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Abstract: A simple tensor decomposition model was applied to the liver transcriptome analysis
data to elucidate the cause of cadmium-induced gene overexpression. In addition, we estimated the
mechanism by which prenatal Cd exposure disrupts insulin metabolism in offspring. Numerous
studies have reported on the toxicity of Cd. A liver transcriptome analysis revealed that Cd toxicity
induces intracellular oxidative stress and mitochondrial dysfunction via changes in gene expression,
which in turn induces endoplasmic reticulum-associated degradation via abnormal protein folding.
However, the specific mechanisms underlying these effects remain unknown. In this study, we found
that Cd-induced endoplasmic reticulum stress may promote increased expression of tumor necrosis
factor-α (TNF-α). Based on the high expression of genes involved in the production of sphingolipids,
it was also found that the accumulation of ceramide may induce intracellular oxidative stress through
the overproduction of reactive oxygen species. In addition, the high expression of a set of genes
involved in the electron transfer system may contribute to oxidative stress. These findings allowed
us to identify the mechanisms by which intracellular oxidative stress leads to the phosphorylation of
insulin receptor substrate 1, which plays a significant role in the insulin signaling pathway.

Keywords: cadmium exposure; insulin metabolism disruption; tensor decomposition

1. Introduction

Cadmium is a non-essential trace metal found in cells [1]. However, when excessive
amounts of Cd enter the body owing to inoculation through food or exposure, it accumu-
lates in the cells. As an electrophilic metal, Cd exerts a negative effect on cellular protein
molecules [1]. An adverse effect of excessive Cd accumulation is the inhibition of protein
folding. For a protein to fully perform its function, its three-dimensional structure must
be maintained properly. Thus, unfolded proteins accumulate in the endoplasmic reticu-
lum, the organelle responsible for proper protein folding. The accumulation of unfolded
proteins is known to cause endoplasmic reticulum stress, and excessive stress induces
endoplasmic reticulum-associated degradation (ERAD). The ubiquitin-proteasome system
is activated in response to ERAD induction to degrade unfolded proteins. Conversely,
endoplasmic reticulum stress is alleviated when accumulated unfolded proteins undergo
ubiquitination, making them targets for proteasome degradation. However, when stress
levels exceed the stress-avoidance capacity of ERAD, cells induce apoptosis. ERAD also
promotes ATP-dependent responses. Additionally, insulin signaling is initiated when in-
sulin binds to the insulin receptor (IR) on the cell membrane, which ultimately translocates
glucose transporter type 4 (GLUT4) to the cell membrane, allowing glucose to enter the cell.
The glycolytic system in cells utilizes glucose taken up by the body to produce ATP. When
insulin signaling is inhibited, symptoms, such as elevated blood sugar levels, are observed,
which also cause type 2 diabetes.

Some reports have suggested that oxidative stress plays a major role in Cd toxicity.
Shaikh et al. reported that Cd toxicity was reduced by administering antioxidants to mice

Genes 2022, 13, 1698. https://doi.org/10.3390/genes13101698 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13101698
https://doi.org/10.3390/genes13101698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-0867-8986
https://doi.org/10.3390/genes13101698
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13101698?type=check_update&version=1


Genes 2022, 13, 1698 2 of 12

after chronic Cd administration. This suggests that Cd toxicity causes various adverse
biological effects via oxidative stress [2].

Several studies have linked Cd toxicity to abnormal insulin metabolism. For example,
Takashige et al. reported that mice exposed to high doses of Cd for two weeks might
develop abnormal adipocyte differentiation, expansion, and function, leading to insulin
resistance, hypertension, and cardiovascular disease [3].

In addition, compelling evidence suggests that prenatal exposure to Cd and other
toxic metal contaminants increases the risk of cardiovascular disease and obesity-related
morbidity, including type II diabetes, in unborn children [4]. Al-Saleh et al. also reported
that prenatal Cd exposure significantly affected birth weight [5]. The data used in this
study are based on such reports and are derived from experiments conducted to verify
them in mice and to investigate the detailed mechanisms.

The transcriptome analysis results of Jackson et al. (who obtained the data used in
this analysis) suggest that Cd exposure induces ERAD and intracellular oxidative stress
and mitochondrial dysfunction may cause insulin resistance. Additionally, changes in the
expression of genes indicative of lipid abnormalities have been observed in response to Cd
exposure [6].

The analysis by Jackson et al. identified differentially expressed genes (DEGs). Specif-
ically, the method was used to determine whether there was a significant difference in
expression levels by comparing the ratio of signal values between the genes in the liver
transcriptome analysis data of individuals whose mothers were exposed to Cd and those
whose mothers were not exposed to Cd at the same point in their lives and of the same
gender. In this method, 5789 DEGs were identified for the female postnatal day 42 (PND42)
data, which represent more than one-third of the total number of genes in the data identified
as DEGs [6].

Thus, although analyses were performed at each time point and the results were
compared, no attempts have been made to conduct an integrated analysis of data from all
time points or to identify genes that change in response to PND changes.

The linear regression method using data from all time points as explanatory variables
(see Section 2.2.1) resulted in the overexpression of 5865 genes. However, to comprehend
the mechanism, it is preferable to identify genes that play a decisive role; therefore, the
overexpression of more than one-third of all genes is inappropriate.

In this analysis, we used tensor decomposition on the liver transcriptome analysis
data of Jackson et al. to identify genes that have some level of time dependence on PND,
to identify a smaller number of overexpressed genes relative to the total number of genes,
and to estimate which genes play an important role. The study also identified a number
of genes that are overexpressed in the PND that are not yet understood. We also aimed to
elucidate the mechanisms by which ERAD, intracellular oxidative stress, and mitochondrial
dysfunction interact, and to determine how insulin resistance is acquired.

2. Materials and Methods
2.1. Preparation of the Dataset

“GSE150679” (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150679
(accessed on 16 September 2022)) was downloaded from Gene Expression Omniubus (GEO),
a database provided by the National Center for Biotechnology Information (NCBI), USA.

This dataset was obtained by euthanizing offspring born from Cd-exposed female
parental mice (exposed to 500 ppb CdCl2 in drinking water from two weeks prior to
gestation until birth) and offspring born from control females at PND1, PND21, and
PND42, respectively, and performing liver transcriptome analysis. The offspring of Cd-
exposed females were similarly exposed to Cd at up to PND 10. For this analysis, they were
sequenced with an Illumina (Illumina, Inc. San Diego, CA 92122 USA) HiSeq2500 sequencer.
Biological replicates existed for each conditional distinction regarding whether the parent
mice were exposed to Cd and when the liver transcriptome analysis was performed. Gene
expression levels for each individual in this data were normalized.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150679
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The dataset also consisted of three Excel files containing data from PND1, PND21,
and PND42.

2.2. Model Selection
2.2.1. Significance of Using Tensor Decomposition

In this analysis, we used the Tucker decomposition among the tensor decomposi-
tions, and the algorithm was higher-order singular value decomposition (HOSVD [7]).
This method is effective for the “Large p Small n problem”. It is useful in situations where
the number of specimens is very small relative to the number of genes, as in this analysis,
and where multiple genes are selected as variables with some interpretability. Biological ex-
periments, in general, utilize such small numbers of specimens due to ethical considerations
and difficulties in obtaining specimens.

As noted above, Jackson et al. identified DEGs based on postnatal days and compared
PND1, PND21, and PND42. By transforming the data into a tensor and applying Tucker
decomposition, it is possible to identify genes whose expression changes with the passage
of PND. This is another reason for our model selection.

In addition, as we will demonstrate in the next section, the simplest imaginable
model, the multiple regression model, performs poorly in analyzing such a “large p small
n problem”. Tensor decomposition is also a relatively simple model; however, because
biological data are typically complex, it is important to select a simple model such as tensor
decomposition.

2.2.2. Inappropriate Variable Selection with Multiple Regression Models

The results of using a multiple regression model are used. We set the explanatory
variables as the vectors of length 18 and tl and sl , where tl is the explanatory variable for
PND, and sl is the variable for the presence of Cd exposure.

tl =



1
21
42
...
1

21
42

 sl =



1
1
...
1
0
0
...
0


The target variable was set to vi′ l , and the same value was assigned for a vector of

length 18, containing the expression levels of gene i′. The elements of vi′ l are the expression
levels with Cd exposure at l = 1, . . ., 9, and subsequent elements are without Cd exposure.
Additionally, l = 1, l = 2, and l = 3 were the expression levels of PND = 1, PND = 21, and
PND = 42, respectively. Following that, the elements considered to be biological replicates
were stored.

vi′ l = ai + bi′ tl + ci′ sl

The following multiple regression analysis was repeated 12,795 times for each gene i
using these variables. Next, for each of the coefficients bi and ci obtained through a multiple
regression analysis, we performed the χ-square test and assigned a p value. Then, we
identified the gene i for which p < 0.05 was obtained for both coefficients. The number of
i’s obtained using this method was 5865. However, this method is considered inappropriate
because it cannot shortlist the candidate causative genes, since it resulted in the high
expression of about 46% of the total genes.
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2.3. Data Processing

The data were formatted into tensors for use in tensor analysis. First, sex differences
were excluded from this analysis owing to insufficient data from conditionally differentiated
littermates to formulate a tensor (this is because only the PND42 file has conditional
distinctions for sex, and these distinctions were not sufficient in the PND1 and PND21 data
to form the tensor).

Since the number of individuals under the same conditions varied between the three
files, three datasets of individuals under the same conditions were selected for further
analysis, and the columns of the Excel file were rearranged in the following order. The
sample ID clearly indicates the order.

PND1: GSM4556351 GSM4556352 GSM4556353
GSM4556347 GSM4556348 GSM4556349

PND21: GSM4556358 GSM4556359 GSM4556360
GSM4556355 GSM4556356 GSM4556357

PND42: GSM4556365 GSM4556366 GSM4556367
GSM4556361 GSM4556362 GSM4556363

The analysis focused on the 12,795 genes whose gene expression levels were consis-
tently obtained in the three files (only PND42 contained data on the expression levels of
more genes than the other two).

2.4. Structure of the Tensor Used in the Analysis

The variables in each tensor dimension are described after the original data have been
formatted. Its structure is illustrated in Figure 1.

Figure 1. The following figure depicts the four order tensors used in the analysis. The first dimension
describes the genes, biological replicates are provided in the second dimension, time course is
expressed as postnatal day (PND) in the third dimension, and presence or absence of Cd exposure is
indicated in the fourth dimension (non-control refers to offspring born from Cd-exposed mothers,
while control refers to offspring born from Cd-unexposed mothers.). Let N, M, K, and L denote the
ranks of each dimension, (N, M, K, L) = (12,795, 3, 3, 2).

The first dimension of the tensor was lined with 12,795 genes.
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The second dimension consists of a sample of mice under the same conditions selected
from the original data as described previously.

The third dimension represents the passage of time since birth. The above samples
were in the order of PND1, PND21, and PND42.

The fourth dimension represents the presence or absence of maternal Cd exposure. In
Figure 1, ‘non-control’ represents the Cd-exposed population and ‘control’ represents the
unexposed population.

A fourth-order tensor xijkl was created using these variables. The parameters repre-
senting the rank of the matrix in each dimension were set to (N, M, K, L) = (12,795, 3, 3, 2).

2.5. How to Analysis
2.5.1. Unsupervised Learning Using Tensor Decomposition

In this analysis, we used Tucker decomposition among the tensor decompositions,
and the algorithm used was higher order singular value decomposition (HOSVD [7]).

For example, there was a third-order tensor xijk with ranks N, M, and K in each dimen-
sion (the tensor treated in this analysis was a fourth-order tensor, but it was easy to extend
the Tucker decomposition from a third- to fourth-order tensor). Tucker decomposition was
then performed on this tensor using the orthogonal matrix U and decomposed as follows:

xijk = ∑N
l1=1 ∑M

l2=1 ∑K
l3=1 G(l1, l2, l3) ul1i ul2 j ul3k

Tucker decomposition decomposes the original data tensor into the core tensor
G(l1, l2, l3) and three singular value matrices ul1i, ul2 j, ul3k. These matrices represent the
dependencies on variables i, j, and k, respectively.

For example, suppose we want to locate a variable i with a large value in the matrix
ul1i for analysis. The first step is to select the parameters l2′ and l3′ that correspond to
some interest dependence in ul2 j and ul3k, respectively. For example, if j is a variable that
represents time variation, it would be preferable that the vector ul2 j for the chosen l2′ be
straightforward, such as a monotonic increase or decrease vector.

Next, we would substitute the selected l2′ and l3′ into core tensor G(l1, l2, l3). Because
each element of the core tensor represents the weight of the product of each vector specified
by the parameter (l1, l2, l3), the parameter l1 exhibits a large absolute value in the resulting
vector G(l1′, l2′, l3′), which exhibits a large absolute value in the vector G(l1′, l2′, l3′), which
has a considerable contribution to the original tensor. Based on this idea, we selected l1′.

Next, we obtain the vector ul1
′i by substituting l1′ with ul1i. This vector follows the

dependency of the chosen parameters l2′, l3′ and has a considerable contribution to the
original tensor.

2.5.2. Variable Selection Using χ-Square Test

Finally, the χ-square test was performed using the normalized version of this vector to
identify i with a particularly high value among the elements of the obtained vector ul1

′i,
and a p-value was assigned.

pi = pχ2

[
> ∑l1

′

(
ul1
′ i

σl1
′

)2

]
The above-mentioned objective was achieved by applying a multiple comparison

correction to obtain i with a p-value of less than 0.05.
Figure 2 shows a flowchart of the overall flow of the selection of overexpressed genes

in this analysis.
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Figure 2. The entire flow of this analysis is represented in the flowchart diagram.

3. Results
3.1. Identification of Genes with High Expression Levels

When we decomposed the fourth-order tensor used in this analysis in R using HOSVD,
we obtained a list of Z containing the elements of the core tensor and a list of U consisting
of the four singular value matrices.

The tensor used was as described previously, where the subscripts i, j, k, and l denote
the gene, biological replicate, time course, and the presence or absence of maternal Cd-
exposure, respectively. The purpose of this analysis was to identify the gene i, whose
expression level is elevated due to Cd exposure; we investigated whether we could identify
a parameter l1 in the matrix ul1i that is dependent on Cd exposure, invariant to biological
replicates, and sometimes time-dependent. If we could locate a parameter l1 in the matrix
ul1i that is equivalent to the dependence on Cd exposure, invariance to biological replicates,
and some degree of time dependence, we assigned l1 to ul1i to obtain the gene i of interest.
To accomplish this, we first selected l2, l3, and l4.

First, ul2 j was extracted from the object U. We chose l1 = 1 because it is a biological
replicate; the smaller the individual variation under the identical condition, the better
(Figure 3).

(a) U1j (b) U2j (c) U3j

Figure 3. This bar chart represents the values of the singular value matrix Ul2 j on the column vector.
(First column: (a), second column: (b), and third column: (c)). For the analysis, there should be no
variation in gene expression between individuals under identical conditions. Therefore, we chose
l2 = 1.

Next, we removed ul3k. We chose l3 = 2, which follows a monotonic decrease, because
extracting a time dependence that follows a monotonic increase or decrease provides a
better interpretation of whether the expression level rises or falls as the days pass from
birth (Figure 4).
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(a) U1k (b) U2k (c) U3k
Figure 4. This bar chart represents the values of the singular value matrix Ul3k on the column vector.
(First column: (a), second column: (b), and third column: (c)). The objective is to isolate genes whose
expression varies time-dependently due to Cd exposure. Therefore, we selected l3 = 2, which shows a
monotonic decrease relative to PND.

Next, we removed ul4l . Because this study aimed to identify the genes with differential
expression in the presence or absence of Cd exposure, l4 = 2 was selected (Figure 5).

(a) U1l (b) U2l
Figure 5. This bar chart represents the values of the singular value matrix Ul4 l on the column vector.
(First column: (a), second column: (b)). The objective is to isolate genes that show differences in gene
expression levels due to Cd exposure. Therefore, we selected l4 = 2, which has distinct positive and
negative values.

Because l2 = 1, l3 = 2, and l4 = 2 were selected, we sought to identify the genes
that exhibit small individual differences under the same conditions, differ with respect to
maternal Cd exposure, and exhibit a decreasing expression trend over time.

Next, a vector of length 12,795 was obtained by taking the list of objects Z and
specifying G(l1, 1, 2, 2) and the parameters in the core tensor G. The element denoted by l1,
which has a large absolute value on this vector, is dependent on the parameters l2 = 1,
l3 = 2, and l4 = 2, and contributes significantly to the original tensor. Because of
the dimensionality of the original tensor, the 19th and subsequent elements on the vector
G(l1, 1, 2, 2) were very small; therefore, only the values of the elements from 1 to 18 are
shown in Figure 6. We then selected l1 = 3, 11, 14 with large absolute values as the values
of l1 to be assigned to ul1i. These were substituted into ul1i to generate three vectors.

To identify the genes with relatively high expression levels, we assumed that u3i, u11i,
and u14i followed a normal distribution independently, and assigned p-values using the
χ-square test. Then, using these three vectors, we executed the p.adjust command.

Additionally, the p-value for each gene i was adjusted for multiple comparisons using
the p.adjust function; then, i with a p-value of less than 0.05 was selected. The selected
gene i followed the dependency of interest and corresponded to a gene with a very high
expression level. From the total of 12,795 genes, 204 were selected for this analysis.



Genes 2022, 13, 1698 8 of 12

Figure 6. The values of the vectors with (l2 = 1, l3 = 2, and l4 = 2) on the core tensor, from the first
element to the eighteenth element, are represented using a bar chart. The top three with the highest
values (l1 = 3, 11, 14) were selected. Owing to the rank of the tensor before decomposition, the
nineteenth and subsequent elements are omitted because their values are very small.

3.2. Checking the Ontology with gProfiler

“gProfiler” (https://biit.cs.ut.ee/gprofiler/(accessed on 16 September 2022)) is a web
tool developed by an Estonian research group, the Bioinformatics, Algorithmics and Data
Mining Group (BIIT). Ontologies were identified using enrichment analysis on the 204
genes obtained in the above analysis, as shown in Table 1.

Table 1. Enrichment analysis results using gProfiler. The ontology of hits, database IDs, and p-values
for each gene were recorded for the 204-gene enrichment analysis.

Database Term Name Term ID p-Value

KEGG Metabolic pathway KEGG01100 1.661 × 10−6

KEGG Activation of platelets KEGG04611 2.294 × 10−2

REAC Lipid metabolism R-HSA-556833 1.107 × 10−2

GO BP Ionic transport GO0006811 2.741 × 10−8

GO BP Cell adhesion GO0007155 4.702 × 10−6

GO BP Intracellular signaling GO0035556 4.207 × 10−6

GO BP Cellular protein modification process GO0036211 5.519 × 10−9

GO BP Regulation of gene expression GO0010468 1.241 × 10−8

GO BP RNA metabolism GO0016070 9.895 × 10−11

GO CC Mitochondria GO0005739 1.990 × 10−4

GO CC Endoplasmic reticulum GO0005783 1.990 × 10−3

Table 1 shows that ontologies include “Lipid metabolism”, “Intracellular signaling”,
“Regulation of gene expression”, “Mitochondria”, and “Endoplasmic reticulum”. This could
provide a similar interpretation to the results of Jackson et al. In addition, one justification
for model selection is the that enrichment analysis has multiple ontology hits. This is
because multiple ontology hits are rare, as was the case here when the model was most
likely inappropriate and the analysis is failed.

3.3. Evaluation of Analysis Results

This analysis used a simple tensor decomposition model to identify 204 genes that
were monotonically expressed in response to PND and whose expression levels varied
depending on the presence or absence of Cd exposure. The dependence of a monotonic

https://biit.cs.ut.ee/gprofiler/
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decrease on PND was chosen for clarity of interpretation, indicating that we identified
a gene whose expression is maximally elevated when PND1 is overexpressed and then
decreases gradually. As previously stated, the analysis by Jackson et al. did not attempt to
identify genes that change over time, and we believe our analysis is novel in this respect.

The 204 genes identified represent approximately 1.6% of the total, and compared
to the expression variation analysis by Jackson et al. and the multiple regression model
presented above, the number of overexpressed genes considerably reduced.

The enrichment analysis also included ontologies that appeared to be highly relevant,
which lends credence to this analysis.

4. Discussion
4.1. Functions of the Identified Gene

This study aimed to identify the mechanism by which insulin signaling is inhibited.
We began by determining whether the ERAD-related genes were overexpressed.

As mentioned previously, the ubiquitin-proteasome system promotes protein degra-
dation during ERAD development. The obtained genes included ubiquitin-conjugating
enzyme E2 E3 (UBE2E3) with E2 ubiquitin ligase activity [8], autocrine motility factor recep-
tor (AMFR) with E3 ubiquitin ligase activity [9], and others with ubiquitin ligase activity,
such as transcription factor E4F1 (E4F1) [10] and tripartite motif-containing protein 32
(TRIM32) [11]. In addition, the COMM domain-containing protein 9 (COMMD9) regulates
these activities [12]. Proteasome-related genes include PSMC2, which encodes a subunit of
the 26s proteasome [13], and proteasome activator complex subunit 1 (PSME1), which is
part of the proteasome activator complex PA28 the 11S regulator, known as PA28 [14]. The
elevated expression of multiple genes involved in the ubiquitin–proteasome system may
be responsible for the development of ERAD.

The genes involved in the nuclear factor-κ B (NF-κB) pathway, which plays a central
role in the immune response, were TANK-binding kinase 1 (TBK1), which indirectly
interacts with NF-κB [15]; caspase recruitment domain-containing protein 11 (CARD11),
which is an activator [16]; and COMMD9, which is a negative regulator [17], suggesting
that NF-κB may be highly expressed. It is activated by the cytokine TNF-α, and TNF-α may
be highly expressed due to the high expression of NFAT activating protein with ITAM motif
1 (NFAM1), which encodes a receptor that activates the promoter of TNF-α [18]. Previous
studies have shown a positive correlation between TNF-α expression and development [19],
and the results of this study are consistent with this finding. Given that ERAD is ATP-
dependent, we verified whether any genes that upregulate ATP production were highly
expressed and identified ATP synthase membrane subunit c locus 1 (ATP5G1), which
encodes a subunit of the enzyme that catalyzes ATP synthesis.

The genes involved in the electron transfer system were NADH ubiquinone oxidore-
ductase complex assembly factor 7 (NDUFAF7), which is involved in stabilizing the assem-
bly of electron-transfer complex enzymes [20], and electron transfer flavoprotein subunit
beta lysine methyltransferase (ETFBKMT), which negatively regulates the electron-transfer
system function [21]. The enzyme dihydrolipoamide s-acetyltransferase (DLAT), which
links the electron-transfer system to the glycolytic system [22], was also highly expressed.
The metabolites of glycolysis and fatty acid metabolism are transported to the electron
transport system to promote ATP production in mitochondria. The genes involved in fatty
acid metabolism were glycosylphosphatidylinositol anchored high density lipoprotein
binding protein 1 (GPIHBP1), which promotes fatty acid degradation [23], and peroxisome
proliferative activated receptor alpha (PPARA), which encodes a growth factor-activated
receptor for peroxisomesn [24], the site of fatty acid metabolism. Considering that these
metabolites are transferred to the electron transfer system, the activation of the electron
transfer system may be responsible for the high expression of genes involved in glycolysis
and fatty acid metabolism. The activation of the electron transfer system stimulates ATP
production directly.
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Additionally, genes involved in sphingolipid biosynthesis, serine palmitoyltrans-
ferase, long chain base subunit 2 (SPTLC2) [25] and sterile alpha motif domain containing
8 (SAMD8) [26], were highly expressed. This suggests that cells may over-synthesize
sphingolipids.

4.2. Elucidation of the Mechanism of Insulin Metabolism Inhibition from the Obtained Genes

Cd exposure of the mother also exposes the fetus to Cd [27]. Excessive cellular Cd
uptake inhibits protein folding, which leads to ERAD development. This analysis suggests
that the high expression of genes involved in ubiquitin–proteasome system glycolysis,
fatty acid metabolism, and electron transfer systems promote ATP synthesis, which may
assist ERAD development. The positive correlation between the expression levels of ERAD
and TNF-α, and the high expression of genes related to TNF-α and NF-κB, suggest that
TNF-α may be over-secreted in the cells. TNF-α is known to activate ASMase (oxidized
sphingomyelinase), and ASMase promotes the production of sphingolipids. In this anal-
ysis, a high expression of genes involved in sphingolipid synthesis was also observed,
suggesting that sphingolipid accumulation may occur. The accumulation of ceramide, a
sphingolipid, leads to the overproduction of reactive oxygen species (ROS). Additionally,
ROS are produced during the electron transfer system reaction. ROS-mediated oxidative
stress activates the apoptosis signal-regulating kinase 1 (ASK1) [28]. Phosphatidylserine
decarboxylase proenzyme(PISD) was one of the highly expressed genes identified in this
study. It is also involved in the activation of ASK1. ASK1 activates c-Jun N-terminal kinases
(JNK), and JNK inactivates it by phosphorylating 307 serine residues of IRS1, which are
essential for insulin signaling. Consequently, a pathway for the development of insulin
resistance due to oxidative stress via TNF-α-induced ceramide accumulation can be inferred
from this analysis. However, from this analysis, we could not elucidate the mechanism
underlying the positive correlation between ERAD and the high expression of TNF-α.

In addition to the genes mentioned above, there were also hits for ontologies such as
“Regulation of gene expression” and “RNA metabolism”, as shown in Table 1. This sug-
gests that gene expression levels were altered, but the specific mechanism could not be
determined in this study.

We also found a number of genes related to apoptosis, which is a last resort for stress
avoidance in ERAD development, but it is unclear how apoptosis is actually related to the
pathway of insulin resistance acquisition, which we speculated in this study.

In future studies, we plan to focus on determining how these factors are involved and,
in particular, what causes and influences gene expression changes.

5. Conclusions

Based on a study reporting that Cd exposure during pregnancy disrupts insulin
metabolism in offspring, 204 overexpressed genes were identified using tensor decom-
position with liver transcriptome analysis data to elucidate the cause of this biological
phenomenon.

Included among the 204 genes were those involved in ERAD development and the
ubiquitin-proteasome system, a stress avoidance pathway, implying that Cd toxicity inhibits
protein folding. A group of genes involved in sphingolipid production and the electron
transfer system was also highly expressed, indicating excessive intracellular oxidative
stress. The ERAD and intracellular oxidative stress results were consistent with those of
Jackson et al. [6].

It has been suggested that TNF-α may serve as a link between ERAD and high sph-
ingolipid expression caused by Cd toxicity. The high expression of genes encoding the
promoter of TNF-α and related to NF-κB supported this hypothesis. However, this analysis
was not able to determine the precise mechanism of the association between ERAD and
TNF-α. Based on the association between TNF-α and sphingolipids, we could deduce a
pathway by which TNF-α activates ASMase.
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An intracellular oxidative stress-based pathway was hypothesized regarding the onset
of insulin resistance.

The effects of cadmium on changes in gene expression at the transcriptional level must
continue to be investigated.
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