate (Dehais
et al., 2014)

Skin conductance ↘ skin conductance
(Smith, 1981)

Ocular activity

Eye-tracking ↗ number of blinks
(Uzzaman and Joordens,
2011)↘ pupil diameter
(Grandchamp et al.,
2014)↗ gaze fixity (He
et al., 2011; Pepin et al.,
2016)

↗ maximum pupil
diameter (Peavler, 1974)
↗ explore/exploit ratio
(Dehais et al., 2015)

↘ switching rate
between areas of
interest (Régis et al.,
2014)↗ fixation
duration on irrelevant
areas of interest (Régis
et al., 2014)

↘ saccades↗ fixation
duration (Cowen et al.,
2002; Tsai et al., 2007;
Regis et al., 2012)↘
fixated areas of interest
(Thomas and Wickens,
2004)

↘ pupil diameter
(Causse et al., 2016)

The blue and pink color-code respectively tags states induced by low and high task demand. RIFG, right inferior frontal gyrus; DMN, default mode network, MFG, middle
frontal gyrus; ACC, anterior cingulate cortex; LFC, lateral frontal cortex; STC, superior temporal cortex; PFC, prefrontal cortex; PCC, posterior cingulate cortex; MPFC,
medial prefrontal cortex; PTPC, posterior temporoparietal cortex; DLPFC, dorsolateral prefrontal cortex; RPFC, rostrolateral prefrontal cortex; DACC, dorsal anterior
cingulate cortex; TPC, temporopolar cortex; SSC, secondary somatosensory cortex; LG, lingual gyrus; MTL, medial temporal lobe; SMFC, superior medial frontal cortex;
IFG, inferior frontal gyrus; STS, superior temporal sulcus, STG, superior temporal gyrus.

how tactile notifications can alert human operators of impeding
hazards (Lewis et al., 2014; Russell et al., 2016), especially when
other sensory channels of information (e.g., visual stream) are

saturated (Elliott et al., 2011). However, there are potential
limits to the effectiveness of these types of notifications and
stimulation (Murphy and Dalton, 2016; Riggs and Sarter, 2019).

Frontiers in Neuroscience | www.frontiersin.org 8 April 2020 | Volume 14 | Article 268

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 9

Dehais et al. A Neuroergonomics Approach to Performance

Other research indicates that multimodal alerts (Giraudet et al.,
2015a; Gaspar et al., 2017) increase the likelihood of attentional
capture. In addition, Lee et al. (2018) designed a motion seat
that modifies the driver’s seat position and posture across time
to diminish the potential deleterious effect of mind wandering.
Similar concepts have been applied to aviation (Zaneboni and
Saint-Jalmes, 2016).

Task and Automation Adaptation
The second category of neuroadaptive countermeasure is the
dynamic reallocation of tasks between humans and automation
to maintain the performance efficacy of the operators (Freeman
et al., 1999; Parasuraman et al., 1999; Prinzel et al., 2000;
Scerbo, 2008; Stephens et al., 2018). The underlying concept in
this case is to optimize human-human or human(s)-system(s)
cooperation according to criteria of availability and skills of
human and artificial agents (Gateau et al., 2016). For instance,
Prinzel et al. (2000) utilized the continuous monitoring of brain
waves that could be used to drive the level of automation
and optimize the user’s level of task engagement. Similarly,
some authors managed to optimize air traffic controllers’ task
demand by triggering different levels of assistance (Aricò et al.,
2016; Di Flumeri et al., 2019). These latter studies reported
better human performance when neuro-adaptive automation
was switched on compared to other conditions. Gateau et al.
(2016) implemented an online attentional state estimator coupled
with a stochastic decision framework to dynamically adapt
authority sharing between human and robots in a search and
rescue scenario to prevent effort withdrawal on the part of
the human. In a more extreme fashion, Callan et al. (2016)
revealed that it is possible to decode user motor intention so
automation can perform on behalf of the user to drastically
reduce the response time in emergency situations (e.g., collision
with terrain). In the future, it is assumed that aircraft designers
will implement adaptive automation technology that takes over
from the pilots by either inhibiting their inputs on the flight deck
or performing automated evasive actions (e.g., automatic pull-
up) to prevent from perseveration. A complementary approach
is to modulate task difficulty to maintain the task challenging but
achievable while preventing the occurrence of task withdrawal
(Ewing et al., 2016) or mind wandering (Freeman et al., 2004;
Ewing et al., 2016). The online modulation of the tasks does
not necessarily reduce the difficulty of the task. For instance,
Verwey and colleagues demonstrated that the addition of an
entertaining task while driving improved the operator’s ability
to maintain their level of task engagement over long period of
time (Verwey and Zaidel, 1999). Similarly, it has been suggested
that switching the types of tasks presented to the user can
prevent the deleterious effect of fatigue and disengagement
(Hockey, 2011).

Neuro-Adaptation of the End-User(s)
The third and final category aims to warn the users of their
mental state and “stimulate” neurological activity in order to
augment performance. One of the most promising approach
relies on the implementation of Neurofeedback (see Gruzelier,
2014; Enriquez-Geppert et al., 2017 for reviews). The principle

of the latter technique is to provide feedback in real-time
to the users of their mental states in the form of a visual,
tactile or auditory stimulus. The users can utilize these signals
learn to regulate their brain activity and in return improve
their executive (Enriquez-Geppert et al., 2013), mental flexibility
(Enriquez-Geppert et al., 2014), and attentional abilities (Egner
and Gruzelier, 2001) as well as enhance their task engagement
(Egner and Gruzelier, 2004). However, the effects of this approach
on mind wandering remain unclear (Gonçalves et al., 2018).
Transcranial direct current stimulation (tDCS) represents a
technique of neuromodulation that can be used to boost executive
functioning (see Callan and Perrey, 2019; Cinel et al., 2019).
This portable device can be combined with EEG and fNIRS
and used in the context of real-life task performance for the
purpose of on-line neuromodulation (McKendrick et al., 2015;
Gateau et al., 2018). For example, a number of studies support
the position that neurostimulation can: enhance mental flexibility
and mitigate perseveration (Leite et al., 2011; Jeon and Han,
2012), improve visual attention (Falcone et al., 2012; Nelson
et al., 2015), improve executive functioning in multitasking
situations (Nelson et al., 2016) and increase alertness (McIntire
et al., 2014; Nelson et al., 2014). There are other types of
environmental stimulation such as vivid light exposure, especially
during night flights, which can promote an optimal level
of alertness (see Anund et al., 2015) without altering flight
crew performance (see Caldwell et al., 2009). Promising results
have also been highlighted by using light exposure in cars
(Taillard et al., 2012). The use of light exposure and tDCS
should be considered with caution as there is a need to
investigate the very long-term efficiency and potential side effects.
Alternatively, some authors proposed to use cold-air jet to
decrease hypovigilance (Reyner and Horne, 1998), but with
contradictory findings.

Synthesis of Neuro-Adaptive Solutions
The following illustration (see Figure 4) depicts the three
families of neuro-adaptive based solutions to mitigate
performance impairment.

The three types of neuroadaptive solutions offer promising
prospects to mitigate the onset and likelihood of undesirable
neurocognitive states. However, they should be delivered in a
transparent, meaningful, and timely manner (i.e., when needed)
so they are relevant and understood (Dorneich et al., 2016;
Sebok et al., 2017), otherwise these types of intervention have
the potential for undesirable consequences, such as performance
impairment and reduced trust in technology; this point is
particularly true for adaptive automation solutions that take over
from humans, especially under critical scenarios (see Dorneich
et al., 2016; Dehais et al., 2019). One solution is to combine
different families of neuroadaptive cognitive countermeasures
to maximize their efficiency. Ideally, we would argue to use
a gradient of solutions such as (1) the continuous display of
the users’ mental states via neurofeedback techniques to give
them the opportunity to regulate their brain activity; (2) using
notifications to suggest to the users to delegate some tasks
to automation in case they don’t manage to modulate their
mental states; (3) adapting the user interface (e.g., information
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FIGURE 4 | The three types of Neuroadaptive countermeasures dedicated to mitigate the undesirable mental states. Inattentional deafness and Inattentional
blindness mental states were merged into “Inattentional phenomena” as no neuroadaptive countermeasure were implemented to explicitly address failure of auditory
attention to the exception of multimodal alerts. Moreover, no adaptive automation-based solutions were designed to prevent from inattentional states. This
demonstrates the need to conduct more research in this direction.

removal, flashing yellow chevrons) in case of a critical situation
is detected and the previous solutions were inefficient; and (4)
taking over if the users do not respond to any of the previous
countermeasures.

CONCLUSION

This paper has argued that the concept of a limited resource
provides a limited explanation for the breakdown of operational
performance. Our neurophysiological analysis describes a
number of additional mechanisms, such as perseveration and
effort withdrawal, which do not represent finite resources per
se. In both cases, explanations for performance breakdown

are based upon neurological processes, such as dominance of
specific neural networks or the heightened activity of specific
mechanisms. We propose a two-dimensional framework of
engagement and arousal that captures the importance of specific
degraded mental sates associated with poor performance. The
rationale for including the transactional concept of engagement
in this scheme is to account for the goal-oriented aspect of
cognition. The benefit of including the transactional concept
of arousal is to make a distinction between two categories of
disengagement, one that is accompanied by high arousal (effort
withdrawal) and low arousal (mind wandering) – and to link this
conceptual distinction to known neurophysiological effects (see
Figure 1). Nonetheless, this approach remains at the conceptual
level and minimizes connections to the complexity of brain
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functioning. To that end, we reviewed and identified several
markers at the neurophysiological, physiological and behavioral
level of undesirable mental states linked to poor performance.

This neuroergonomic framework encompasses operationali-
zations of these undesirable states that can be monitored
continuously in an objective fashion. Such considerations
eventually lead to propose a typology of neuroadaptive
countermeasures and open promising perspectives to mitigate
the degradation of human performance. However, to the
authors’ very best knowledge, most of the neuroadaptive
experimental studies have focused on human-machine dyad
situations. We believe that recent research on hyperscanning
(Babiloni and Astolfi, 2014), physiological synchrony (Palumbo
et al., 2017) and collaborative BCIs (Cinel et al., 2019)
have opened promising prospects to improve teaming
such as human-human, human(s)-machine(s) interactions.
Future research should involve more complex teaming
scenarios and enrich the different neuroadaptive solutions.

We sincerely hope that this review will encourage research
efforts to identify additional degraded mental states and
associated neurophysiological markers as well as to implement
neuroadaptive solutions for safer and efficient human-human
and human(s)-machine(s) interactions.

AUTHOR CONTRIBUTIONS

All authors have made a substantial and intellectual
contribution to this review.

FUNDING

This work was supported by ANITI ANR-19-PI3A-0004
(Neuroadaptive technology for mixed initiative interactions
Chair).

REFERENCES
Andrews-Hanna, J. R., Smallwood, J., and Spreng, R. N. (2014). The default

network and self-generated thought: component processes, dynamic control,
and clinical relevance. Ann. N. Y. Acad. Sci. 1316:29. doi: 10.1111/nyas.12360

Annett, J. (2002). Subjective rating scales: science or art? Ergonomics 45, 966–987.
doi: 10.1080/00140130210166951

Anund, A., Fors, C., Kecklund, G., Leeuwen, W. V., and Åkerstedt, T. (2015).
Countermeasures for Fatigue in Transportation: A Review of Existing Methods
for Drivers on Road, Rail, Sea And In Aviation. Linköping: Statens vägoch
transportforskningsinstitut.

Aricò, P., Borghini, G., Di Flumeri, G., Colosimo, A., Bonelli, S., Golfetti, A., et al.
(2016). Adaptive automation triggered by EEG-based mental workload index:
a passive brain-computer interface application in realistic air traffic control
environment. Front. Hum. Neurosci. 10:539. doi: 10.3389/fnhum.2016.00539

Arnsten, A. F. (2009). Stress signalling pathways that impair prefrontal cortex
structure and function. Nat. Rev. Neurosci. 10:410. doi: 10.1038/nrn2648

Arnsten, A. F., Wang, M. J., and Paspalas, C. D. (2012). Neuromodulation of
thought: flexibilities and vulnerabilities in prefrontal cortical network synapses.
Neuron 76, 223–239. doi: 10.1016/j.neuron.2012.08.038

Aston-Jones, G., and Cohen, J. D. (2005). An integrative theory of locus coeruleus-
norepinephrine function: adaptive gain and optimal performance. Annu. Rev.
Neurosci. 28, 403–450. doi: 10.1146/annurev.neuro.28.061604.135709

Atkinson, J. W., and Cartwright, D. (1964). Some neglected variables in
contemporary conceptions of decision and performance. Psychol. Rep. 14,
575–590. doi: 10.2466/pr0.1964.14.2.575

Ayaz, H., and Dehais, F. (eds) (2018). Neuroergonomics: The Brain at Work and in
Everyday Life. Cambridge, MA: Academic Press.

Ayaz, H., Izzetoglu, M., Bunce, S., Heiman-Patterson, T., and Onaral,
B. (2007). “Detecting cognitive activity related hemodynamic signal for
brain computer interface using functional near infrared spectroscopy,” in
Proceedins of the 3rd International IEEE EMBS conference: CNE’07, Hawaii,
342–345.

Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., and Onaral, B.
(2012). Optical brain monitoring for operator training and mental workload
assessment. Neuroimage 59, 36–47. doi: 10.1016/j.neuroimage.2011.06.023

Babiloni, F., and Astolfi, L. (2014). Social neuroscience and hyperscanning
techniques: past, present and future. Neurosci. Biobehav. Rev. 44, 76–93. doi:
10.1016/j.neubiorev.2012.07.006

Baddeley, A. D., and Hitch, G. (1974). “Working memory,” in The Psychology of
Learning and Motivation: Advances in Research and Theory, Vol. 8, eds G. H.
Bower (New York, NY: Academic Press), 47–89. doi: 10.1016/S0079-7421(08)
60452-1

Beanland, V., and Chan, E. H. C. (2016). The relationship between sustained
inattentional blindness and working memory capacity. Attent. Percept.
Psychophys. 78, 808–817. doi: 10.3758/s13414-015-1027-x

Beatty, J. (1986). “Computation, control and energetics: a biological perspective,” in
Energetics and Human Information Processing, ed. G. R. J. Hockey (Dordrecht:
Springer).

Beck, D. M., Rees, G., Frith, C. D., and et Lavie, N. (2001). Neural correlates of
change detection and change blindness. Nat. Neurosci. 4, 645–650. doi: 10.1038/
88477

Bedny, G. Z., and Karwowski, W. (2004). Activity theory as a basis for the study of
work. Ergonomics 47, 134–153. doi: 10.1080/00140130310001617921

Birnbaum, S., Gobeske, K. T., Auerbach, J., Taylor, J. R., and Arnsten, A. F. (1999).
A role for norepinephrine in stress-induced cognitive deficits: α-1-adrenoceptor
mediation in the prefrontal cortex. Biol. Psychiatry 46, 1266–1274. doi: 10.1016/
s0006-3223(99)00138-9

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2014).
Measuring neurophysiological signals in aircraft pilots and car drivers for the
assessment of mental work- load, fatigue and drowsiness. Neurosci. Biobehav.
Rev. 44, 58–75. doi: 10.1016/j.neubiorev.2012.10.003

Borragan Pedraz, G., and Peigneux, P. (2016). Behavioural Bases and Functional
Dynamics of Cognitive Fatigue, Doctorat. Sciences psychologiques et de
l’éducation, Louvain.

Braboszcz, C., and Delorme, A. (2011). Lost in thoughts: neural markers of low
alertness during mind wandering. Neuroimage 54, 3040–3047. doi: 10.1016/j.
neuroimage.2010.10.008

Brand-D’Abrescia, M., and Lavie, N. (2008). Task coordination between and within
sensory modalities: effects on distraction. Percept. Psychophys. 70, 508–515.
doi: 10.3758/pp.70.3.508

Bredemeier, K., and Simons, D. J. (2012). Working memory and inattentional
blindness. Psychon. Bull. Rev. 19, 239–244. doi: 10.3758/s13423-011-0204-8

Broadbent, D. E. (1971). Decision and Stress. Oxford: Academic Press.
Bromiley, M. (2008). Have you ever made a mistake? RCoA Bull. 48, 2442–2445.
Brynjolfsson, E., and McAfee, A. (2014). The Second Machine Age: Work, Progress,

and Prosperity in a Time of Brilliant Technologies, 1st Edn. New York, NY: W. W.
Norton & Company.

Caldwell, J. A., Mallis, M. M., Caldwell, J. L., Paul, M. A., Miller, J. C., and Neri,
D. F. (2009). Fatigue countermeasures in aviation. Aviat. Space Environ. Med.
80, 29–59. doi: 10.3357/asem.2435.2009

Callan, D., and Perrey, S. (2019). “The use of tDCS and rTMS methods in
neuroergonomics,” in Neuroergonomics, eds H. Ayaz and F. Dehais (Cambridge,
MA: Academic Press), 31–33. doi: 10.1016/b978-0-12-811926-6.00005-1

Callan, D. E., Gateau, T., Durantin, G., Gonthier, N., and De-Hais, F. (2018).
Disruption in neural phase synchrony is related to identification of inattentional

Frontiers in Neuroscience | www.frontiersin.org 11 April 2020 | Volume 14 | Article 268

https://doi.org/10.1111/nyas.12360
https://doi.org/10.1080/00140130210166951
https://doi.org/10.3389/fnhum.2016.00539
https://doi.org/10.1038/nrn2648
https://doi.org/10.1016/j.neuron.2012.08.038
https://doi.org/10.1146/annurev.neuro.28.061604.135709
https://doi.org/10.2466/pr0.1964.14.2.575
https://doi.org/10.1016/j.neuroimage.2011.06.023
https://doi.org/10.1016/j.neubiorev.2012.07.006
https://doi.org/10.1016/j.neubiorev.2012.07.006
https://doi.org/10.1016/S0079-7421(08)60452-1
https://doi.org/10.1016/S0079-7421(08)60452-1
https://doi.org/10.3758/s13414-015-1027-x
https://doi.org/10.1038/88477
https://doi.org/10.1038/88477
https://doi.org/10.1080/00140130310001617921
https://doi.org/10.1016/s0006-3223(99)00138-9
https://doi.org/10.1016/s0006-3223(99)00138-9
https://doi.org/10.1016/j.neubiorev.2012.10.003
https://doi.org/10.1016/j.neuroimage.2010.10.008
https://doi.org/10.1016/j.neuroimage.2010.10.008
https://doi.org/10.3758/pp.70.3.508
https://doi.org/10.3758/s13423-011-0204-8
https://doi.org/10.3357/asem.2435.2009
https://doi.org/10.1016/b978-0-12-811926-6.00005-1
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 12

Dehais et al. A Neuroergonomics Approach to Performance

deafness in real-world setting. Hum. Brain Mapp. 39, 2596–2608. doi: 10.1002/
hbm.24026

Callan, D. E., Terzibas, C., Cassel, D. B., Sato, M. A., and Parasuraman, R. (2016).
The brain is faster than the hand in split-second intentions to respond to an
impending hazard: a simulation of neuroadaptive automation to speed recovery
to perturbation in flight attitude. Front. Hum. Neurosci. 10:187. doi: 10.3389/
fnhum.2016.00187

Carrillo-De-La-Pena, M. T., and García-Larrea, L. (2007). Right frontal event
related EEG coherence (ERCoh) differentiates good from bad performers of
the Wisconsin Card Sorting Test (WCST). Clin. Neurophysiol. 37, 63–75. doi:
10.1016/j.neucli.2007.02.002

Carver, C. S., and Scheier, M. F. (2000). “On the structure of behavioural self-
regulation,” in Handbook of Self-Regulation, eds M. Boekaerts, P. R. Pintrich,
and M. Zeidner (San Diego, CA: Academic Press), 41–84. doi: 10.1016/b978-
012109890-2/50032-9

Causse, M., Imbert, J. P., Giraudet, L., Jouffrais, C., and Tremblay, S. (2016). The
role of cognitive and perceptual loads in inattentional deafness. Front. Hum.
Neurosci. 10:344. doi: 10.3389/fnhum.2016.00344

Causse, M., Péran, P., Dehais, F., Caravasso, C. F., Zeffiro, T., Sabatini, U., et al.
(2013). Affective decision making under uncertainty during a plausible aviation
task: an fMRI study. NeuroImage 71, 19–29. doi: 10.1016/j.neuroimage.2012.12.
060

Causse, M., Phan, J., Ségonzac, T., and Dehais, F. (2012). Mirror neuron based
alerts for control flight into terrain avoidance. Adv. Cognit. Eng. Neuroergon.
16, 157–166.

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., and Schooler, J. W. (2009).
Experience sampling during fmri reveals default network and executive system
contributions to mind wandering. Proc. Natl. Acad. Sci. U.S.A. 106, 8719–8724.
doi: 10.1073/pnas.0900234106

Chrousos, G. P. (2009). Stress and disorders of the stress system. Nat. Rev.
Endocrinol. 5:374. doi: 10.1038/nrendo.2009.106

Cinel, C., Valeriani, D., and Poli, R. (2019). Neurotechnologies for human cognitive
augmentation: current state of the art and future prospects. Front. Hum.
Neurosci. 13:13. doi: 10.3389/fnhum.2019.00013

Colflesh, G. J., and Conway, A. R. (2007). Individual differences in working
memory capacity and divided attention in dichotic listening. Psychon. Bull. Rev.
14, 699–703. doi: 10.3758/bf03196824

Corbetta, M., Patel, G., and Shulman, G. L. (2008). The reorienting system of
the human brain: from environment to theory of mind. Neuron 58, 306–324.
doi: 10.1016/j.neuron.2008.04.017

Corbetta, M., and Shulman, G. L. (2002). Control of goal-directed and stimulus-
driven attention in the brain. Nat. Rev. Neurosci. 3:201. doi: 10.1038/nrn755

Coull, J. T. (1998). Neural correlates of attention and arousal: insights from
electrophysiology, functional neuroimaging and psychopharmacology. Prog.
Neurobiol. 55, 343–361. doi: 10.1016/s0301-0082(98)00011-2

Coultrip, R., Granger, R., and Lynch, G. (1992). A cortical model of winner-take-all
competition via lateral inhibition. Neural Netw. 5, 47–54. doi: 10.1016/s0893-
6080(05)80006-1

Cowen, L., Ball, L. J., and Delin, J. (2002). “An eye movement analysis of web
page usability,” in People and Computers Xvi-memorable Yet Invisible, eds X.
Faulkner, J. Finlay, and F. Détienne (Berlin: Springer), 317–335. doi: 10.1007/
978-1-4471-0105-5_19

Curtis, C. E., and D’Esposito, M. (2003). Persistent activity in the prefrontal cortex
during working memory. Trends Cognit. Sci. 7, 415–423. doi: 10.1016/s1364-
6613(03)00197-9

De Rivecourt, M., Kuperus, M. N., Post, W. J., and Mulder, L. J. M. (2008).
Cardiovascular and eye activity measures as indices for momentary changes in
mental effort during simulated flight. Ergonomics 51, 1295–1319. doi: 10.1080/
00140130802120267

De Waard, D. (1996). The Measurement of Driver Mental Workload, PhD Thesis.,
Groningen: Rijksuniversiteit Groningen.

Dehais, F., Causse, M., and Tremblay, S. (2011). Mitigation of conflicts with
automation: use of cognitive countermeasures. Hum. Fact. 53, 448–460. doi:
10.1177/0018720811418635

Dehais, F., Causse, M., Vachon, F., Régis, N., Menant, E., and Tremblay, S. (2014).
Failure to detect critical auditory alerts in the cockpit: evidence for inattentional
deafness. Hum. Fact. 56, 631–644. doi: 10.1177/0018720813510735

Dehais, F., Causse, M., Vachon, F., and Tremblay, S. (2012). Cognitive conflict in
human–automation interactions: a psychophysiological study. Appl. Ergon. 43,
588–595. doi: 10.1016/j.apergo.2011.09.004

Dehais, F., Duprès, A., Di Flumeri, G., Verdière, K. J., Borghini, G., Babiloni, F.,
et al. (2018). Monitoring Pilots Cognitive Fatigue with Engagement Features in
Simulated and actual Flight Conditions Using an Hybrid fNIRS-EEG Passive BCI.
IEEE SMC. Availale at: https://hal.archives-ouvertes.fr/hal-01959452.

Dehais, F., Hodgetts, H. M., Causse, M., Behrend, J., Durantin, G., and Tremblay,
S. (2019). Momentary lapse of control: a cognitive continuum approach
to understanding and mitigating perseveration in human error. Neurosci.
Biobehav. Rev. 100, 252–262. doi: 10.1016/j.neubiorev.2019.03.006

Dehais, F., Peysakhovich, V., Scannella, S., Fongue, J., and Gateau, T. (2015).
“Automation surprise in aviation: real- time solutions,” in Proceedings of the
33rd annual ACM conference on human factors in computing systems, New York,
NY, 2525–2534.

Dehais, F., Rida, I., Roy, R., Iversen, J., Mullen, T., and Callan, D. (2019a). “A
pBCI to predict attentional error before it happens in real flight conditions,”
in Proceedins of the Conference: 2019 IEEE International Conference on Systems,
Man and Cybernetics (SMC), Bari.

Dehais, F., Roy, R. N., and Scannella, S. (2019b). Inattentional deafness to auditory
alarms: inter-individual differences, electrophysiological signature and single
trial classification. Behav. Brain Res. 360, 51–59. doi: 10.1016/j.bbr.2018.11.045

Dehais, F., Roy, R. N., Durantin, G., Gateau, T., and Callan, D. (2017). “EEG-
engagement index and auditory alarm misperception: an inattentional deafness
study in actual flight condition,” in Proceedins of the International Conference
on Applied Human Factors and Ergonomics, Washington D.C., 227–234. doi:
10.1007/978-3-319-60642-2_21

Dehais, F., Tessier, C., Christophe, L., and Reuzeau, F. (2010). “The perseveration
syndrome in the pilots’ activity: guide- lines and cognitive countermeasures,”
in Human Error, Safety and Systems Development, eds P. Palanque, J.
Vanderdonckt, and M. Winkler (Berlin: Springer), 68–80. doi: 10.1007/978-3-
642-11750-3_6

Di Flumeri, G., De Crescenzio, F., Berberian, B., Ohneiser, O., Kramer, J., Aricò, P.,
et al. (2019). Brain–computer interface-based adaptive automation to prevent
out-of-the-loop phenomenon in air traffic controllers dealing with highly
automated systems. Front. Hum. Neurosci. 13:296. doi: 10.3389/fnhum.2019.
00296

Dierolf, A. M., Fechtner, J., Böhnke, R., Wolf, O. T., and Naumann, E. (2017).
Influence of acute stress on response inhibition in healthy men: an ERP study.
Psychophysiology 54, 684–695. doi: 10.1111/psyp.12826

Dolan, R. J. (2002). Emotion, cognition, and behavior. Science 298, 1191–1194.
Dolcos, F., and McCarthy, G. (2006). Brain systems mediating cognitive

interference by emotional distraction. J. Neurosci. 26, 2072–2079. doi: 10.1523/
jneurosci.5042-05.2006

Dorneich, M. C., Rogers, W., Whitlow, S. D., and DeMers, R. (2016). Human
performance risks and benefits of adaptive systems on the flight deck. Int. J.
Aviat. Psychol. 26, 15–35. doi: 10.1080/10508414.2016.1226834

Duffy, E. (1962). Activation and Behaviour. New York, NY: Wiley.
Durantin, G., Dehais, F., and Delorme, A. (2015). Characterization of mind

wandering using fNIRS. Front. Syst. Neurosci. 9:45. doi: 10.3389/fnsys.2015.
00045

Durantin, G., Dehais, F., Gonthier, N., Terzibas, C., and Callan, D. E. (2017).
Neural signature of inattentional deafness. Hum. Brain Mapp. 38, 5440–5455.
doi: 10.1002/hbm.23735

Durantin, G., Gagnon, J.-F., Tremblay, S., and Dehais, F. (2014). Using near
infrared spectroscopy and heart rate variability to detect mental overload.
Behav. Brain Res. 259, 16–23. doi: 10.1016/j.bbr.2013.10.042

Edworthy, J., Reid, S., Peel, K., Lock, S., Williams, J., Newbury, C., et al. (2018). The
impact of workload on the ability to localize audible alarms. Appl. Ergon. 72,
88–93. doi: 10.1016/j.apergo.2018.05.006

Egner, T., and Gruzelier, J. H. (2001). Learned self-regulation of EEG frequency
components affects attention and event-related brain potentials in humans.
Neuroreport 12, 4155–4159. doi: 10.1097/00001756-200112210-00058

Egner, T., and Gruzelier, J. H. (2004). EEG biofeedback of low beta band
components: frequency-specific effects on variables of attention and event-
related brain potentials. Clin. Neurophysiol. 115, 131–139. doi: 10.1016/s1388-
2457(03)00353-5

Frontiers in Neuroscience | www.frontiersin.org 12 April 2020 | Volume 14 | Article 268

https://doi.org/10.1002/hbm.24026
https://doi.org/10.1002/hbm.24026
https://doi.org/10.3389/fnhum.2016.00187
https://doi.org/10.3389/fnhum.2016.00187
https://doi.org/10.1016/j.neucli.2007.02.002
https://doi.org/10.1016/j.neucli.2007.02.002
https://doi.org/10.1016/b978-012109890-2/50032-9
https://doi.org/10.1016/b978-012109890-2/50032-9
https://doi.org/10.3389/fnhum.2016.00344
https://doi.org/10.1016/j.neuroimage.2012.12.060
https://doi.org/10.1016/j.neuroimage.2012.12.060
https://doi.org/10.1073/pnas.0900234106
https://doi.org/10.1038/nrendo.2009.106
https://doi.org/10.3389/fnhum.2019.00013
https://doi.org/10.3758/bf03196824
https://doi.org/10.1016/j.neuron.2008.04.017
https://doi.org/10.1038/nrn755
https://doi.org/10.1016/s0301-0082(98)00011-2
https://doi.org/10.1016/s0893-6080(05)80006-1
https://doi.org/10.1016/s0893-6080(05)80006-1
https://doi.org/10.1007/978-1-4471-0105-5_19
https://doi.org/10.1007/978-1-4471-0105-5_19
https://doi.org/10.1016/s1364-6613(03)00197-9
https://doi.org/10.1016/s1364-6613(03)00197-9
https://doi.org/10.1080/00140130802120267
https://doi.org/10.1080/00140130802120267
https://doi.org/10.1177/0018720811418635
https://doi.org/10.1177/0018720811418635
https://doi.org/10.1177/0018720813510735
https://doi.org/10.1016/j.apergo.2011.09.004
https://hal.archives-ouvertes.fr/hal-01959452
https://doi.org/10.1016/j.neubiorev.2019.03.006
https://doi.org/10.1016/j.bbr.2018.11.045
https://doi.org/10.1007/978-3-319-60642-2_21
https://doi.org/10.1007/978-3-319-60642-2_21
https://doi.org/10.1007/978-3-642-11750-3_6
https://doi.org/10.1007/978-3-642-11750-3_6
https://doi.org/10.3389/fnhum.2019.00296
https://doi.org/10.3389/fnhum.2019.00296
https://doi.org/10.1111/psyp.12826
https://doi.org/10.1523/jneurosci.5042-05.2006
https://doi.org/10.1523/jneurosci.5042-05.2006
https://doi.org/10.1080/10508414.2016.1226834
https://doi.org/10.3389/fnsys.2015.00045
https://doi.org/10.3389/fnsys.2015.00045
https://doi.org/10.1002/hbm.23735
https://doi.org/10.1016/j.bbr.2013.10.042
https://doi.org/10.1016/j.apergo.2018.05.006
https://doi.org/10.1097/00001756-200112210-00058
https://doi.org/10.1016/s1388-2457(03)00353-5
https://doi.org/10.1016/s1388-2457(03)00353-5
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 13

Dehais et al. A Neuroergonomics Approach to Performance

Ellenbogen, M. A., Schwartzman, A. E., Stewart, J., and Walker, C.-D. (2006).
Automatic and effortful emotional informa- tion processing regulates different
aspects of the stress response. Psychoneuroendocrinology 31, 373–387. doi: 10.
1016/j.psyneuen.2005.09.001

Elliott, L. R., Schmeisser, E. T., and Redden, E. S. (2011). “Development of
tactile and haptic systems for US infantry navigation and communication,” in
Proceedins of the Symposium on Human Interface (Berlin: Springer), 399–407.
doi: 10.1007/978-3-642-21793-7_45

Enriquez-Geppert, S., Huster, R. J., Figge, C., and Herrmann, C. S. (2014). Self-
regulation of frontal-midline theta facilitates memory updating and mental set
shifting. Front. Behav. Neurosci. 8:420. doi: 10.3389/fnbeh.2014.00420

Enriquez-Geppert, S., Huster, R. J., and Herrmann, C. S. (2013). Boosting
brain functions: improving executive functions with behavioral training,
neurostimulation, and neurofeedback. Int. J. Psychophysiol. 88, 1–16. doi: 10.
1016/j.ijpsycho.2013.02.001

Enriquez-Geppert, S., Huster, R. J., and Herrmann, C. S. (2017). EEG-
neurofeedback as a tool to modulate cognition and behavior: a review tutorial.
Front. Hum. Neurosci. 11:51. doi: 10.3389/fnhum.2017.00051

Ewing, K. C., Fairclough, S. H., and Gilleade, K. (2016). Evaluation of an adaptive
game that uses EEG measures validated during the design process as inputs to
a biocybernetic loop. Front. Hum. Neurosci. 10:223. doi: 10.3389/fnhum.2016.
00223

Fairclough, S., Ewing, K., Burns, C., and Kreplin, U. (2019). “Neural efficiency and
mental workload: locating the red line,” in Neuroergonomics, eds A. Johnson and
R. W. Proctor (Cambridge, MA: Academic Press), 73–77. doi: 10.1016/b978-0-
12-811926-6.00012-9

Fairclough, S. H. (2008). Fundamentals of physiological computing. Interact.
Comput. 21, 133–145. doi: 10.1016/j.intcom.2008.10.011

Fairclough, S. H., Burns, C., and Kreplin, U. (2018). FNIRS activity in the
prefrontal cortex and motivational intensity: impact of working memory load,
financial reward, and correlation-based signal improvement. Neurophotonics 5,
1–10.

Fairclough, S. H., and Ewing, K. (2017). The effect of task demand and incentive on
neurophysiological and cardiovascular markers of effort. Int. J. Psychophysiol.
119, 58–66. doi: 10.1016/j.ijpsycho.2017.01.007

Fairclough, S. H., Gilleade, K., Ewing, K. C., and Roberts, J. (2013). Capturing user
engagement via psychophysiology: measures and mechanisms for biocybernetic
adaptation. Int. J. Auton. Adapt. Commun. Syst. 6, 63–79.

Falcone, B., Coffman, B. A., Clark, V. P., and Parasuraman, R. (2012). Transcranial
direct current stimulation augments perceptual sensitivity and 24-hour
retention in a complex threat detection task. PLoS ONE 7:e34993. doi: 10.1371/
journal.pone.0034993

Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R., and Christoff, K.
(2015). The wandering brain: meta-analysis of functional neuroimaging studies
of mind-wandering and related spontaneous thought processes. Neuroimage
111, 611–621. doi: 10.1016/j.neuroimage.2015.02.039

Freeman, F. G., Mikulka, P. J., Prinzel, L. J., and Scerbo, M. W. (1999). Evaluation
of an adaptive automation system using three EEG indices with a visual tracking
task. Biol. Psychol. 50, 61–76. doi: 10.1016/s0301-0511(99)00002-2

Freeman, F. G., Mikulka, P. J., Scerbo, M. W., and Scott, L. (2004). An evaluation
of an adaptive automation system using a cognitive vigilance task. Biol. Psychol.
67, 283–297. doi: 10.1016/j.biopsycho.2004.01.002

Gärtner, M., Rohde-Liebenau, L., Grimm, S., and Bajbouj, M. (2014). Working
memory-related frontal theta activity is decreased under acute stress.
Psychoneuroendocrinology 43, 105–113. doi: 10.1016/j.psyneuen.2014.02.009

Gaspar, J. G., Brown, T. L., Schwarz, C. W., Lee, J. D., Kang, J., and Higgins, J. S.
(2017). Evaluating driver drowsiness countermeasures. Traff. Inj. Prevent. 18,
S58–S63.

Gateau, T., Ayaz, H., and Dehais, F. (2018). In silico versus over the clouds: on-the-
fly mental state estimation of aircraft pilots, using a functional near infrared
spectroscopy based passive-BCI. Front. Hum. Neurosci. 12:187. doi: 10.3389/
fnhum.2018.00187

Gateau, T., Chanel, C. P. C., Le, M. H., and Dehais, F. (2016). “Considering
human’s non-deterministic behavior and his availability state when designing
a collaborative human-robots system,” in Proceedings of the 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, 4391–4397.

Giraudet, L., Imbert, J. P., Bérenger, M., Tremblay, S., and Causse, M. (2015a).
The Neuroergonomic evaluation of human machine interface design in air
traffic control using behavioral and EEG/ERP measures. Behav. Brain Res. 294,
246–253. doi: 10.1016/j.bbr.2015.07.041

Giraudet, L., St-Louis, M.-E., Scannella, S., and Causse, M. (2015b). P300 event-
related potential as an indicator of inat- tentional deafness? PLoS ONE
10:e0118556. doi: 10.1371/journal.pone.0118556

Goldberg, J. H., and Kotval, X. P. (1999). Computer interface evaluation using
eye movements: methods and constructs. Int. J. Ind. Ergon. 24, 631–645. doi:
10.1016/s0169-8141(98)00068-7

Goldberg, T. E., Berman, K. F., Fleming, K., Ostrem, J., Van Horn, J. D., Esposito,
G., et al. (1998). Uncoupling cognitive workload and prefrontal cortical
physiology: a PER rCBF study. Neuroimage 7, 296–303. doi: 10.1006/nimg.1998.
0338

Goldman-Rakic, P. (1987). Handbook of Physiology. The Nervous System. Bethesda,
MD: American Physiological Society, 373417.

Gonçalves, ÓF., Carvalho, S., Mendes, A. J., Leite, J., and Boggio, P. S. (2018).
Neuromodulating attention and mind-wandering processes with a single
session real time EEG. Appl. Psychophysiol. Biofeedback 43, 143–151. doi: 10.
1007/s10484-018-9394-4

Gouraud, J., Delorme, A., and Berberian, B. (2018). Out of the loop, in your bubble:
mind wandering is independent from automation reliability, but influences task
engagement. Front. Hum. Neurosci. 12:383. doi: 10.3389/fnhum.2018.00383

Grandchamp, R., Braboszcz, C., and Delorme, A. (2014). Oculometric variations
during mind wandering. Front. Psychol. 5:31. doi: 10.3389/fpsyg.2014.00031

Gruzelier, J. H. (2014). EEG-neurofeedback for optimising performance. I: a review
of cognitive and affective outcome in healthy participants. Neurosci. Biobehav.
Rev. 44, 124–141. doi: 10.1016/j.neubiorev.2013.09.015

Hancock, P. A., and Desmond, P. A. (2001). Stress, Workload, and Fatigue.
Mahwah, NJ: Erlbaum.

Hancock, P. A., and Meshkati, N. (1988). Human Mental Workload. Amsterdam:
North-Holland.

Hancock, P. A., and Warm, J. S. (1989). A dynamic model of stress and sustained
attention. Hum. Fact. 31, 519–537. doi: 10.1177/001872088903100503

Harrivel, A. R., Weissman, D. H., Noll, D. C., and Peltier, S. J. (2013). Monitoring
attentional state with fnirs. Front. Human Neurosci. 7:861. doi: 10.3389/fnhum.
2013.00861

He, J., Becic, E., Lee, Y.-C., and McCarley, J. S. (2011). Mind wandering behind
the wheel: performance and oculomotor correlates. Human Factors 53, 13–21.
doi: 10.1177/0018720810391530

Herff, C., Heger, D., Fortmann, O., Hennrich, J., Putze, F., and Schultz, T. (2014).
Mental workload during n-back task—quantified in the prefrontal cortex using
fNIRS. Front. Hum. Neurosci. 7:935. doi: 10.3389/fnhum.2013.00935

Hockey, G. R. J. (1997). Compensatory control in the regulation of human
performance under stress and high workload: a cognitive-energetical
framework. Biol. Psychol. 45, 73–93. doi: 10.1016/s0301-0511(96)05223-4

Hockey, G. R. J. (2011). “A motivational control theory of cognitive fatigue,” in
Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future
Applications, ed. P. L. Ackerman (Washington, DC: American Psychological
Association).

Hockey, G. R. J., Coles, M. G., and Gaillard, A. W. (1986). “Energetical issues
in research on human information processing,” in Energetics and Human
Information Processing, eds G. M. Hockey, A. W. K. Gaillard, and M. Coles
(Berlin: Springer), 3–21. doi: 10.1007/978-94-009-4448-0_1

Hopstaken, J. F., Van Der Linden, D., Bakker, A. B., and Kompier, M. A.
(2015). A multifaceted investigation of the link between mental fatigue
and task disengagement. Psychophysiology 52, 305–315. doi: 10.1111/psyp.1
2339

Hutchinson, B. T. (2019). Toward a theory of consciousness: a review of the
neural correlates of inattentional blindness. Neurosci. Biobehav. Rev. 104, 87–99.
doi: 10.1016/j.neubiorev.2019.06.003

Imbert, J. P., Hodgetts, H. M., Parise, R., Vachon, F., Dehais, F., and Tremblay,
S. (2014). Attentional costs and failures in air traffic control notifications.
Ergonomics 57, 1817–1832. doi: 10.1080/00140139.2014.952680

Izzetoglu, M., Bunce, S. C., Izzetoglu, K., Onaral, B., and Pour-rezaei, K. (2007).
Functional brain imaging using near- infrared technology. IEEE Eng. Med. Biol.
Mag. 26:38. doi: 10.1109/memb.2007.384094

Frontiers in Neuroscience | www.frontiersin.org 13 April 2020 | Volume 14 | Article 268

https://doi.org/10.1016/j.psyneuen.2005.09.001
https://doi.org/10.1016/j.psyneuen.2005.09.001
https://doi.org/10.1007/978-3-642-21793-7_45
https://doi.org/10.3389/fnbeh.2014.00420
https://doi.org/10.1016/j.ijpsycho.2013.02.001
https://doi.org/10.1016/j.ijpsycho.2013.02.001
https://doi.org/10.3389/fnhum.2017.00051
https://doi.org/10.3389/fnhum.2016.00223
https://doi.org/10.3389/fnhum.2016.00223
https://doi.org/10.1016/b978-0-12-811926-6.00012-9
https://doi.org/10.1016/b978-0-12-811926-6.00012-9
https://doi.org/10.1016/j.intcom.2008.10.011
https://doi.org/10.1016/j.ijpsycho.2017.01.007
https://doi.org/10.1371/journal.pone.0034993
https://doi.org/10.1371/journal.pone.0034993
https://doi.org/10.1016/j.neuroimage.2015.02.039
https://doi.org/10.1016/s0301-0511(99)00002-2
https://doi.org/10.1016/j.biopsycho.2004.01.002
https://doi.org/10.1016/j.psyneuen.2014.02.009
https://doi.org/10.3389/fnhum.2018.00187
https://doi.org/10.3389/fnhum.2018.00187
https://doi.org/10.1016/j.bbr.2015.07.041
https://doi.org/10.1371/journal.pone.0118556
https://doi.org/10.1016/s0169-8141(98)00068-7
https://doi.org/10.1016/s0169-8141(98)00068-7
https://doi.org/10.1006/nimg.1998.0338
https://doi.org/10.1006/nimg.1998.0338
https://doi.org/10.1007/s10484-018-9394-4
https://doi.org/10.1007/s10484-018-9394-4
https://doi.org/10.3389/fnhum.2018.00383
https://doi.org/10.3389/fpsyg.2014.00031
https://doi.org/10.1016/j.neubiorev.2013.09.015
https://doi.org/10.1177/001872088903100503
https://doi.org/10.3389/fnhum.2013.00861
https://doi.org/10.3389/fnhum.2013.00861
https://doi.org/10.1177/0018720810391530
https://doi.org/10.3389/fnhum.2013.00935
https://doi.org/10.1016/s0301-0511(96)05223-4
https://doi.org/10.1007/978-94-009-4448-0_1
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1111/psyp.12339
https://doi.org/10.1016/j.neubiorev.2019.06.003
https://doi.org/10.1080/00140139.2014.952680
https://doi.org/10.1109/memb.2007.384094
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 14

Dehais et al. A Neuroergonomics Approach to Performance

Jahanpour, E., Fabre, E., Dehais, F., and Causse, M. (2018). “Giving a hand to pilots
with animated alarms based on mirror system functioning,” in Proceedings of
the 2nd International Neuroergonomics Conference, Philadelphia, PA.

Jeon, S. Y., and Han, S. J. (2012). Improvement of the working memory and
naming by transcranial direct current stimulation. Ann. Rehabil. Med. 36,
585–595.

Johnson, J. A., and Zatorre, R. J. (2006). Neural substrates for dividing and focusing
attention between simultaneous auditory and visual events. NeuroImage 31,
1673–1681. doi: 10.1016/j.neuroimage.2006.02.026

Kahneman, D. (1973). Attention and Effort, Vol. 1063. Englewood Cliffs, NJ:
Prentice-Hall.

Kalia, V., Vishwanath, K., Knauft, K., Vellen, B. V. D., Luebbe, A., and Williams,
A. (2018). Acute stress attenuates cognitive flexibility in males only: an fNIRS
examination. Front. Psychol. 9:2084. doi: 10.3389/fpsyg.2018.02084

Kam, J. W., Dao, E., Farley, J., Fitzpatrick, K., Smallwood, J., Schooler, J. W., et al.
(2011). Slow fluctuations in attentional control of sensory cortex. J. Cognit.
Neurosci. 23, 460–470. doi: 10.1162/jocn.2010.21443

Kobes, M., Helsloot, I., De Vries, B., and Post, J. G. (2010). Building safety and
human behaviour in fire: a literature review. Fire Saf. J. 45, 1–11. doi: 10.1016/j.
firesaf.2009.08.005

Kojima, H., and Suzuki, T. (2010). Hemodynamic change in occipital lobe during
visual search: visual attention allocation measured with NIRS. Neuropsychologia
48, 349–352. doi: 10.1016/j.neuropsychologia.2009.09.028

Kramer, A., and Spinks, J. (1991). “Capacity views of human information
processing,” in Handbook of Cognitive Psychophysiology: Central and Nervous
Systems Approaches, eds J. R. Jennings and M. G. H. Coles (New York: Wiley),
179–249.

Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: a review. Biol.
Psychol. 84, 394–421. doi: 10.1016/j.biopsycho.2010.03.010

Kreitz, C., Furley, P., Memmert, D., and Simons, D. J. (2016a). The influence
of attention set, working memory capacity, and expectations on inattentional
blindness. Perception 45, 386–399. doi: 10.1177/0301006615614465

Kreitz, C., Furley, P., Simons, D. J., and Memmert, D. (2016b). Does working
memory capacity predict cross-modally induced failures of awareness?
Conscious. Cognit. 39, 18–27. doi: 10.1016/j.concog.2015.11.010

Krol, L. R., Haselager, P., and Zander, T. O. (2019). Cognitive and affective probing:
a tutorial and review of active learning for neuroadaptive technology. J. Neural
Eng. 17:012001. doi: 10.1088/1741-2552/ab5bb5

Lee, J. D. (2014). Dynamics of driver distraction: the process of engaging and
disengaging. Ann. Adv. Automot. Med. 58:24.

Lee, S., Kim, M., Choi, S., and You, H. (2018). Evaluation of a motion seat system
for reduction of a driver’s passive task-related (tr) fatigue. Proc. Hum. Factors
Ergon. Soc. Annu. Meet. 62, 1843–1847. doi: 10.1177/1541931218621420

Lees, M. N., Cosman, J. D., Lee, J. D., Rizzo, M., and Fricke, N. (2010).
Translating cognitive neuroscience to the driver’s operational environment: a
neuroergonomics approach. Am. J. Psychol. 123:391. doi: 10.5406/amerjpsyc.
124.4.0391

Leite, J., Carvalho, S., Fregni, F., and Gonçalves, O. F. (2011). Task-specific effects of
tDCS-induced cortical excitability changes on cognitive and motor sequence set
shifting performance. PLoS ONE 6:e24140. doi: 10.1371/journal.pone.0024140

Leontiev, A. N. (2014). Activity and Consciousness. Moscow: Progress Publishers.
Lewis, B. A., Eisert, J. L., and Baldwin, C. L. (2014). Effect of tactile location, pulse

duration, and interpulse interval on perceived urgency. Transport. Res. Rec.
2423, 10–14. doi: 10.3141/2423-02

Lie, C. H., Specht, K., Marshall, J. C., and Fink, G. R. (2006). Using fMRI to
decompose the neural processes underlying the Wisconsin Card Sorting Test.
Neuroimage 30, 1038–1049. doi: 10.1016/j.neuroimage.2005.10.031

Mallat, C., Cegarra, J., Calmettes, C., and Capa, R. L. (2019). A curvilinear effect
of mental workload on mental effort and behavioral adaptability: an approach
with the pre-ejection period. Hum. Fact. [Epub ahead of print].

Mandrick, K., Chua, Z., Causse, M., Perrey, S., and Dehais, F. (2016). Why a
comprehensive understanding of mental workload through the measurement
of neurovascular coupling is a key issue for neuroergonomics? Front. Hum.
Neurosci. 10:250. doi: 10.3389/fnhum.2016.00250

Marois, R., Yi, D. J., and Chun, M. M. (2004). The neural fate of consciously
perceived and missed events in the attentional blink. Neuron 41, 465–472.
doi: 10.1016/s0896-6273(04)00012-1

Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., and
Macrae, C. N. (2007). Wandering minds: the default network and stimulus-
independent thought. Science 315, 393–395. doi: 10.1126/science.1131295

Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., and Ro, T. (2009). To
see or not to see: prestimulus α phase predicts visual awareness. J. Neurosci. 29,
2725–2732. doi: 10.1523/jneurosci.3963-08.2009

Matthews, G. (2002). Towards a transactional ergonomics for driver stress and
fatigue. Theor. Issues Ergon. Sci. 3, 195–211. doi: 10.1080/14639220210124120

Matthews, G., Campbell, S. E., Falconer, S., Joyner, L. A., Huggins, J., Gilliland,
K., et al. (2002). Fundamental dimensions of subjective state in performance
settings: task engagement, distress, and worry. Emotion 2, 315. doi: 10.1037/
1528-3542.2.4.315

Matthews, G., Reinerman-Jones, L. E., Barber, D. J., and Abich, J. IV (2015).
The psychometrics of mental work- load: multiple measures are sensitive but
divergent. Hum. Fact. 57, 125–143. doi: 10.1177/0018720814539505

Matthews, G., Warm, J. S., Reinerman, L. E., Langheim, L. K., and Saxby, D. J.
(2010). “Task engagement, attention, and executive control,” in Handbook of
Individual Differences in Cognition, eds A. Gruszka, G. Matthews, and B.
Szymura (Berlin: Springer), 205–230. doi: 10.1007/978-1-4419-1210-7_13

May, J. F., and Baldwin, C. L. (2009). Driver fatigue: the importance of identifying
causal factors of fatigue when considering detection and countermeasure
technologies. Transport. Res. Part F Traff. Psychol. Behav. 12, 218–224. doi:
10.1016/j.trf.2008.11.005

McIntire, L. K., McKinley, R. A., Goodyear, C., and Nelson, J. (2014). A comparison
of the effects of transcranial direct current stimulation and caffeine on vigilance
and cognitive performance during extended wakefulness. Brain Stimul. 7,
499–507. doi: 10.1016/j.brs.2014.04.008

McKendrick, R., Parasuraman, R., and Ayaz, H. (2015). Wearable functional
near infrared spectroscopy (fNIRS) and transcranial direct current stimulation
(tDCS): expanding vistas for neurocognitive augmentation. Front. Syst.
Neurosci. 9:27. doi: 10.3389/fnsys.2015.00027

Mehta, R. K., and Parasuraman, R. (2013). Neuroergonomics: a review of
applications to physical and cognitive work. Front. Hum. Neurosci. 7:889. doi:
10.3389/fnhum.2013.00889

Modi, H. N., Singh, H., Orihuela-Espina, F., Athanasiou, T., Fiorentino, F., Yang,
G. Z., et al. (2018). Temporal stress in the operating room: brain engagement
promotes “coping” and disengagement prompts “choking”. Ann. Surg. 267,
683–691. doi: 10.1097/sla.0000000000002289

Modi, H. N., Singh, H., Yang, G. Z., Darzi, A., and Leff, D. R. (2017). A decade of
imaging surgeons’ brain function (part I): terminology, techniques, and clinical
translation. Surgery 162, 1121–1130. doi: 10.1016/j.surg.2017.05.021

Molloy, K., Griffiths, T. D., Chait, M., and Lavie, N. (2015). Inattentional deafness:
visual load leads to time-specific suppression of auditory evoked responses.
J. Neurosci. 35, 16046–16054. doi: 10.1523/jneurosci.2931-15.2015

Moray, N. (1979). Mental Workload: Its Theory and Measurement. New York, NY:
Plenum.

Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., and
O’Reilly, R. C. (2011). A unified framework for inhibitory control. Trends
Cognit. Sci. 15, 453–459. doi: 10.1016/j.tics.2011.07.011

Murphy, S., and Dalton, P. (2016). Out of touch? Visual load induces inattentional
numbness. J. Exp. Psychol. 42, 761. doi: 10.1037/xhp0000218

Nagahama, Y., Okina, T., Suzuki, N., Nabatame, H., and Matsuda, M. (2005). The
cerebral correlates of different types of perseveration in the Wisconsin Card
Sorting Test. J. Neurol. Neurosurg. Psychiatry 76, 169–175. doi: 10.1136/jnnp.
2004.039818

Navarro, J., Mars, F., Forzy, J. F., El-Jaafari, M., and Hoc, J. M. (2010). Objective and
subjective evaluation of motor priming and warning systems applied to lateral
control assistance. Accident Anal. Prevent. 42, 904–912. doi: 10.1016/j.aap.2009.
07.008

Navon, D. (1984). Resources - a theoretical soupstone? Psychol. Rev. 91, 216–234.
Navon, D., and Gopher, D. (1979). On the economy of the human-processing

system. Psychol. Rev. 86, 214–225.
Nelson, J., McKinley, R. A., Phillips, C., McIntire, L., Goodyear, C., Kreiner, A.,

et al. (2016). The effects of transcranial direct current stimulation (tDCS) on
multitasking throughput capacity. Front. Hum. Neurosci. 10:589.

Nelson, J. M., McKinley, R. A., McIntire, L. K., Goodyear, C., and Walters,
C. (2015). Augmenting visual search performance with transcranial direct

Frontiers in Neuroscience | www.frontiersin.org 14 April 2020 | Volume 14 | Article 268

https://doi.org/10.1016/j.neuroimage.2006.02.026
https://doi.org/10.3389/fpsyg.2018.02084
https://doi.org/10.1162/jocn.2010.21443
https://doi.org/10.1016/j.firesaf.2009.08.005
https://doi.org/10.1016/j.firesaf.2009.08.005
https://doi.org/10.1016/j.neuropsychologia.2009.09.028
https://doi.org/10.1016/j.biopsycho.2010.03.010
https://doi.org/10.1177/0301006615614465
https://doi.org/10.1016/j.concog.2015.11.010
https://doi.org/10.1088/1741-2552/ab5bb5
https://doi.org/10.1177/1541931218621420
https://doi.org/10.5406/amerjpsyc.124.4.0391
https://doi.org/10.5406/amerjpsyc.124.4.0391
https://doi.org/10.1371/journal.pone.0024140
https://doi.org/10.3141/2423-02
https://doi.org/10.1016/j.neuroimage.2005.10.031
https://doi.org/10.3389/fnhum.2016.00250
https://doi.org/10.1016/s0896-6273(04)00012-1
https://doi.org/10.1126/science.1131295
https://doi.org/10.1523/jneurosci.3963-08.2009
https://doi.org/10.1080/14639220210124120
https://doi.org/10.1037/1528-3542.2.4.315
https://doi.org/10.1037/1528-3542.2.4.315
https://doi.org/10.1177/0018720814539505
https://doi.org/10.1007/978-1-4419-1210-7_13
https://doi.org/10.1016/j.trf.2008.11.005
https://doi.org/10.1016/j.trf.2008.11.005
https://doi.org/10.1016/j.brs.2014.04.008
https://doi.org/10.3389/fnsys.2015.00027
https://doi.org/10.3389/fnhum.2013.00889
https://doi.org/10.3389/fnhum.2013.00889
https://doi.org/10.1097/sla.0000000000002289
https://doi.org/10.1016/j.surg.2017.05.021
https://doi.org/10.1523/jneurosci.2931-15.2015
https://doi.org/10.1016/j.tics.2011.07.011
https://doi.org/10.1037/xhp0000218
https://doi.org/10.1136/jnnp.2004.039818
https://doi.org/10.1136/jnnp.2004.039818
https://doi.org/10.1016/j.aap.2009.07.008
https://doi.org/10.1016/j.aap.2009.07.008
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 15

Dehais et al. A Neuroergonomics Approach to Performance

current stimulation (tDCS). Milit. Psychol. 27, 335–347. doi: 10.1037/mil000
0085

Nelson, J. T., McKinley, R. A., Golob, E. J., Warm, J. S., and Parasuraman, R.
(2014). Enhancing vigilance in operators with prefrontal cortex transcranial
direct current stimulation (tDCS). Neuroimage 85, 909–917. doi: 10.1016/j.
neuroimage.2012.11.061

Ninomiya, T., Noritake, A., Ullsperger, M., and Isoda, M. (2018). Performance
monitoring in the medial frontal cortex and related neural networks: from
monitoring self actions to understanding others’ actions. Neurosci. Res. 137,
1–10. doi: 10.1016/j.neures.2018.04.004

Norman, D. A., and Bobrow, D. G. (1975). On data-limited and resource-limited
processes. Cognit. Psychol. 7, 44–64. doi: 10.1016/0010-0285(75)90004-3

O’Connell, R. G., Dockree, P. M., Robertson, I. H., Bellgrove, M. A., Foxe,
J. J., and Kelly, S. P. (2009). Uncovering the neural signature of lapsing
attention: electrophysiological signals predict errors up to 20 s before they
occur. J. Neurosci. 29, 8604–8611. doi: 10.1523/jneurosci.5967-08.2009

O’Donnell, R. D., and Eggemeier, F. T. (1986). “Workload assessment
methodology,” in Handbook of Human Perception and Performance, Vol. 2, eds
K. Boff, L. Kaufman, and J. P. Thomas (New York, NY: Wiley), 42.1–42.49.

Oei, N. Y., Veer, I. M., Wolf, O. T., Spinhoven, P., Rombouts, S. A., and Elzinga,
B. M. (2012). Stress shifts brain activation towards ventral ‘affective’areas during
emotional distraction. Soc. Cognit. Affect. Neurosci. 7, 403–412. doi: 10.1093/
scan/nsr024

O’Hare, D., and Smitheram, T. (1995). Pressing-on into deteriorating conditions:
an application of behavioral decision theory to pilot decision making. Int. J.
Aviat. Psychol. 5, 351–370. doi: 10.1207/s15327108ijap0504_2

Orasanu, J., Martin, L., Davison, J., and Null, C. H. (1998). Errors in Aviation
Decision Making: Bad Decisions or Bad Luck? Moffett Field, CA: NASA Ames
Research Center.

Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., Wilder-Smith, O., McGee,
H. A., Liu, S., et al. (2017). Interpersonal autonomic physiology : a systematic
review of the literature. Personal. Soc. Psychol. Rev. 21, 99–141. doi: 10.1177/
1088868316628405

Parasuraman, R. (2003). Neuroergonomics: research and practice. Theor. Issues
Ergon. Sci. 4, 5–20. doi: 10.1080/14639220210199753

Parasuraman, R., and Rizzo, M. (2008). Neuroergonomics: The Brain at Work, 1st
Edn. New York, NY: Oxford University Press, Inc.

Parasuraman, R., and Wilson, G. F. (2008). Putting the brain to work:
neuroergonomics past, present, and future. Hum. Fact. 50, 468–474. doi: 10.
1518/001872008X288349

Parasuraman, R., Mouloua, M., and Hilburn, B. (1999). “Adaptive aiding and
adaptive task allocation enhance human-machine interaction,” in Automation
Technology and Human Performance: Current Research and Trends (Mahwah,
NJ: Erlbaum), 119–123.

Peavler, W. S. (1974). Pupil size, information overload, and performance
differences. Psychophysiology 11, 559–566. doi: 10.1111/j.1469-8986.1974.
tb01114.x

Pecher, C., Quaireau, C., Lemercier, C., and Cellier, J.-M. (2011). The effects
of inattention on selective attention: how sad- ness and ruminations alter
attention functions evaluated with the attention network test. Rev. Eur.
Psychol. Appl. Eur. Rev. Appl. Psychol. 61, 43–50. doi: 10.1016/j.erap.2010.
10.003

Pepin, G., Malin, S., Navarro, J., Fort, A., Jallaiz, C., Moreau, F., et al.
(2016). “Detection of mind-wandering in driving: contributions of cardiac
measurement and eye movements,” in Proceedings of the 1st International
Neuroergonomics Conference: The Brain at Work and in Everyday Life,
Amsterdam: Elsevier.

Pessoa, L., and Ungerleider, L. G. (2004). Neuroimaging studies of attention and
the processing of emotion-laden stimuli. Prog. Brain Res. 144, 171–182. doi:
10.1016/s0079-6123(03)14412-3

Petersen, S. E., and Posner, M. I. (2012). The attention system of the human brain:
20 years after. Ann. Rev. Neurosci. 35, 73–89. doi: 10.1146/annurev-neuro-
062111-150525

Peysakhovich, V., Lefrançois, O., Dehais, F., and Causse, M. (2018). The
neuroergonomics of aircraft cockpits: the four stages of eye-tracking integration
to enhance flight safety. Safety 4:8. doi: 10.3390/safety4010008

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin.
Neurophysiol. 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019

Pope, A. T., Bogart, E. H., and Bartolome, D. S. (1995). Biocybernetic system
evaluates indices of operator engagement in automated task. Biol. Psychol. 40,
187–195. doi: 10.1016/0301-0511(95)05116-3

Posner, M. I. (2012). Imaging attention networks. Neuroimage 61, 450–456. doi:
10.1016/j.neuroimage.2011.12.040

Posner, M. I., and Dehaene, S. (1994). Attentional networks. Trends Neurosci. 17,
75–79.

Posner, M. I., and Petersen, S. E. (1990). The attention system of the human brain.
Annu. Rev. Neurosci. 13, 25–42.

Posner, M. I., and Tudela, P. (1997). Imaging resources. Biol. Psychol. 45,
95–107.

Pourtois, G., De Pretto, M., Hauert, C. A., and Vuilleumier, P. (2006). Time course
of brain activity during change blindness and change awareness: performance
is predicted by neural events before change onset. J. Cognit. Neurosci. 18,
2108–2129. doi: 10.1162/jocn.2006.18.12.2108

Pribram, K. H., and McGuinness, D. (1975). Arousal, activation, and effort in the
control of attention. Psychol. Review 82:116. doi: 10.1037/h0076780

Prinzel, L. J. III (2002). Research on Hazardous States of Awareness and
Physiological Factors in Aerospace Operations. Report No. NASA/ TM-2002-
211444. Washington, DC: NASA.

Prinzel, L. J., Freeman, F. G., Scerbo, M. W., Mikulka, P. J., and Pope, A. T.
(2000). A closed-loop system for examining psychophysiological measures
for adaptive task allocation. Int. J. Aviat. Psychol. 10, 393–410. doi: 10.1207/
s15327108ijap1004_6

Proulx, G. (2001). “Occupant behaviour and evacuation,” in Proceedings of the
9th International Fire Protection Symposium (Iceland: Iceland Fire Authority),
219–232.

Puschmann, S., Sandmann, P., Ahrens, J., Thorne, J., Weerda, R., Klump, G., et al.
(2013). Electrophysiological correlates of auditory change detection and change
deafness in complex auditory scenes. Neuroimage 75, 155–164. doi: 10.1016/j.
neuroimage.2013.02.037

Qin, S., Hermans, E. J., van Marle, H. J., Luo, J., and Fernandez, G. (2009).
Acute psychological stress reduces working memory-related activity in the
dorsolateral prefrontal cortex. Biol. Psychiatry 66, 25–32. doi: 10.1016/j.
biopsych.2009.03.006

Racz, F. S., Mukli, P., Nagy, Z., and Eke, A. (2017). Increased prefrontal cortex
connectivity during cognitive challenge assessed by fNIRS imaging. Biomed.
Opt. Exp. 8, 3842–3855.

Ramnani, N., and Owen, A. M. (2004). Anterior prefrontal cortex: insights into
function from anatomy and neuroimaging. Nat. Rev. Neurosci. 5:184. doi: 10.
1038/nrn1343

Ramsey, N. F., Jansma, J. M., Jager, G., Van Raalten, T., and Kahn, R. S. (2004).
Neurophysiological factors in human information processing capacity. Brain
127, 517–525. doi: 10.1093/brain/awh060

Raveh, D., and Lavie, N. (2015). Load-induced inattentional deafness. Attent.
Percept. Psychophys. 77, 483–492. doi: 10.3758/s13414-014-0776-2

Régis, N., Dehais, F., Rachelson, E., Thooris, C., Pizziol, S., Causse, M., et al. (2014).
Formal detection of atten- tional tunneling in human operator–automation
interactions. IEEE Trans. Hum. Mach. Syst. 44, 326–336. doi: 10.1109/thms.
2014.2307258

Regis, N., Dehais, F., Tessier, C., and Gagnon, J.-F. (2012). “Human Factors: a
view from an integrative perspective,” in Proceedings HFES Europe Chapter
Conference Toulouse 2012, eds D. De Waard, K. Brookhuis, F. Dehais, C.
Weikert, S. Röttger, D. Manzey, et al. (Toulouse: HFES). Available online at:
http://hfes-europe.org

Reynal, M., Rister, F., Scannella, S., Wickens, C., and Dehais, F. (2017).
“Investigating pilots decision making when facing an unstabilized approach:
an eye-tracking study,” in Proceedings of the 19th International Symposium on
Aviation Psychology, Dayton, OH, 335.

Reyner, L. A., and Horne, J. A. (1998). Evaluation of ‘in-car’countermeasures to
sleepiness: cold air and radio. Sleep 21, 46–51.

Richter, M., Gendolla, G. H. E., and Wright, R. A. (2016). “Three decades of
research on motivational intensity theory: what we have learned about effort
and what we still don’t know,” in Advances in Motivation Science, ed. A. J. Elliot
(Cambridge, MA: Academic Press), 149–186.

Ridderinkhof, K. R., Van Den Wildenberg, W. P., Segalowitz, S. J., and Carter, C. S.
(2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal
cortex in action se- lection, response inhibition, performance monitoring, and

Frontiers in Neuroscience | www.frontiersin.org 15 April 2020 | Volume 14 | Article 268

https://doi.org/10.1037/mil0000085
https://doi.org/10.1037/mil0000085
https://doi.org/10.1016/j.neuroimage.2012.11.061
https://doi.org/10.1016/j.neuroimage.2012.11.061
https://doi.org/10.1016/j.neures.2018.04.004
https://doi.org/10.1016/0010-0285(75)90004-3
https://doi.org/10.1523/jneurosci.5967-08.2009
https://doi.org/10.1093/scan/nsr024
https://doi.org/10.1093/scan/nsr024
https://doi.org/10.1207/s15327108ijap0504_2
https://doi.org/10.1177/1088868316628405
https://doi.org/10.1177/1088868316628405
https://doi.org/10.1080/14639220210199753
https://doi.org/10.1518/001872008X288349
https://doi.org/10.1518/001872008X288349
https://doi.org/10.1111/j.1469-8986.1974.tb01114.x
https://doi.org/10.1111/j.1469-8986.1974.tb01114.x
https://doi.org/10.1016/j.erap.2010.10.003
https://doi.org/10.1016/j.erap.2010.10.003
https://doi.org/10.1016/s0079-6123(03)14412-3
https://doi.org/10.1016/s0079-6123(03)14412-3
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.1146/annurev-neuro-062111-150525
https://doi.org/10.3390/safety4010008
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.1016/0301-0511(95)05116-3
https://doi.org/10.1016/j.neuroimage.2011.12.040
https://doi.org/10.1016/j.neuroimage.2011.12.040
https://doi.org/10.1162/jocn.2006.18.12.2108
https://doi.org/10.1037/h0076780
https://doi.org/10.1207/s15327108ijap1004_6
https://doi.org/10.1207/s15327108ijap1004_6
https://doi.org/10.1016/j.neuroimage.2013.02.037
https://doi.org/10.1016/j.neuroimage.2013.02.037
https://doi.org/10.1016/j.biopsych.2009.03.006
https://doi.org/10.1016/j.biopsych.2009.03.006
https://doi.org/10.1038/nrn1343
https://doi.org/10.1038/nrn1343
https://doi.org/10.1093/brain/awh060
https://doi.org/10.3758/s13414-014-0776-2
https://doi.org/10.1109/thms.2014.2307258
https://doi.org/10.1109/thms.2014.2307258
http://hfes-europe.org
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 16

Dehais et al. A Neuroergonomics Approach to Performance

reward-based learning. Brain Cognit. 56, 129–140. doi: 10.1016/j.bandc.2004.
09.016

Riggs, S. L., and Sarter, N. (2019). Tactile, visual, and crossmodal visual-tactile
change blindness: the effect of transient type and task demands. Hum. Fact. 61,
5–24. doi: 10.1177/0018720818818028

Rizzo, M., Robinson, S., and Neale, V. (2007). “The brain in the wild: tracking
human behavior in natural and naturalistic settings,” in Neuroergonomics: The
Brain at Work, eds R. Parasuraman and M. Rizzo (New York, NY: Oxford),
113–130.

Robbins, T. W., and Arnsten, A. F. (2009). The neuropsychopharmacology of
fronto-executive function: monoaminergic modulation. Annu. Rev. Neurosci.
32, 267–287. doi: 10.1146/annurev.neuro.051508.135535

Roy, R. N., and Frey, J. (2016). “Neurophysiological markers for passive brain–
computer interfaces,” in Brain–Computer Interfaces 1: Foundations and Methods
eds M. Clerc, L. Bougrain, and F. Lotte (Hoboken, NJ: John Wiley & Sons),
85–100. doi: 10.1002/9781119144977.ch5

Russell, D., Statz, J. K., Ramiccio, J., Henderson, M., Still, D., Temme, L., et al.
(2016). Pilot Cueing Synergies for Degraded Visual Environments (No. USAARL-
2016-10). Fort Rucker, AL: US Army Aeromedical Research Laboratory Fort
Rucker United States.

Saint Lot, J., Imbert, J.-P., and Dehais, F. (2020). “Red Altert: a cognitive
countermeasure to mitigate attentional tunneling,” in Proceedings CHI 2020,
April 25–30 (Honolulu, HI). doi: 10.1145/3313831.3376709

Sandson, J., and Albert, M. L. (1984). Varieties of perseveration. Neuropsychologia
22, 715–732. doi: 10.1016/0028-3932(84)90098-8

Sarason, I. G., Sarason, B. R., and Pierce, G. R. (1990). Anxiety, cognitive
interference and performance. J. Soc. Behav. Personal. 5, 1–18.

Saravini, F. (1999). “Energy and the brain: facts and fantasies,” in Mind Myths, ed.
E. Della Salla (Chichester: Wiley), 43–58.

Sarter, N., and Sarter, M. (2003). Neuroergonomics: opportunities and challenges of
merging cognitive neuroscience with cognitive ergonomics. Theor. Issues Ergon.
Sci. 4, 142–150. doi: 10.1080/1463922021000020882

Scannella, S., Causse, M., Chauveau, N., Pastor, J., and Dehais, F. (2013). Effects
of the audiovisual conflict on auditory early processes. Int. J. Psychophysiol. 89,
115–122. doi: 10.1016/j.ijpsycho.2013.06.009

Scerbo, M. W. (2008). “Adaptive automation,” in Neuroergonomics: The Brain at
Work, eds R. Parasuraman and M. Rizzo (New York, NY: Oxford), 239–252.
doi: 10.1093/acprof:oso/9780195177619.003.0016

Schneider, W., Dumais, S. T., and Shiffen, R. M. (1984). “Automatic and control
processing and attention,” in Varieties of Attention, eds R. Parasuraman and
D. R. Davies (Orlando: Academic Press), 1–27.

Scholte, H. S., Witteveen, S. C., Spekreijse, H., and Lamme, V. A. (2006). The
influence of inattention on the neural correlates of scene segmentation. Brain
Res. 1076, 106–115. doi: 10.1016/j.brainres.2005.10.051

Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C., Reichle, E. D.,
and Sayette, M. A. (2011). Meta-awareness, perceptual decoupling and the
wandering mind. Trends Cognit. Sci. 15, 319–326.

Schultz, W. (2002). Getting formal with dopamine and reward. Neuron 36, 241–
263. doi: 10.1016/s0896-6273(02)00967-4

Sebok, A., Wickens, C. D., Walters, B., and Fennell, K. (2017). “Alerts on the
nextgen flight deck,” in Proceedings of the 19th International Symposium on
Aviation Psychology, Dayton, OH, 293.

Selfridge, O. G. (1959). “Pandemonium: a paradigm for learning,” in Mechanisation
of Thought Processes (London: H.M. Stationery Office), 511–526.

Senoussi, M., Verdière, K. J., Bovo, A., Ponzoni Carvalho, Chanel, C., Dehais,
F., et al. (2017). “Pre- stimulus antero-posterior EEG connectivity predicts
performance in a UAV monitoring task,” in Proceedings of 2016 International
Conference on Systems, Man, and Cybernetics (Canada: IEEE SMC, 1167–1172.

Shallice, T., and Burgess, P. (1993). “Supervisory control of action and thought
selection,” in Attention: Selection, Awareness and Control, eds A. Baddeley and
L. Weiskrantz (Oxford: Clarendon Press), 171–187.

Smallwood, J., Beach, E., Schooler, J. W., and Handy, T. C. (2008). Going awol in
the brain: mind wandering reduces cortical analysis of external events. J. Cognit.
Neurosci. 20, 458–469. doi: 10.1162/jocn.2008.20037

Smallwood, J., and Schooler, J. W. (2015). The science of mind wandering:
empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66,
487–518. doi: 10.1146/annurev-psych-010814-015331

Smith, R. P. (1981). Boredom: a review. Hum. Fact. 23, 329–340.

Souza, P. E., Chanel, C. P. C., Dehais, F., and Givigi, S. (2016). “Towards
human-robot interaction: a framing effect experiment,” in IEEE International
Conference on Systems, Man, and Cybernetics, (Budapest: IEEE SMC), 001929–
001934.

Staal, M. A. (2004). Stress, cognition, and human performance: a literature review
and conceptual framework.

Stamp, K., Fairclough, S., Dobbins, C., and Poole, H. (2019). “A neuroadaptive
approach to analgesic gaming,” in The Second Neuroadaptive Technology
Conference, Liverpool, 19.

Stephens, C., Dehais, F., Roy, R. N., Harrivel, A., Last, M. C., Kennedy, K.,
et al. (2018). “Biocybernetic adaptation strategies: machine awareness of
human engagement for improved operational performance,” in International
Conference on Augmented Cognition, Copenhagen, 89–98. doi: 10.1007/978-3-
319-91470-1_9

Taillard, J., Capelli, A., Sagaspe, P., Anund, A., Akerstedt, T., and Philip, P. (2012).
In-car nocturnal blue light exposure improves motorway driving: a randomized
controlled trial. PLoS ONE 7:e46750. doi: 10.1371/journal.pone.0046750

Thomas, L. C., and Wickens, C. D. (2004). Eye-tracking and individual differences
in off-normal event detection when flying with a synthetic vision system
display. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 48, 223–227. doi: 10.1177/
154193120404800148

Todd, J. J., Fougnie, D., and Marois, R. (2005). Visual short-term memory
load suppresses temporo-parietal junction activity and induces inattentional
blindness. Psychol. Sci. 16, 965–972. doi: 10.1111/j.1467-9280.2005.01645.x

Tombu, M. N., Asplund, C. L., Dux, P. E., Godwin, D., Martin, J. W., and Marois,
R. (2011). A unified attentional bottleneck in the human brain. Proc. Natl. Acad.
Sci. U.S.A. 108, 13426–13431. doi: 10.1073/pnas.1103583108

Tracy, J. I., Mohamed, F., Faro, S., Tiver, R., Pinus, A., Bloomer, C., et al. (2000). The
effect of autonomic arousal on attentional focus. Neuroreport 11, 4037–4042.
doi: 10.1097/00001756-200012180-00027

Tsai, Y.-F., Viirre, E., Strychacz, C., Chase, B., and Jung, T.-P. (2007). Task
performance and eye activity: predicting be- havior relating to cognitive
workload. Aviat. Space Environ. Med. 78, B176–B185.

Ullsperger, M., Danielmeier, C., and Jocham, G. (2014). Neurophysiology of
performance monitoring and adaptive behavior. Physiol. Rev. 94, 35–79. doi:
10.1152/physrev.00041.2012

Ullsperger, M., Nittono, H., and von Cramon, D. Y. (2007). When goals are missed:
dealing with self-generated and externally induced failure. NeuroImage 35,
1356–1364. doi: 10.1016/j.neuroimage.2007.01.026

Unsworth, N., and Engle, R. W. (2007). The nature of individ- ual differences
in working memory capacity: active main- tenance in primary memory and
controlled search from secondary memory. Psychol. Rev. 114, 104. doi: 10.1037/
0033-295x.114.1.104

Uzzaman, S., and Joordens, S. (2011). The eyes know what you are thinking: eye
movements as an objective measure of mind wandering. Conscious. Cognit. 20,
1882–1886. doi: 10.1016/j.concog.2011.09.010

Van Acker, B. B., Parmentier, D. D., Vlerick, P., and Saldien, J. (2018).
Understanding mental workload: from a clarifying concept analysis toward an
implementable framework. Cognit. Technol. Work 20, 351–365. doi: 10.1007/
s10111-018-0481-3

Van Dongen, H., Belenky, G., and Krueger, J. M. (2011). A local, bottom-up
perspective on sleep deprivation and neurobehavioral performance. Curr. Top.
Med. Chem. 11, 2414–2422. doi: 10.2174/156802611797470286

Verwey, W. B., and Zaidel, D. M. (1999). Preventing drowsiness accidents by
an alertness maintenance device. Accident Anal. Prevent. 31, 199–211. doi:
10.1016/s0001-4575(98)00062-1

Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., and Arnsten,
A. F. (2007). Inverted-U dopamine D1 receptor actions on prefrontal neurons
engaged in working memory. Nat. Neurosci. 10:376. doi: 10.1038/nn1846

Weinmann, M., Schneider, C., and vom Brocke, J. (2016). Digital nudging. Bus.
Inform. Syst. Eng. 58, 433–436. doi: 10.1007/s12599-016-0453-1

Weissman, D. H., Roberts, K. C., Visscher, K. M., and Woldorff, M. G. (2006).
The neural bases of momentary lapses in attention. Nat. Neurosci. 9:971. doi:
10.1038/nn1727

Wickens, C. D. (1980). The structure of attentional resources. Attent. Perform. VIII
8, 239–257.

Wickens, C. D. (1984). “Processing resources in attention,” in Varieties of Attention,
eds R. Parasuraman and D. R. Davies (London: Academic Press), 63–101.

Frontiers in Neuroscience | www.frontiersin.org 16 April 2020 | Volume 14 | Article 268

https://doi.org/10.1016/j.bandc.2004.09.016
https://doi.org/10.1016/j.bandc.2004.09.016
https://doi.org/10.1177/0018720818818028
https://doi.org/10.1146/annurev.neuro.051508.135535
https://doi.org/10.1002/9781119144977.ch5
https://doi.org/10.1145/3313831.3376709
https://doi.org/10.1016/0028-3932(84)90098-8
https://doi.org/10.1080/1463922021000020882
https://doi.org/10.1016/j.ijpsycho.2013.06.009
https://doi.org/10.1093/acprof:oso/9780195177619.003.0016
https://doi.org/10.1016/j.brainres.2005.10.051
https://doi.org/10.1016/s0896-6273(02)00967-4
https://doi.org/10.1162/jocn.2008.20037
https://doi.org/10.1146/annurev-psych-010814-015331
https://doi.org/10.1007/978-3-319-91470-1_9
https://doi.org/10.1007/978-3-319-91470-1_9
https://doi.org/10.1371/journal.pone.0046750
https://doi.org/10.1177/154193120404800148
https://doi.org/10.1177/154193120404800148
https://doi.org/10.1111/j.1467-9280.2005.01645.x
https://doi.org/10.1073/pnas.1103583108
https://doi.org/10.1097/00001756-200012180-00027
https://doi.org/10.1152/physrev.00041.2012
https://doi.org/10.1152/physrev.00041.2012
https://doi.org/10.1016/j.neuroimage.2007.01.026
https://doi.org/10.1037/0033-295x.114.1.104
https://doi.org/10.1037/0033-295x.114.1.104
https://doi.org/10.1016/j.concog.2011.09.010
https://doi.org/10.1007/s10111-018-0481-3
https://doi.org/10.1007/s10111-018-0481-3
https://doi.org/10.2174/156802611797470286
https://doi.org/10.1016/s0001-4575(98)00062-1
https://doi.org/10.1016/s0001-4575(98)00062-1
https://doi.org/10.1038/nn1846
https://doi.org/10.1007/s12599-016-0453-1
https://doi.org/10.1038/nn1727
https://doi.org/10.1038/nn1727
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00268 April 4, 2020 Time: 18:27 # 17

Dehais et al. A Neuroergonomics Approach to Performance

Wickens, C. D. (2002). Multiple resources and performance prediction. Theor.
Issues Ergon. Sci. 3, 150–177.

Wickens, C. D. (2005). Attentional tunneling and task management. Int. Symp.
Aviat. Psychol. 812–817.

Wickens, C. D. (2008). Multiple resources and mental work-load. Hum. Fact. 50,
449–455.

Wickens, C. D., and Liu, Y. (1988). Codes and modalities in multiple resources:
a success and a qualification. Hum. Fact. 30, 599–616. doi: 10.1177/
001872088803000505

Wickens, C. D., and Tsang, P. (2014). “Workload,” in Handbook of Human-Systems
Integration, ed. F. Durso (Washington, DC: APA).

Wickens, J. R., Horvitz, J. C., Costa, R. M., and Killcross, S. (2007). Dopaminergic
mechanisms in actions and habits. J. Neurosci. 27, 8181–8183. doi: 10.1523/
jneurosci.1671-07.2007

Wierwille, W. W., and Eggemeier, F. T. (1993). Recommendation for mental
workload measurement in a test and evaluation environment. Hum. Fact. 35,
263–281. doi: 10.1177/001872089303500205

Yeh, Y. Y., and Wickens, C. D. (1988). Dissociation of performance and
subjective measures of workload. Hum. Fact. 30, 111–120. doi: 10.1177/
001872088803000110

Yerkes, R. M., and Dodson, J. D. (1908). The relation of strength of stimulus
to rapidity of habit formation. J. Compar. Physiol. Psychol. 18, 459–482. doi:
10.1002/cne.920180503

Young, M. S., Brookhuis, K. A., Wickens, C. D., and Hancock, P. A. (2015). State
of science: mental workload in ergonomics. Ergonomics 58, 1–17. doi: 10.1080/
00140139.2014.956151

Young, M. S., and Stanton, N. A. (2002). Malleable attentional resources theory:
a new explanation for the effects of mental underload on performance. Hum.
Fact. 44, 365–375. doi: 10.1518/0018720024497709

Zander, T. O., and Kothe, C. (2011). Towards passive brain–computer interfaces:
applying brain–computer interface technology to human–machine systems in
general. J. Neural Eng. 8:025005. doi: 10.1088/1741-2560/8/2/025005

Zaneboni, J., and Saint-Jalmes, B. (2016). U.S. Patent No. 9,302,779. Washington,
DC: U.S. Patent and Trademark Office.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Dehais, Lafont, Roy and Fairclough. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 April 2020 | Volume 14 | Article 268

https://doi.org/10.1177/001872088803000505
https://doi.org/10.1177/001872088803000505
https://doi.org/10.1523/jneurosci.1671-07.2007
https://doi.org/10.1523/jneurosci.1671-07.2007
https://doi.org/10.1177/001872089303500205
https://doi.org/10.1177/001872088803000110
https://doi.org/10.1177/001872088803000110
https://doi.org/10.1002/cne.920180503
https://doi.org/10.1002/cne.920180503
https://doi.org/10.1080/00140139.2014.956151
https://doi.org/10.1080/00140139.2014.956151
https://doi.org/10.1518/0018720024497709
https://doi.org/10.1088/1741-2560/8/2/025005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance
	Introduction
	The Growth of Mental Workload
	Mental Workload Measurement
	Toward a Limit of the Theory of Limited Resources

	Resources: a Neuroergonomic Perspective
	The Multiple Biological Substrates of Mental Resources
	Brain and Inhibitory Mechanisms
	The Non-linear Effects of Neuromodulation
	Attentional Dynamics and Dominance Effects
	Performance Monitoring and Effort Withdrawal

	Understanding Performance Related Mental States
	The Transactional Dimensions of Engagement and Arousal
	Monitoring Performance Through Degraded Mental States

	Solutions to Mitigate Degraded Performance
	Adaptation of the User Interface
	Task and Automation Adaptation
	Neuro-Adaptation of the End-User(s)
	Synthesis of Neuro-Adaptive Solutions

	Conclusion
	Author Contributions
	Funding
	References


