
RESEARCH ARTICLE

Unusual mortality of Tufted puffins (Fratercula

cirrhata) in the eastern Bering Sea

Timothy JonesID
1*, Lauren M. Divine2, Heather Renner3, Susan KnowlesID

4, Kathi

A. Lefebvre5, Hillary K. Burgess1, Charlie Wright1, Julia K. Parrish1

1 School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, United States of

America, 2 Aleut Community of St. Paul Island Ecosystem Conservation Office, St. Paul, Pribilof Islands,

Alaska, United States of America, 3 Alaska Maritime National Wildlife Refuge, U.S. Fish and Wildlife Service,

Homer, Alaska, United States of America, 4 National Wildlife Health Center, U.S. Geological Survey,

Madison, Wisconsin, United States of America, 5 Environmental and Fisheries Sciences Division, Northwest

Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric

Administration, Seattle, Washington, United States of America

* timothy.t.jones@gmail.com

Abstract

Mass mortality events are increasing in frequency and magnitude, potentially linked with

ongoing climate change. In October 2016 through January 2017, St. Paul Island, Bering

Sea, Alaska, experienced a mortality event of alcids (family: Alcidae), with over 350 car-

casses recovered. Almost three-quarters of the carcasses were unscavenged, a rate much

higher than in baseline surveys (17%), suggesting ongoing deposition and elevated mortal-

ity around St Paul over a 2–3 month period. Based on the observation that carcasses were

not observed on the neighboring island of St. George, we bounded the at-sea distribution of

moribund birds, and estimated all species mortality at 3,150 to 8,800 birds. The event was

particularly anomalous given the late fall/winter timing when low numbers of beached birds

are typical. In addition, the predominance of Tufted puffins (Fratercula cirrhata, 79% of car-

cass finds) and Crested auklets (Aethia cristatella, 11% of carcass finds) was unusual, as

these species are nearly absent from long-term baseline surveys. Collected specimens

were severely emaciated, suggesting starvation as the ultimate cause of mortality. The

majority (95%, N = 245) of Tufted puffins were adults regrowing flight feathers, indicating a

potential contribution of molt stress. Immediately prior to this event, shifts in zooplankton

community composition and in forage fish distribution and energy density were documented

in the eastern Bering Sea following a period of elevated sea surface temperatures, evidence

cumulatively suggestive of a bottom-up shift in seabird prey availability. We posit that shifts

in prey composition and/or distribution, combined with the onset of molt, resulted in this mor-

tality event.

Introduction

Climate change has been increasingly linked with shifts in marine ecosystem processes and

structure [1–3]. In addition to long-term global warming [4] and large-scale modes of climatic

variation (i.e. Pacific Decadal Oscillation [5]; North Atlantic Oscillation and El-Niño Southern
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Oscillation [6]), marine heatwaves (MHW)—prolonged periods of elevated sea surface tem-

peratures (SST)–have emerged as a phenomena of ocean climate variability [7–8] that can sig-

nificantly affect marine ecosystems [9, 10]. Although climate change is predicted to alter

marine ecosystems globally, the effects of global warming are predicted to be the most extreme

at higher latitudes [11].

The Bering Sea is a high latitude, semi-enclosed sea between the north Pacific and Arctic

Oceans [12], notable for having an extensive continental shelf and seasonal ice-cover that varies in

extent on interannual to multi-decadal time scales [2, 13]. Ecosystem structure, including the tim-

ing and composition of primary production and primary/secondary consumers, varies markedly

among early and late ice-retreat years [14–19]. The eastern Bering Sea supports some of the most

economically important fisheries in the world [1, 20], hosts large populations of marine mammals

[21, 22], and is the breeding and/or summering ground for ~30–40 million marine birds [23–25].

Bering Sea food webs are particularly sensitive to bottom-up climate effects, as changes in atmo-

spheric forcing impacts sea ice, as well as the extent of the ‘cold pool’, a lens of cold (< 2˚C) near-

bottom seawater that acts as a refuge for cold-water associated species, and also promotes primary

production through summer/fall [18, 25, 26]. Over the last two decades, several multi-year stanzas

of warm (2000–2005, 2014-present) and cold (2007–2013) conditions have been observed in the

southern Bering Sea, which have been linked to variability in phytoplankton biomass (lower in

warm years), copepod species composition (reduced abundance of large lipid-rich species in

warm years) and forage fish energy density (lower in warm years) [25–27].

As abundant, visible, upper-trophic organisms, seabirds have been proposed as indicators

of marine ecosystem shifts due to climate, with documented effects of climate variability on

both reproduction [28–30] and adult survival [31–33]. Large-scale shifts in climate have been

punctuated by large mortality events of marine birds [34–38]. These “massive mortality

events” (MME)—defined as catastrophic, but often short-lived, periods of elevated mortality—

can affect substantial proportions of a population, occasionally with long-term consequences

to population size [39]. Seabird MMEs are perhaps one of the most frequently occurring and

widely reported types of MME in the literature [40], potentially due to their perceived and

absolute (mortality often exceeding 10,000s-100,000s birds; [35, 38, 40, 41]) magnitude.

In this paper, we document a MME of marine birds, primarily Tufted puffins (Fratercula
cirrhata), on St. Paul Island, Pribilof Islands, Alaska, in the eastern Bering Sea (Fig 1) during

the late fall/winter of 2016/2017. The Pribilof Islands, located near the edge of the Bering Sea

continental shelf, support one of the largest concentrations of breeding seabirds (>2 million)

in the North Pacific [42, 43]. The islands have also been hunting and harvesting grounds to

Unangan (or Aleut) for millennia, with permanent settlements on both islands established in

the late 1700s. Several species of seabirds are important cultural and subsistence resources

[44], and as such seabird mortality events are both an ecological and societal concern for island

residents. Using a combination of long-term standardized beached bird surveys and intensive

surveys during the event, we characterize this MME in terms of timing, abundance, species

composition and carcass condition as compared to baseline measures. We use wind forcing

and carcass count phenology to model daily deposition and provide estimates of total mortal-

ity. Our results add to the growing body of literature documenting marine bird MMEs in the

northeast Pacific associated with recent and persistent warming [10, 38, 45].

Methods

Data collection

Beached bird data on St. Paul Island (SPI) including the date, location, taxonomic identifica-

tion, condition and effort-controlled count were collected by the Aleut Community of St. Paul

Tufted puffin mortality event in the Bering Sea
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Island Ecosystem Conservation Office (ACSPI-ECO) in collaboration with the Coastal Obser-

vation and Seabird Survey Team (COASST). COASST is a citizen science program in which

trained participants conduct monthly standardized surveys, recording all new and previously

observed carcasses within prescribed beaches. Field identifications are made from recorded

morphological evidence (foot type; standardized body measurements) and consultation with a

bird identification guide [46]. Carcasses are individually marked, photographed and subse-

quently verified by experts using morphological and photographic evidence. Bi-weekly to

monthly surveys have been carried out on four 1 km beaches on SPI (Fig 1) since 2006. Addi-

tional COASST surveys from nearby St. George Island (~80 km distant; SGI; 2 beaches), as

well as throughout the Aleutian Islands (14 beaches on 5 islands), provide a baseline (inclusive

of surveys conducted 2006–2015) of effort-standardized carcass abundance and taxonomic

composition.

During the 2016 MME, extremely high numbers of carcasses and difficult weather condi-

tions necessitated the development of a streamlined protocol (COASST Die-Off Alert). Created

and tested by ACSPI-ECO and COASST, the Die-Off Alert protocol requires collection and

removal of all carcasses on a set length of beach to a safer location off the beach where they are

sorted by species, age class, and carcass condition (i.e. intactness), and photographed in groups

(Fig 2). Although primary evidence (e.g. measurements, body condition) is not recorded, the

Fig 1. Location of St Paul Island within the Pribilof Island group in the Bering Sea. (A) The Bering Sea centered on the Pribilof Islands,

Alaska, with the 200m (shelf break) isobath shown. (B) St. Paul and St. George Islands in the Pribilof Islands. (C) Surveyed beaches on St

Paul Island: NB–North Beach, BB–Benson Beach, LB–Lukanin Beach, PB–Polovina Beach.

https://doi.org/10.1371/journal.pone.0216532.g001

Tufted puffin mortality event in the Bering Sea
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Die-Off Alert protocol facilitates collection over a larger beach area, and gross anatomical fea-

tures (e.g. intactness, molt) are visible from photographs, enabling post-collection verification.

Necropsies

Eight intact carcasses (6 Tufted puffins—5 adults, 1 juvenile, and 2 adult Horned puffins–Fra-
tercula corniculata) collected on SPI in October 2016 were sent to the National Wildlife Health

Center (USGS). Tissues collected for histopathology (5 birds) were fixed in 10% neutral buff-

ered formalin, processed routinely, embedded in paraffin and sectioned at approximately

5 μm. Routine bacterial cultures of the liver were conducted on five birds. Tracheal and cloacal

swabs from all birds were tested for avian influenza [47], and feather pulp was tested for avian

paramyxovirus-1 (2 birds) [48] and for West Nile virus (1 bird) [49]. Cloacal contents (4 birds)

and stomach content samples (2 birds) were sent to the Wildlife Algal-toxins Research and

Response Network (WARRN-West) to analyze for harmful algal toxins domoic acid and saxi-

toxin using an ELISA (Abraxis, Inc.). Remaining birds could not be tested for algal toxins due

to insufficient stomach contents for diagnostic analyses, or decomposition state [50].

Quantifying event versus baseline

We conducted two quantitative comparisons of event versus baseline data: lineal carcass

encounter rate (ER—carcasses per km of beach surveyed) and taxonomic composition.

Monthly baseline ER was calculated as the average for all month-years of data available for the

Pribilof Islands (SPI and SGI, 6 beaches). Ranges in baseline estimates were calculated as the

bootstrapped 95% confidence interval (95% CI) of the mean for each calendar month. To cre-

ate a broader geographic comparison, we extended taxonomic comparisons to data collected

on the Aleutian Islands (14 beaches on 5 islands).

Fig 2. Photo of carcasses found on North Beach, St. Paul Island, Alaska, on 17 October 2016. Birds pictured are 2 murres (Uria spp.—top

row left corner), 8 Horned puffins (Fratercula corniculata—top row center), 2 juvenile Tufted puffins (middle row right side) and 27 adult

Tufted puffins (middle and bottom rows). Scale bar in photo is 15 cm total length.

https://doi.org/10.1371/journal.pone.0216532.g002
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Particle trajectory modeling

To determine the likely origin of carcasses at sea (e.g. catchment area) and to estimate propor-

tional beaching rates, we ran a series of wind-forced particle simulation experiments. Daily

releases of 10,000 surface-trapped particles (i.e. replicating a floating bird carcass) were simulated

according to wind conditions observed from 1 October 2016 to 24 November 2016, capturing

the period where the majority of carcasses were deposited on SPI. Because we had no a priori
knowledge of the at-sea distribution of birds prior to the mortality event other than the occur-

rence of beached birds on SPI, but not on SGI, we randomly generated starting particle locations

at a uniform density around SPI, with initial distances, d0, up to 100 km. A maximum distance

of 100km from SPI was chosen as it results in simulated deposition on SGI, allowing us to iden-

tify maximal and closer distributions where deposition on SGI would have been minimal.

Previous studies have found strong correlations between carcass deposition and wind-

speed and direction [51–54]. We obtained wind velocity fields from the North American

Regional Reanalysis (NARR) dataset [55], which consists of 3-hourly averaged grids (32 km

resolution). Particle movement from one time-step to another (i.e. 3 hours) was modeled

using 4th order Runge-Kutta numerical integration, assuming particle windage equal to 2.5%

of the location (linearly interpolated from the nearest 4 NARR grid points), and time-specific

wind velocity [51, 52, 56, 57]. Although local surface currents likely contribute to carcass dis-

persal, we are unaware of surface current information resolved at a suitable temporal

(3-hourly) scale to capture nearshore current dynamics. Particle trajectories were simulated

from release until intersection occurred with the coastline of SPI or SGI, or 14 days [54],

whichever came first.

To account for sinking, each particle intersecting either island was assigned a probability of

reaching shore, modeled as a logistic function of float duration [54]:

p fð Þ ¼ Z1 �
Z1

1þ e� Z2ðf � Z3Þ

� �

ðEq 1Þ

where p(f) is the proportion of carcasses remaining afloat as a function of float duration, f, in

hours. Parameters η1−3 control the shape (i.e. rate and mid-point) of the float function, and

determine the rate at which simulated carcass sinking occurs (modeled after [54]). Values for

η1−3 were specified to match observations of carcass float duration from Alaska, where cooler

temperatures may delay decomposition, allowing carcasses to remain afloat longer [54, 58].

Ford et al. [58] found median float durations of 7 and 9 days in Prince William Sound, Alaska,

with nearly all carcasses sunk by 14 days. We specified two alternate sink functions, with

median float durations of 7 and 9 days (S1 Fig), and tested among them to determine how

alternate representations of float duration affected our mortality results. For particles remain-

ing at sea for the entire 14 days, p(f) was set to zero.

Catchment analyses

To identify catchment area, or the area of ocean within which carcasses could have originated

based on observed deposition, we focused on three temporal windows of carcass deposition:

(1) 17 to 21 October 2016, (2) 27 October to 1 November 2016, and (3) 15 to 23 November

2016, as these three periods had consistent survey effort, differential patterns of carcass deposi-

tion, and differential wind direction (north versus south; S2 Fig). For each window, we took

release sets ranging from three days prior to the first MME date (70% of simulated deposition

occurs within 3 days–S3 Fig) to the end of the MME window (inclusive) and calculated a grid

of proportional deposition (5×5 km grid cells arrayed from SPI to 100 km offshore) by sum-

ming p(f) for particles originating in each grid cell that ‘beached’ on SPI and SGI, respectively.

Tufted puffin mortality event in the Bering Sea
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In the absence of at-sea distribution data for birds prior to mortality, we assumed that birds

were uniformly distributed around SPI out to a maximum distance, dmax, which we varied (i.e.

by subsetting all particle releases) to investigate alternate spatial distributions. For a given dmax
we estimated proportional deposition on SPI and on SGI for all particles with initial distance,

d0� dmax, for each of the three observed deposition time windows. To explore the relationship

between offshore distribution and island-specific proportional deposition, we varied dmax
from 2 km to 100 km. Calculating the ratio of proportional deposition on SGI relative to SPI as

a function of dmax allowed us to bound at-sea distributions by identifying the value of dmax at

which deposition on SGI would have been expected given deposition on SPI. We also calcu-

lated proportional deposition on day i from release j, Pj(i), by summing p(f) for particles depos-

ited on day i, from release j. Alternate time-series of expected deposition on SPI and SGI per

day (i.e. ∑j<iPj(i)) were then calculated for alternate values of dmax. We explored the likelihood

of alternate at-sea distributions (proxied by dmax) by calculating the ratio of simulated deposi-

tion on SGI relative to SPI for different values of dmax. This allowed us to identify those distri-

butions that would have resulted in minimal expected deposition on SGI, versus those where

expected deposition rates would have been comparable among islands. For daily proportional

deposition rates we restricted this analysis to time windows when deposition occurred on SPI

as these were time intervals when carcasses were known to be afloat, and therefore could have

been deposited on SGI.

Total mortality estimation

Total mortality estimates are dependent on observed carcass abundance, survey effort, and

estimates of carcass detection, persistence and proportional beaching rates. We assumed that

counts, Cb,d, made on beach, b, on day, d, were equal to the sum of deposition following the

previous survey on that beach, minus the proportion that are washed away or scavenged, plus

the number of carcasses missed in the previous survey on day d’ that remained on the beach:

Cb;d ¼ ð1 � φÞrðd � d0ÞCb;d0 þ φLb
Xd

i¼d0þ1

rðd � iÞDi ðEq 2Þ

where φ is detection rate, Lb is length of beach suryeved, ρ(d) is the proportion of carcasses

remaining as a function of time since deposition (i.e. carcass persistence), and Di is the daily

rate of carcass deposition per km [41]. Daily deposition rate, Di, was modeled using expected

proportional deposition rates Pj(i) from particle simulations. Because of the predominantly

NW/S wind directions (S4 Fig), we split SPI into northern and southern halves and calculated

Pj(i) for each half separately. Daily deposition rate, Di, is the sum of proportional deposition,

multiplied by an effective mortality rate Mj:

Di ¼
1

L

Xj¼i

j¼i� 14

MjPjðiÞ ðEq 3Þ

where effective mortality rate is the number of carcasses required to sustain deposition that

when summed over time meet the observed carcass counts. The fraction 1/L converts from

island-wide deposition to deposition per km, where L was held constant at 21.8 km, equal to

the maximum linear dimension (NE to SW) of SPI, effectively modeling the area presented to

the wind by the northern/southern halves of the island.

Using our observed counts, Cb,d, (Eq 1) we calculated a range of estimates for Mj, making

the assumption that effective daily mortality rates were constant across releases that contrib-

uted to each count (i.e. Mj ¼
eM). Combining Eqs 2 and 3 results in an effective daily mortality

Tufted puffin mortality event in the Bering Sea
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rate, eM , from survey counts as:

gMb;d ¼
L
φLb

Xi¼d

i¼d0þ1

rðd � iÞ
Xj¼i

j¼i� 14

PjðiÞ

0

@

1

A

� 1

Cb;d � ðð1 � φÞrðd � d0ÞCb;d0Þ
� �

ðEq 4Þ

Because we had no event-specific data on detection (φ) or persistence (ρ) rate we selected

relevant published values, and examined the sensitivity of mortality estimates to variations in

these assumptions. A study on SPI in February 1996 [59] found that daily carcass persistence

was lower in the first 24 hours, and higher on subsequent days, with other studies coming to

similar conclusions [60, 61]. Therefore, we modeled persistence with respect to carcass resi-

dence time on the beach, τ, as a two-stage process:

rðtÞ ¼
r0r1

t� 1 if t > 0

1 if t ¼ 0
ðEq 5Þ

(

where ρ0 is the proportion that remain one day after deposition and ρ1 is the daily persistence

rate on subsequent days. Using first day (0.72–0.79) and subsequent (0.85–0.94) average daily

persistence rates from [59], recorded on SPI during winter, we specified that ρ0 was normally

distributed with 0.72 and 0.79 as ± 1 sd from the mean (ρ0~N(0.755,0.035)), and ρ1 was nor-

mally distributed with 0.85 and 0.94 as ± 1 sd from the mean (ρ1~N(0.895,0.045)) to encapsu-

late the uncertainty regarding these values (see S5 Fig).

Previous studies have reported a range of values for carcass detection rates (0.41–0.7 [61];

0.79–0.88 [62]; 0.42–0.6 [63]). Given deteriorating environmental conditions prevalent during

the mortality event we assumed that detection rate was most similar to the two studies that

reported lower detection rates (i.e. [61] and [63]). Averaged detection rate from those studies

was 0.53, but given the uncertainty around this parameter, we specify that detection rate was

normally distributed with 0.4 and 0.66 (i.e. approximately the average upper and lower values

reported from those studies) as ± 1 sd from the mean (φ~N(0.53,0.13)). Although we were

unable to estimate carcass persistence and detection rates from baseline surveys, refind rates

from baseline surveys on SPI (12%, N = 58 birds, survey interval = 11–15 days), compared

favourably with these assumptions (median persistence at day 13 = 0.23 × detection rate of

0.53 = refind rate of 12%).

We constructed an estimate of mortality by randomly drawing values for persistence (ρ0,ρ1)

and detection (φ) in order to calculate gMb;d according to Eq 4. We multiplied the resultant

average daily mortality rate by the duration of the event, which we conservatively define as

12-October to 23-November (Nday = 43). We define the start of the mortality event as the

12-October because although carcasses could have been afloat for days prior to deposition (i.e.

the mortality event started earlier), we have no knowledge of at-sea distribution or float dura-

tion to inform this, and so we conservatively set the start of the mortality event one day prior

to the first report of beachcast birds. After 23 November 2016, surveying became sporadic due

to adverse weather conditions such that mortality could not be reliably estimated. We then

repeated this procedure 5,000 times, with each permutation based on random draws of persis-

tence and detection rates, in order to create a distribution of mortality estimates according to

model parameter uncertainty. The entire procedure was repeated for each scenario of maxi-

mum distance offshore (defined from catchment analyses) and float duration that affected the

proportion of carcasses deposited (Pj(i) in Eq 4), in order to examine how our mortality esti-

mates varied with the assumption of offshore distribution.

All analyses were carried out in R version 3.4.3 [64].

Tufted puffin mortality event in the Bering Sea
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Results

MME description

Carcasses were first encountered by residents on 13 October 2016. Standardized surveys began

on 17 October and continued into February 2017. We placed surveys into three time periods

based on survey frequency and weather: 17 October to 1 November 2016 (Nsurv = 13); 15 to 23

November 2016 (Nsurv = 6); and 7 December 2016 to 3 February 2017 (Nsurv = 6).

During the first period, 247 carcasses were found, consisting of Tufted puffins (88%), pri-

marily adults (93% of Tufted puffins with determinable age, N = 211), Horned puffins (6%)

and Common or Thick-billed murres (Uria spp.) (6%; Table 1). All-species encounter rates

were 65 times higher than the Pribilof Islands baseline (ER = 3.27 versus 0.05 carcasses km-1,

95% CI 0.03–0.12; Fig 3) during this time period. During the second period (mid-November)

an additional 78 carcasses were recorded, again mostly Tufted puffins (83%), with Crested auk-

lets (Aethia cristatella) making up the remainder (15%), and an average encounter rate 74

times higher than baseline (ER = 4.11 versus 0.05 carcasses km-1 95% CI 0.02–0.18; Fig 3). In

the third and final period, surveys had become sporadic due to weather. By January (Nsurv =

3), Crested auklets were the only species found (Table 1). Throughout the event, a large pro-

portion (72%) of recovered carcasses were fresh and unscathed (e.g., intact carcass with clear

fully rounded eyes). Baseline SPI surveys, by contrast, had considerably lower rates of

intactness (17%, N = 176; see S1 Text). Carcass abundance and relative intactness suggest that

recent mortalities were deposited on a daily basis from mid-October to at least mid-November,

indicating that mortality was ongoing throughout that period (Table 1).

Regular monitoring on the Pribilof Islands recorded elevated beaching rates from July to

September of 2007 (Fig 3), primarily Short-tailed shearwaters (64%, N = 66) and Northern ful-

mars (15%) (S3 Table), consistent with the usual species composition and phenology of

Table 1. Observed counts made on St. Paul Island, Alaska, from October 2016 through to January 2017.

Date Beacha Length

(km)

TUPU

(A)b
TUPU

(J)b
TUPU (A/J)b HOPUb CRAUb Murre Total N:Sc

(%)

% intact

17-Oct NB 10 27 2 0 8 0 2 39 100:0 92.3

18-Oct NB, BB 16.5 6 1 1 0 0 0 8 63:37 100

19-Oct NB 10 16 3 0 2 0 1 22 100:0 63.6

20-Oct NB 10 16 4 1 4 0 1 26 100:0 46.2

21-Oct NB 10 12 4 0 2 0 0 18 100:0 61.1

25-Oct LB, NB 13.1 4 0 0 0 0 0 4 75:25 25.0

27-Oct BB, LB, PB 11.5 72 0 4 0 0 7 83 0:100 85.5

1-Nov LB, PB 5 43 1 0 0 0 3 47 0:100 68.1

15-Nov BB, NB 16.5 37 0 0 0 8 0 45 80:20 60.0

18-Nov LB, PB 5 10 0 0 0 1 1 12 0:100 0

23-Nov NB, BB 16.5 17 0 1 0 3 0 21 71:29 57.1

7-Dec NB, BB 16.5 2 0 1 0 3 0 6 100:0 33.3

3-Jan NB, BB 16.5 0 0 0 0 13 0 13 38:62 100

11-Jan LB 3.1 0 0 0 0 13 0 13 0:100 84.6

3-Feb LB 1.0 0 0 0 0 0 2 2 0:100 0

Total 161.2 262 15 8 16 41 17 359 49:51 69.6

a Beach names: NB—North Beach, BB—Benson Beach, LB—Lukanin Beach, PB—Polovina Beach
b Species: TUPU—Tufted puffin, HOPU—Horned puffin, CRAU—Crested auklet, A—adult, J—juvenile.
c N:S north:south ratio of carcass deposition observed on St Paul Island for that survey date.

https://doi.org/10.1371/journal.pone.0216532.t001
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beached bird abundance on the Pribilof Islands (i.e. Fig 3 and Fig 4). Prior to the 2016/17 event,

COASST surveys on the Pribilof Islands had recorded relatively few Alcids (25% of all car-

casses), predominantly murres (55% of Alcidae) and auklets (Aethia spp.; 36%). From June

2006 through September 2016, only 6 puffin carcasses had been recorded (Fig 4). Within this

same baseline period, Procellariiforms were most abundant (56% of the total), mainly Northern

fulmars (Fulmarus glacialis; 47% of Procellariiformes) and Short-tailed shearwaters (Ardenna
tenuirostris; 37%; Fig 4). Extending baseline comparisons south to the Aleutian Islands: Tufted

puffins made up 4–6% of annual encounters, and were almost completely absent during the fall/

winter period (Fig 4). Crested auklets accounted for 3–16% of carcasses encountered in the

Aleutian Islands, and almost all were found in the fall/winter period (Fig 4).

Significant necropsy findings included emaciation with severe pectoral muscle atrophy

(N = 8, 6 Tufted puffins, 2 Horned puffins). On histopathology, atrophy of fat was the most

significant finding. Diagnostic testing via culture and PCR revealed no infectious diseases (e.g.,

pathogenic bacteria and viruses). Domoic acid was not detected in either of the birds sampled,

but trace levels of saxitoxin (3.1 to 9.5 ng/g) were detected in stomach or cloacal contents of all

four birds, albeit ~2 orders of magnitude below food safety limits (800ng/g). Elimination rate,

Fig 3. Time-series of effort-standardized beached bird abundance and survey effort on the Pribilof Islands, Alaska. (A) Month-averaged relative carcass

abundance (carcasses km-1) for the Pribilof Islands, plotted as a function of time, with baseline average (monthly from 2006 to 2015 inclusive, ±95% CI)

overlaid. (B) Cumulative survey effort per month for the Pribilof Islands, plotted as a function of time. The months of the 2016/2017 event are highlighted in

red.

https://doi.org/10.1371/journal.pone.0216532.g003
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Fig 4. Baseline taxonomic composition of beached bird carcasses found on the Pribilof Islands and Aleutian

Islands. Species composition is shown year round (A) and for the fall/winter period (B—September to December) for

all taxonomic groups recorded on the Pribilof Islands, Alaska and the eastern and western Aleutian Islands, Alaska.

Fall/winter data were unavailable from the Western Aleutian Islands. Alcid species composition is shown for the

Pribilof Islands year round (C) and for the fall/winter period (D). Asterisks (�): carcasses identified to group but not

species. TBMU: Thick-billed murre (Uria lomvia), COMU: Common murre (Uria aalge), HOPU: Horned puffin,

TUPU: Tufted puffin, PIGU: Pigeon guillemot (Cepphus columba), CRAU: Crested auklet, LEAU: Least auklet, PAAU:

Parakeet auklet (Aethia psittacula).

https://doi.org/10.1371/journal.pone.0216532.g004
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and minimum concentration at which marine birds experience negative effects of algal toxins

are unknown. Although acute toxicosis or disease was not diagnosed in these birds, these

causal factors cannot be entirely ruled out due to the small number of birds tested.

Where molt could be determined from photographic evidence, 95% of the adult Tufted puf-

fins were classified as in flight feather molt (N = 245; S2 Table), indicated by wing chord mea-

surements at least 2 cm shorter than the minimum adult wing chord length of 18cm [65].

None of the Horned puffins or Crested auklets were classified as in flight-feather molt. Molt

state could only be determined in 3 of the 17 murres (S2 Table).

In sum, this MME was characterized by carcass encounter rates 60–80 times higher than

baseline, with an unprecedented abundance of adult Tufted puffins, almost all of which were

in flight-feather molt and were starving.

Catchment analyses

To explore whether carcass deposition could be proxied by wind-driven dispersal of car-

casses, we divided deposition modeling into three periods based on occurrence of beached

bird surveys (Table 1) and prevailing wind direction: period 1 from 17–21 October 2016—

daily surveys and predominantly northerly winds; period 2 from 27 October to 1 November

2016—intermittent surveys and predominantly southerly winds; and period 3 from 15–23

November 2016—intermittent surveys and variable northerly winds (S2 Fig). After 23

November 2016, surveys were too sporadic due to deteriorating weather, preventing an

examination of carcass deposition patterns. During the first period, catchment analysis sug-

gested that the majority (97.5%) of beached birds would likely originate from north of the

island (Fig 5A) matching the observed pattern of deposition (97% of carcasses observed on

North Beach; Table 1). By contrast, during the second period, catchment analysis suggested

that the majority (95%) of carcasses deposited on SPI likely originated from south of the

island (Fig 5B), which again mirrored the observed pattern of carcass deposition (Table 1).

By the third period, the catchment area was less well-defined (Fig 5C), with approximately

equal proportions of simulated deposition on SPI originating from locations north of the

island versus south.

We used our catchment analysis to explore the maximum distance from SPI moribund or

deceased birds might have originated from, given a lack of reported carcasses from SGI. Dur-

ing the first period of deposition on SPI, if moribund birds had been farther than ~19 km from

SPI, deposition on SGI should have been ~10% of the SPI rate, rising to 50% for dmax = 38 km

(Fig 5D). Due to the switch in prevailing wind direction from northerly to southerly during

the second period, simulated deposition on SGI was considerably lower, reaching only 10% of

the SPI rate at dmax� 30 km (Fig 5E). However, there were notable differences between the 7

and 9 day float duration scenario’s, particularly at distances closer to SPI, likely resulting from

carcasses floating long enough to reach SGI in the latter scenario (Fig 5E). The expected depo-

sition ratio over the third window was intermediate, reaching 10% at dmax = 25 km and 50% at

dmax = 77km (Fig 5F). Setting the ratio at 20% would result in maximum distances from SPI of

23km, 29km (9d) to 61km (7d) and 37km across time-periods, respectively (Fig 5D–5F).

Time-series of simulated deposition suggest that if moribund birds were< 20 km from SPI

there would have been minimal deposition on SGI overall, albeit with punctuated periods of

much higher deposition particularly from the 18 to 21 October and 11 to 15 November (Fig 6)

when considerable carcass deposition on SPI was observed. If moribund birds had been dis-

tributed out to 25 km from SPI, particle simulations suggest there would have been periods of

comparable deposition on SGI when deposition was recorded on SPI (Fig 6). Combining

these findings and the observation that no carcasses were recorded from SGI, we report

Tufted puffin mortality event in the Bering Sea
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mortality estimates for distributions with dmax from 2 km (extreme nearshore compression) to

20 km (the most dispersed that maintains minimal deposition on SGI).

Total mortality estimates

Mortality estimates varied considerably as a function of model parameters, ranging from 0.7 to

2.1 (99% range across permutations) times the median value due to alternate values of carcass

persistence and detection (Fig 7A). For at-sea distributions from nearshore compression (dmax
= 2 km from SPI) to the maximum limit suggested by catchment analyses (dmax = 20 km), our

median total mortality estimates ranged from 3,150 (dmax = 2 km, 95% CI: 2,415–4,870) to

8,800 (dmax = 20 km, 95% CI: 6,700–15,070) birds (Fig 7B). Marginally higher mortality esti-

mates resulted from the assumption that carcasses remained afloat for a median of 7-days

compared to 9-days, with the difference increasing from 3.2% for a dmax of 2 km (3,245 versus

3,145, 7-d versus 9-d scenario) to a difference of 7.4% for dmax = 20 km (8,840 versus 8,230)

(Fig 7B). However, this difference was marginal in comparison to persistence/detection rate

Fig 5. Probability of carcass deposition as a function of location and distance from St. Paul (SPI) and St. George (SGI) Islands, Alaska. Probability of

carcass deposition as a function of start location (A-C; median float duration = 7 days), and proportional deposition as a function of the assumed at-sea

distribution, proxied by maximum distance, dmax, from SPI (D-F), are explored for carcasses deposited between 17 to 21 October 2016 (A & D), 27 October to

1 November 2016 (B & E) and 15 to 23 November 2016 (C & F). Dashed contours in A-C indicate distances of 5, 10, 20, 40, 60 and 80 km from the SPI

coastline. Solid/dashed lines in D-F represent results from alternate formulations of float duration (solid = 7 day scenario, dashed = 9 day scenario).

https://doi.org/10.1371/journal.pone.0216532.g005
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Fig 6. Time-series of simulated deposition (assuming constant mortality per day and median carcass float duration of 7 days) on

St. Paul (solid lines) and St. George (dashed lines) Islands, Alaska. Results are shown for four alternate distributions of moribund birds:

birds distributed uniformly from St. Paul to 10 km, 15km, 20km and 25 km offshore. Time periods in which deposition was observed on

St. Paul are bounded by numbered (1–3 for each deposition window) vertical gray dashed lines.

https://doi.org/10.1371/journal.pone.0216532.g006

Fig 7. Total mortality estimates for a range of parameter estimates and distribution assumptions. Individual mortality estimates

from a single model (A) run assuming moribund birds were distributed uniformly up to 10 km from St. Paul Island, and that carcasses

remained afloat for 7 days on average, plotted as a function of detection and persistence rates that were randomly drawn for that model

run. Contours represent equal mortality estimates for combinations of detection and persistence rate, and + represents the median value

of persistence and detection rate. (B) Median estimates of total mortality for alternate scenarios of spatial distribution (uniform up to a

maximum distance offshore of SPI) and float duration (median sink times of 7 and 9 days) plotted as a function of assumed distribution,

with 50 (thick lines) and 95% (thin lines) confidence intervals calculated across random draws of persistence and detection rate within

each modeled scenario.

https://doi.org/10.1371/journal.pone.0216532.g007
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uncertainty (upper bound� 2×lower bound), and uncertainty regarding at-sea distribution

(upper bound� 2.7×lower bound), likely because simulated carcass deposition occurred rela-

tively soon after release (within 3 days; see S3 Fig) within our bounded distributions. As we

have no additional information to constrain at-sea distributions, we report estimated mortality

of 3,150 to 8,800 birds. Furthermore, given that 87% of the carcasses found from 17 October to

23 November were Tufted puffins, we estimate that 2,740 to 7,600 Tufted puffins died during

this time (depending on dmax), with outer limits of 2,100 to 13,100 (95% CI).

Discussion

Mortality impact

Our analyses suggest that thousands of Alcids, predominantly adult Tufted puffins, died dur-

ing this event around SPI in the eastern Bering Sea. The Tufted puffin population on the Pribi-

lof Islands has been estimated at only 7,000 breeding individuals (SGI: 6,000, SPI: 1,000) [43],

although this estimate is decades old, and may be imprecise due to the relatively inaccessible

breeding habitat of this species [66]. However, taken at face value, our most likely mortality

estimates represent ~39 to 109% of the Pribilof Island population, making it likely that affected

birds also originated from other colonies. Prior to this event, the occurrence of beachcast

Tufted puffins was truly rare (0.35% of all carcasses found, N = 283) on the Pribilof Islands.

Percentages are slightly higher during the breeding season (June-July) on Aleutian island colo-

nies harboring absolutely larger populations (e.g., 7% of carcass finds on Buldir Island; breed-

ing population ~38,000; S6 Fig). Outside of the breeding season, the absence of puffin

carcasses from beached bird surveys on the Pribilof Islands, and more generally from beached

bird surveys throughout the Bering Sea (Fig 4), is likely due to their winter-migration to

pelagic waters [67]. Little is known about dispersal patterns of Tufted puffins in the Bering Sea,

but it is thought that breeding adults disperse towards wintering grounds throughout the cen-

tral North Pacific [67] immediately after chicks fledge (late August to early September on Aik-

tak Island–[68]), such that densities in the SE Bering Sea are minimal by late October [69, 70].

Local and traditional knowledge on SPI also suggests that Tufted puffins leave within a rela-

tively short timeframe from the end of August to mid-September and are rarely seen in Octo-

ber and November. Collectively this information indicates that Tufted puffin distribution was

different from usual in the early winter of 2016, and that birds affected by this die-off were not

necessarily local breeders. Alternatively, birds dispersing towards the shelf break (Fig 1), a pro-

ductive area [18, 42, 71, 72] favoured by Tufted puffins during the breeding season [73], from

Bering Sea colonies farther afield (e.g., east and north of the Pribilof Islands) may have come

into close proximity of the Pribilofs during the MME window. Sizeable Tufted puffins colonies

are located on Shaiak Island (~80,000 breeders–[74]) in the eastern Bering Sea (S6 Fig) and if

carcasses washing ashore on SPI included individuals from this colony, our total mortality esti-

mates would correspond to a 3–10% loss in breeding population size. Alternately, if birds

observed during the MME included those from the relatively smaller northern breeding popu-

lations of Tufted puffins (i.e. St Matthew Island: ~3,500; St Lawrence: ~7,000 –[74]) dispersing

southwards, then this event would have been associated with large declines in breeding colony

size (26–72% loss). Tufted puffins have sustained dramatic declines in the Gulf of Alaska [75],

as well as in British Columbia [76] and on colonies in the northern California Current [77],

making this event, although spatially constrained and absolutely small relative to other docu-

mented Alcid MMEs [38, 45], of concern. However, because there is no definitive way to

assign collected carcasses to their respective colonies, the true population impact of this event

remains unknown.
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Mortality estimation

Estimating total mortality for this event was hampered by uncertainty regarding carcass detec-

tion and persistence rates, and the at-sea distribution of moribund birds prior to mortality.

Employing mark-resighting methods during a mortality event [59], can reduce the uncertainty

of mortality estimates by constraining carcass persistence and detection rates, but requires

considerable resources and planning, which may not be possible during an ongoing event.

However, the largest source of uncertainty in our modeling was in the at-sea distribution of

birds, which manifestly altered estimates of the proportion of carcasses that make it to shore

[54, 57, 78]. In the absence of other distribution information (i.e. collected from concurrent at-

sea surveys [38, 52]), and because carcasses were observed on SPI and not SGI, we made the

simplifying, yet limited, assumption that moribund birds were uniformly distributed around

SPI out to a distance where deposition on SGI would have been expected. If moribund birds

had moved closer to shore in response to mortality inducing conditions, as was potentially the

case for the Cassin’s auklet die-off along the California to Washington coast in 2014–15 [38],

then observed deposition could have resulted from relatively low mortality (i.e. < 3,000 birds).

Why and if apparently starving pelagic marine birds move inshore remains unknown,

although this is a precondition for seabird mass mortality events to be captured by beached

bird surveys [52, 54, 57]. Further research into the behavioural responses of stressed seabirds,

particularly with regards to shoreward migration, would benefit our understanding of seabird

mortality events and improve our ability to constrain estimates of their magnitude.

Event characteristics

The majority of Tufted puffins observed during this event were adults in wing molt, a condi-

tion also observed during other puffin mortality events [79]. Tufted puffins, as with other

Alcids, undergo nearly synchronous flight feather molt [80], rendering them flightless for up

to 40 days [81]. Wing molt is a particularly stressful time for pursuit divers as the growth of

new feathers increases nutritional requirements at a time when foraging is constrained [79, 80]

and may be more energetically demanding due to reduced wing area [82]. Perhaps because of

this, wing molt in Alcids is temporally constricted to post-breeding, post-migration to winter-

ing foraging grounds and prior to the onset of harsh winter conditions [79, 80]. For Tufted

puffins, wing-molt is reported to occur between August and October [83], suggesting that

affected birds were molting relatively late, although molt phenology is likely later at higher lati-

tudes (e.g. [84]). If birds were in relatively poor body-condition following breeding/post-

breeding dispersal and/or if prey was unavailable in the immediate vicinity of SPI, then the

additional nutritional requirements due to the loss and subsequent regrowth of flight feathers,

coupled with the lack of mobility to find prey elsewhere, likely acted to increase relative mor-

tality of molting birds, contributing to the overall magnitude of this event.

While this die-off was dominated by Tufted puffins, Crested auklet carcasses became

increasingly abundant from mid-November onwards. Crested auklets breed throughout the

Bering Sea with major colonies in the north (St Matthew, Hall and St Lawrence Islands) and

along the Aleutian Island chain [85, 86], in addition to the ~ 34,000 breeding individuals on

the Pribilof Islands (SGI: 28,000, SPI: 6,000 –[85]). Unlike Tufted puffins, post-breeding

Crested auklets disperse northwards towards foraging grounds close to the ice-edge, before

returning south to overwintering locations in the northwest Pacific (Kuril Islands and the sea

of Okhotsk) and the southeast Bering Sea, including near the Pribilof Islands [87–89]. Conse-

quently, the later wave of Crested auklet mortality may have been associated with the usual

southerly migration of these birds. While Tufted puffin and Crested auklet mortality observed

in 2016 was coincident, suggestive of a common causal factor, event-characteristics were
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species-specific, with molt and altered distribution implicated for Tufted puffins, and elevated

post-migration/over-wintering mortality [40] at their usual wintering grounds for Crested

auklets.

Indicators of ecosystem change

Mass mortality events of marine birds are often linked to food stress [38, 90, 91]. Within the

Bering Sea, large-scale mortality events in 1983 and 1997 were linked to changes in prey phe-

nology (primarily zooplankton), abundance and composition, as a result of ocean-climate

anomalies [1, 34, 36]. Massive shifts in North Pacific marine ecosystems have been observed

from 2013 to 2017 as a result of anomalous atmospheric conditions [92], including the sus-

tained presence of the northeast Pacific marine heatwave [10]. Thus far, these shifts have been

linked directly to two seabird MMEs [38, 45]. In the Bering Sea, atmospheric conditions from

2014 onwards resulted in decreased winter sea-ice extent and earlier retreat, and associated ele-

vated water temperatures [25, 26]. By 2015/2016, observations were indicative of reductions to

forage fish abundance (capelin) and energy density (juvenile Pollock), and reduced abundance

of large lipid-rich copepod species and euphausiids on the southern Bering Sea shelf [26, 93].

Duffy-Anderson et al. [26] also reported that the distribution of higher quality prey species

(i.e. large lipid-rich copepods and euphausiids) may have shifted northward in the Bering Sea,

associated with the retracted cold pool. Of the two species primarily affected by this die-off,

Tufted puffins prey on forage fish (i.e. juvenile Pollock, capelin, pacific sandlance) and inverte-

brates (euphausiids and squid–[67]), whereas Crested auklets are planktivorous, feeding pri-

marily on euphausiids (Thysanoessa spp.–[94]) and large calanoid copepods [95, 96]. As such,

Tufted puffins, Crested auklets and other piscivorous or planktivorous seabirds foraging on

the southern Bering Sea shelf, may have been subjected to food stress, which in combination

with molt for Tufted puffins and southward migration in Crested auklets, may have ultimately

caused the documented wave of mortality.

As this die-off didn’t affect the neighbouring island of SGI, it is likely that birds were highly

localized to SPI, or that birds were north of SPI, from which expected deposition on SGI

would have been minimal (see Fig 5). However, this does raise the question of relative suscep-

tibility of seabirds among the Pribilof Islands. Advection of productive oceanic water into the

Pribilof domain likely influences productivity and prey availability more strongly at SGI due to

its proximity to the shelf break (~ 25 km, compared to 90 km for SPI—[97]), such that foraging

conditions near SGI may be more consistent than at SPI [42, 98]. Given overall poorer foraging

conditions (i.e. [26, 93, 99]), the relatively stronger influx of oceanic waters at SGI than at SPI

may have created differential patterns of food stress, and subsequently mortality. However,

given the lack of information regarding the at-sea distribution of birds during the mortality

event, we have no way of discerning among patterns in relative abundance versus mortality as

the reason for differences in beachings between SPI and SGI.

Although evidence was suggestive of starvation as the primary cause, factors other than

prey abundance/quality may have contributed to this mortality event. While weather condi-

tions during the event did not point to storminess as a primary cause (see S2 Text), the onset

of winter storms would have likely increased energetic requirements (i.e. [100]) and potentially

prevented birds from foraging [101], exacerbating conditions, especially if prey quantity/qual-

ity was limiting [26]. This may be particularly true towards the end of the mortality event (i.e.

Crested auklets) as wind-speeds in January were particularly strong (S2 Text). Whether toxi-

genic algae (e.g., Pseudo-nitzschia) was also a contributory factor remains unknown. Although

trace levels of saxitoxin were found in all carcasses sampled (n = 4), none were diagnosed with

acute toxicosis, suggesting that toxins—if they were a factor—were not primarily responsible.
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Given warming ocean temperatures and increasing light levels due to northern retreat of sea

ice in the Alaskan subarctic/Arctic, increasing prevalence of harmful algal blooms is likely

[102]. Thus understanding pathways of ingestion in marine birds, and levels of toxin inducing

harm, is critical.

Conclusions

This mortality event represents one of multiple seabird mortality events that have occurred in

the Northeast Pacific from 2014 to 2018 (e.g., [38, 45]), cumulatively suggestive of broad-scale

ecosystem change. Although the absolute number of carcass recoveries was small (< 500),

total estimated Tufted puffin mortality was in the thousands, and may represent a significant

portion of several Bering Sea colonies in addition to Pribilof Islands breeders, which is particu-

larly concerning given recorded declines throughout the southern part of their range [75–77].

Fey et al. [39] suggest that MMEs are indicators of a changing world, and particularly of cli-

mate warming. Within the Bering Sea, the occurrence of multi-year stanzas of warm condi-

tions (2001–2005 and 2014–2018; [25, 27]) may be particularly detrimental to seabirds via

sustained reductions in the abundance and quality of prey species that were historically abun-

dant [103]. Whether seabirds are resilient to these changes will ultimately govern their long-

term viability in an increasingly variable climate.

Supporting information

S1 Table. Survey effort and number of birds found for baseline COASST surveys on

St. Paul Island, Alaska relative to the mortality event period in 2016/2017. Data is presented

for the calendar months of October to February, and the baseline is presented as the median

(med), minimum (min), and maximum (max) of survey effort and counts across years; # =

number.

(DOCX)

S2 Table. Bird counts summarized by species, age class and primary flight feather molt.

(DOCX)

S3 Table. COASST survey data summarized on a monthly basis for the Pribilof Islands

and the Aleutian Islands, including survey effort, counts and species composition.

(XLSX)

S1 Fig. Modeled carcass sink functions. Plotted values show the proportion of carcasses

remaining afloat as a function of time since death (A) and a histogram of the proportion of

carcasses that sink as a function of float duration, binned daily (B). Black/grey lines/bars, and

red lines/bars are for alternate float functions with median durations of 7 and 9 days, respec-

tively.
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S2 Fig. Wind speed and direction for St Paul Island during the mortality event. Wind

speed and direction are shown for 10 October to 1 November 2016 (A) and 2 to 23 November

2016 (B). Wind directions are given as daily median (arrow) and 50% range (blue polygons

around arrows).

(TIFF)

S3 Fig. Histograms of simulated time from release to deposition for particles deposited on

St Paul Island for alternate scenarios of at-sea spatial distribution. Histograms show the

proportion of particles deposited binned by time afloat (0.5 day bin width) assuming that mor-

ibund birds were distributed uniformly up to 10km (A), 20 km (B) and 80km (C) from

Tufted puffin mortality event in the Bering Sea

PLOS ONE | https://doi.org/10.1371/journal.pone.0216532 May 29, 2019 17 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216532.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216532.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216532.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216532.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216532.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0216532.s006
https://doi.org/10.1371/journal.pone.0216532


St. Paul Island.

(TIFF)

S4 Fig. Wind rose showing the frequency of wind speed and direction on St. Paul Island,

Alaska (57.26˚N, 170.19˚W) from 1 October to 30 November 2016. Data are 3-hourly aver-

aged wind speed and direction from the North American Regional Reanalysis (NARR) data-

base, and segments are oriented according to incoming wind.
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S5 Fig. Carcass persistence as a function of residence time. Plotted are median values as well

as 80% and 95% range across 10,000 random draws of persistence function parameters (ρ0,ρ1).
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S6 Fig. Map of Tufted puffin colonies, color and size-coded according to estimated breed-

ing population size. Colonies referred to in the main text are labelled. SLI: St. Lawrence

Island, SMI: St. Matthew Island, SPI: St. Paul Island, SGI: St. George Island, SI: Shaiak Island,

EI: Egg Island, KI: Kaligagan Island, AI: Aiktak Island. Data obtained from Alaska Maritime

National Wildlife Refuge (AMNWR).
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S1 Text. Comparisons of carcass intactness, as a proxy for relative scavenging pressure and
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