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Abstract The heat shock response is a universal homeostatic cell autonomous reaction of

organisms to cope with adverse environmental conditions. In mammalian cells, this response is

mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and

upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic

principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational

dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent

unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the

trimerization region. The transition to the active DNA binding-competent state occurred highly

cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1

activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the

process thus widening the response window. Based on our data we propose a kinetic model of

Hsf1 trimerization.

DOI: 10.7554/eLife.11576.001

Introduction
To cope with changes in physical and chemical properties of the environment as well as with physio-

logical and pathophysiological conditions which cause protein misfolding, organisms mount a

homeostatic transcriptional program, the so-called heat shock response (Jolly and Morimoto,

2000). In all eukaryotic cells, heat shock transcription factor (HSF) 1 is the master regulator of this

response and alters transcription of a large number of genes, some of which encode chaperones

and proteases (Anckar and Sistonen, 2011). Although this response is essentially cell autonomous,

systemic modulation of this response has been observed in metazoa (Morimoto, 2008;

Prahlad et al., 2008; Prahlad and Morimoto, 2011).

Metazoan Hsf1 consists of a N-terminal winged helix-turn-helix DNA binding domain

(Harrison et al., 1994; Vuister et al., 1994), a hydrophobic shorter heptad repeat regions (HR-A/B)

proposed to function as a leucine zipper coiled-coil trimerization domain (Clos et al., 1990;

Rabindran et al., 1993), a regulatory domain, a second heptad repeat (HR-C) and a C-terminal tran-

scription activation domain (Figure 1A) (Anckar and Sistonen, 2011; Voellmy, 2004). In unstressed

cells metazoan Hsf1 is monomeric and supposed to be in complex with molecular chaperones,

including Hsp70, Hsp90 and TRiC/CCT (Shi et al., 1998; Zou et al., 1998; Neef et al., 2014). At

physiological concentrations monomeric Hsf1 does not bind appreciably to heat shock elements

(nGAAn). In the activated state Hsf1 forms trimers or higher order oligomers and binds to its

response elements in heat shock gene promoters (Clos et al., 1990; Rabindran et al., 1993). Cur-

rently, two models are discussed for the heat-induced activation of Hsf1: (1) Based on the observa-

tion that deletion or mutational alteration of HR-C leads to constitutive trimerization Wu and co-

workers proposed that Hsf1 is a thermosensor itself and kept monomeric by intramolecular leucine
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zipper formation (Rabindran et al., 1993). However, activation of human Hsf1 in human and insect

cells and Xenopus oocytes occurs at different temperatures, arguing against an Hsf1 intrinsic mecha-

nism of heat shock activation (Baler et al., 1993; Clos et al., 1993). (2) Owing to the fact that the

large variety of Hsf1-inducing signals have in common to cause protein misfolding and in analogy to

the regulation of the heat shock response in E. coli (Guisbert et al., 2008), chaperones were pro-

posed to prevent Hsf1 activation and to be titrated away from Hsf1 under stress conditions, resulting

in heat shock response induction (Morimoto, 1998). Consistent with this hypothesis is the observa-

tion that inhibition of Hsp70, Hsp90 or TRiC/CCT or knock-down of their expression leads to the

induction of the heat shock response (Powers and Workman, 2007; Powers et al., 2008;

Neef et al., 2014; Whitesell et al., 2003; Lee et al., 2013; Abravaya et al., 1992; Zou et al.,

1998).

Further regulation of Hsf1 is provided by posttranslational modifications, including phosphoryla-

tion, acetylation, sumoylation and oxidation of cysteines to disulfide bridges (Hietakangas et al.,

2003; 2006; Sarge et al., 1993; Westerheide et al., 2009; Brunet Simioni et al., 2009;

Zhong et al., 1998; Lu et al., 2008). The contribution of these modifications to the primary activat-

ing mechanism are still unclear (Budzyński et al., 2015).

To resolve the molecular mechanism of the temperature-induced activation of Hsf1 we analyzed

the conformational dynamics of purified monomeric human Hsf1 pretreated at different tempera-

tures using hydrogen-1H/2H-exchange (HX) mass spectrometry (MS). We found temperature-depen-

dent unfolding of HR-C and concomitant stabilization of HR-A/B, demonstrating that isolated Hsf1

acts as temperature sensor. At short incubation times the temperature response curve exhibits high

cooperativity with a transition midpoint of 36˚C. Using fluorescence anisotropy we demonstrate that

eLife digest Cells cope with excessive heat, toxic compounds and other adverse environmental

conditions by triggering an internal repair process called the heat shock response. In mammalian

cells, a protein called Hsf1 is activated by stress and regulates the activity of a large set of target

genes. These genes code for proteins that help the cell cope with the effects of stress, for example,

by repairing or breaking down damaged proteins. Under normal conditions, Hsf1 exists as a single

molecule, but when it is activated, three molecules come together to make a complex called a

trimer that is able to bind to DNA and activate the target genes.

Proteins are made of long chains that then fold into specific three-dimensional shapes. It is not

known how Hsf1 is kept in an inactive state in healthy, unstressed cells. One possibility is that the

protein folds into a three-dimensional shape that prevents it from being activated. Alternatively,

Hsf1 may be bound to other proteins called chaperones that move away when the cell is under

stress because they are needed to help the damaged proteins refold into their own three-

dimensional shapes.

Hentze et al. used a variety of biochemical techniques to study the human Hsf1 protein. The

experiments showed that there are two regions of the Hsf1 protein that changed shape dramatically

when the temperature increased. A region that regulates the activity of Hsf1 unfolded, while a

region involved in making the trimer became more stable. Detailed analysis showed that once the

regulatory region unfolded, the protein was able to interact with other Hsf1 units to make the

trimer. Therefore, Hsf1 can directly sense and respond to changes in temperature without the aid of

any chaperone proteins.

Further experiments showed that the formation of Hsf1 trimers and the ability of these trimers to

bind to DNA depend upon both the temperature and the amount of Hsf1 present. In addition, a

chaperone protein called Hsp90 – which is known to be able to interact with Hsf1 – influenced how

Hsf1 responded to changes in temperature. Hentze et al. also present a model for the activation of

Hsf1 that allows for flexibility in the response of Hsf1 to changes in temperature. Previous studies

have shown that Hsf1 is chemically modified during stress and also while the cell recovers from

stressful conditions. Therefore, the next challenge will be to find out how these modifications

influence the way in which Hsf1 responds to stress.

DOI: 10.7554/eLife.11576.002
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the acquisition of DNA-binding competency depends on temperature and concentration of Hsf1.

Phosphomimetic Hsf1 variants corresponding to phosphorylation at two serine residues previously

shown to negatively affect Hsf1 activation did not have an increased temperature transition mid-

point. Hsp90 known to negatively regulate Hsf1-mediated transcription decreased the slope of the

Figure 1. Recombinant purified human Hsf1 is largely monomeric and trimerizes and acquires DNA binding competence upon heat shock. (A) Domain

organization of human Hsf1 [modified from Anckar and Sistonen (2011)]. (B) Size exclusion chromatography separates recombinant human Hsf1 in

monomer, dimer and trimer/oligomer as indicated. (C) Blue native gel of the three peak indicated in panel B (monomer and dimer), monomeric Hsf1

after 10 min heat shock at 42˚C (monomer HS); and trimeric/oligomeric Hsf1 purified under denaturing conditions and refolded into a DNA binding

competent state (M, monomer; D, dimer; T, trimer; HO, higher order oligomers). (D) Electrophoretic mobility shift assay (EMSA). Monomeric Hsf1

(Hsf1m), monomeric Hsf1 treated for 10 min at 42˚C (HS), or trimeric Hsf1 (Hsf1t) were incubated with fluorescent labeled HSE-DNA minus or plus

unlabeled HSE-DNA and separated on a native agarose gel. Lane 1, HSE-DNA in the absence of protein. (E) Amide hydrogen exchange of monomeric

Hsf1 after 30 s at 20˚C in D2O buffer. Exchange was correct for back exchange using a fully deuterated Hsf1 preparation. Error bars are the standard

error of mean (SEM) of three independent experiments. (F) Cartoon representation of the DNA binding (PDB ID 2LDU) and trimerization domains of

human Hsf1 colored according to deuteron incorporation as indicated. Gray, no sequence coverage. The trimerization domain is a homology model of

the HR-A/B region (residues 130–203) of human HSF1 on the structure of Chaetomium thermophilum Skn7 [PDB ID 5D5Z, (Neudegger et al., 2016)

using I-TASSER (Zhang, 2008; Yang and Zhang, 2015; Yang et al., 2015; Roy et al., 2010)].

DOI: 10.7554/eLife.11576.003
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temperature response curve, thereby lowering the transition midpoint and widening the response

window. Our data suggest a kinetic model of Hsf1 trimerization.

Results
Recombinant human Hsf1 was purified out of E. coli by affinity chromatography and size-exclusion

chromatography, resulting in mostly monomeric species in the final fraction (Figure 1B and C). Upon

incubation at 42˚C, Hsf1 formed trimers and higher-order oligomers, as verified by blue native gel

electrophoresis consistent with published data (Clos et al., 1990), and acquired DNA-binding com-

petence as shown by electrophoretic mobility shift assays (Figure 1C and D). The conformational

dynamics of Hsf1 was investigated by HX-MS as described previously (Rist et al., 2006; Graf et al.,

2009). Monomeric Hsf1 was incubated for 30 s in D2O at 20˚C, subsequently mixed with ice-cold,

low-pH quench buffer to slow down back exchange, and analyzed on our HPLC-mass spectrometry

setup including a column with immobilized pepsin for online digestion. As shown in Figure 1E,

monomeric Hsf1 is highly dynamic with only few regions exhibiting significant protection from HX,

including parts of the DNA binding domain and the trimerization domain (HR-A/B). Out of the C-ter-

minal half of the protein, containing the regulatory region, HR-C and the transactivation domain,

only the HR-C region showed significant protection at 20˚C consistent with an earlier study showing

the C-terminal half of Hsf1 largely unfolded (Pattaramanon et al., 2007). Figure 1F shows a heat

map of the DNA binding domain and the trimerization domain of Hsf1, the only parts for which

structural information is available.

Hsf1 is a thermosensor
To elucidate temperature-induced changes in conformational dynamics, we pre-incubated mono-

meric Hsf1 at different temperatures for different time intervals followed by incubation at constant

temperature in D2O (Figure 2A). As control, we analyzed the pre-treated Hsf1 by blue native poly-

acrylamide gel electrophoresis (Wittig et al., 2006) and observed a temperature-dependent

increase in trimeric Hsf1 species (Figure 2B and Figure 2—figure supplement 1). The 10 min-pre-

incubation of Hsf1 dramatically changed conformational dynamics of two regions in Hsf1 (Figure 2):

temperature-dependent increase in HX is observed in HR-C, indicating heat-induced unfolding, and

a concomitant decrease in HX is observed in HR-A/B, consistent with heat-induced trimerization.

Close inspection of the spectra of the peptic fragments exhibiting temperature-induced changes in

HX revealed bimodal distributions of the isotope clusters indicative of the coexistence of two popu-

lations of molecules with different exchange properties (Figure 2—figure supplement 2A and C,

Figure 2—figure supplement 3). An equation for two Gaussian curves was fitted to the intensity-

versus-m/z plots of the data (Figure 2D and F, and Figure 2—figure supplement 2B and D, Fig-

ure 2—figure supplement 3) and the equation parameters used to back calculate the contribution

of each population to the peak intensities (see Figure 2—figure supplement 2). For the HR-A/B

region the relative frequency of high exchanging population decreases with pre-incubation at

increasing temperatures resulting in a sigmoidal temperature response curve (Figure 2E). For the

HR-C region the opposite is observed: the frequency of high exchanging species increased with

increasing temperatures (Figure 2G). These data clearly demonstrate that Hsf1 has intrinsic thermo-

sensory properties. The midpoint of transition Tm, the temperature at which 50% of the molecules

are in the high exchanging conformation after 10 min, was identical for both regions equal to 36.15

± 0.14˚C.
We also determined the midpoint of transition for 30 min pre-incubation at different tempera-

tures (Figure 2, Figure 2—figure supplement 3). Under these prolonged incubation conditions, the

transition curves became more shallow, and the midpoint temperature for HR-C unfolding and HR-A

protection (trimerization) was not identical anymore but decreased to 32.0 ± 0.4 and 34.7 ± 0.2˚C,
respectively. These data suggest that the temperature-induced conformational changes are not

reversible under our conditions, otherwise the steepness of the curves, which is determined by the

unfolding enthalpy, should remain the same as for the 10-min-pre-incubation. To investigate this in

more detail we heat-shocked Hsf1 for 10 min at 42˚C, then incubated the protein for different time

intervals at 20˚C, and analyzed the conformational state by HX-MS (Figure 3). As control, we incu-

bated Hsf1 without prior heat shock for 30 min at 20˚C before HX-MS analysis. We also tested

whether dilution would lead to trimer dissociation in the time scale of our experiments (Figure 3G).

Hentze et al. eLife 2016;5:e11576. DOI: 10.7554/eLife.11576 4 of 24

Research article Biochemistry Biophysics and structural biology

http://dx.doi.org/10.7554/eLife.11576


Figure 2. Human Hsf1 is a thermosensor. (A) Experimental design: monomeric human Hsf1 was pre-incubated at

different temperature as indicated for 10 min or 30 min and then either analyzed by blue native polyacrylamide gel

electrophoresis (BN) or diluted 20-fold into D2O-buffer at 20˚C and incubated for 30 s. The reaction was quenched

and the samples analyzed by HPLC-MS. (B) Analysis of quaternary structure of Hsf1 after pre-incubation at

different temperatures for 10 min as indicated. Hsf1 was detected by immunoblotting with an Hsf1 specific

antiserum. M, monomer; D, dimer; T, trimer. (C) Difference plot of deuteron incorporation into monomeric Hsf1

pre-incubated at the indicated temperature minus deuteron incorporation of Hsf1 pre-incubated at 20˚C for peptic

peptides as indicated. Error bars are SEM of three independent experiments. Cartoons underneath the X-axis

indicate the domains of Hsf1 corresponding to the respective peptic peptides and a homology model of the

trimerized human HSF1 (kindly provided by A. Bracher [Neudegger et al., 2016]), colored according to HX as

indicated. First and last amino acid of the model are indicated. (D, F) Intensity distributions of the isotope clusters

Figure 2 continued on next page
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Both assays clearly demonstrate that HR-C unfolding, HR-A protection and Hsf1 trimerization are

not reversible under these conditions. Therefore, we cannot derive the unfolding enthalpy DHU from

our temperature response data but only use the fit to determine the temperature at which 50% of

the transition occurred.

Kinetics of temperature-dependent conformational changes
To resolve the kinetics of the conformational transitions, we pre-incubated monomeric Hsf1 for 10-

1000 s at 35, 37, 39 or 42˚C before diluting into D2O and incubation for 30 s at 20˚C (Figure 4). For

the peptic fragments of HR-C (amino acids 378–395 and 389–395) the low-exchanging population

decrease with a rate of 0.0028 ± 0.0002, 0.0038 ± 0.0002, 0.011 ± 0.001, and 0.018 ± 0.001 s-1 at 35,

37, 39 and 42˚C, respectively. For the peptic fragments of HR-A/B (amino acids 159–168 and 169–

175) the low-exchanging population increased with slightly lower rates of 0.0018 ± 0.0004, 0.0033 ±

0.0002, 0.0094 ± 0.0009 and 0.016 ± 0.001 s-1 (Figure 4G). The Arrhenius plot of the data yielded

the activation energy for the temperature transition of 249 ± 47 kJ�mol-1 (Figure 4H). Taken

together, our data demonstrate that Hsf1 is a thermosensor that directly senses increasing tempera-

tures with conformational changes in HR-A/B and HR-C.

HR-C interacts with HR-A
To uncouple the temperature-induced HR-C unfolding from trimerization, we replaced the hydro-

phobic heptad repeat residues in HR-A by serine, which should not engage in coiled-coil interac-

tions. HR-A and HR-B are thought to be involved in trimerization, and HR-B had been previously

been implicated in negative regulation of trimerization, since deletion of HR-B lead to continuous

active trimeric HSF1 (Zuo et al., 1994). HX-MS experiments with the mutant protein revealed that

HR-A/B and HR-C are constitutively unfolded at all temperatures tested (Figure 5). These results

demonstrate that the ability of HR-A to form a coiled-coil is essential for stabilization of HR-A, HR-B

and HR-C, suggesting that HR-C also interacts with HR-A.

Mechanism of Hsf1 activation
In our in vitro experiments, the midpoint of trimerization of Hsf1 was around 36˚C, which seemed

rather low given a body core temperature of 37˚C, and DNA binding activity of Hsf1 in different

human cells is rather low below 40˚C and strongly increased above 42˚C (Abravaya et al., 1991;

Mosser et al., 1990; Baler et al., 1993). In contrast, in testis the major increase in DNA binding

activity of Hsf1 is already observed at 38˚C (Sarge, 1995; Sarge et al., 1995). Therefore, the above

described unfolding of HR-C cannot be the sole determinant for the setpoint of Hsf1 trimerization

and DNA binding activity. Trimerization as multi-molecular reaction would be intrinsically

Figure 2 continued

of peptide 1155.581+ corresponding to amino acids 159–168 (D) and 765.301+ corresponding to amino acids 389–

395 (F) for different pre-incubation temperatures, as indicated. Curves are fits of the sum of two Gaussian peak

functions to the data (see Figure 2—figure supplement 2). Representative plot of three independent

experiments. (E, G) Fraction of high-exchanging species calculated, as described in Figure 2—figure supplement

2. Data points for three independent experiments with 10-min (dark blue) and 30-min (light blue) pre-incubation

time at elevated temperatures are shown for peptide 159–168 (E) and 389–395 (G). The curve is a fit of a thermal

unfolding equilibrium to the data. Data for additional peptides are shown in Figure 2—figure supplement 3.

DOI: 10.7554/eLife.11576.004

The following figure supplements are available for figure 2:

Figure supplement 1. Temperature-induced transition of Hsf1 from the monomeric into the trimeric state as

determined by blue native polyacrylamide gel electrophoresis.

DOI: 10.7554/eLife.11576.005

Figure supplement 2. Analysis of the bimodal distributions of the isotope clusters detected by MS.

DOI: 10.7554/eLife.11576.006

Figure supplement 3. Hsf1 is a thermosensor.

DOI: 10.7554/eLife.11576.007

Figure supplement 4. Three exemplary MS/MS spectra of peptic peptides used in the HX-MS analysis of Hsf1.

DOI: 10.7554/eLife.11576.008
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Figure 3. Heat-induced trimerization of Hsf1 is not reversible. (A–F) Prolonged incubation at 20˚C does not revert the heat shock induced changes in

Hsf1 conformation. Hsf1 (5 mM) was incubated for 10 min at 42˚C and then shifted to 20˚C. Aliquots were diluted at different time points (0, 3, 10, 30,

100 min) for 30 s into D2O buffer and subsequently analyzed by LC-MS. As control, Hsf1 was not heat-shocked and incubated for 30 min at 20˚C before

dilution into D2O. Shown are the intensity-m/z data for the indicated peptides from HR-A region (A, aa 159–168, 578.292+; C, aa 169–175, 430.742+) and

region HR-C (E, aa 389–395, 765.311+) with a global fit of an equation for two Gaussian peaks, as in Figure 2. The percentage of high exchanging

species was calculated as described in Figure 2—figure supplement 2 (B, D, F). Data for two independent experiments are shown. (G) Dilution of

heat-shocked Hsf1 does not lead to trimer dissociation. Hsf1 (5 mM) was heat-shocked at 42˚C for 10 min, subsequently diluted as indicated, incubated

at room temperature for 15 min, analyzed by blue-native gel electrophoresis, and detected by immune blotting with an human Hsf1 specific antiserum

(lanes 1–7). Control samples were kept on ice before dilution and incubation at room temperature (lanes 8–14). M, monomer; T, trimer; HO, higher

order oligomers (not detectable anymore upon dilution).

DOI: 10.7554/eLife.11576.009
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Figure 4. Kinetics of heat-induced conformational transitions in human Hsf1. (A–D) Intensity distributions of the isotope clusters for peptide 678.323+

(aa 378–395) and 1155.581+ (aa 159–168) of Hsf1 incubated at 35˚C (A and B) or 42˚C (C and D) for 10 to 1000 s. Curves are fits of the sum of two

Gaussian peak functions to the data. (E and F) Change in the fraction of low exchanging species for peptides 378–395 (E) and 159–168 (F) for 35, 37, 39

and 42˚C, as indicated. Curves are fits of a single exponential equation to the data. (G) Transition rates determined by fits as in panels E and F for all

four peptides (159–168, 169–175, 378–395, 389–395) evaluated. (H) Arrhenius plot of the data shown in G. Linear regression analysis yielded an

activation energy of 258 ± 25, 273 ± 26, 239 ± 19, and 225 ± 22 kJ�mol-1 for peptides 159–168, 169–175, 378–395, and 389–395, respectively. Error bars

are SEM of three independent experiments.

DOI: 10.7554/eLife.11576.010
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concentration dependent. In contrast, inhibition of trimerization by coiled-coil interaction of HR-C

with HR-A/B, as originally proposed by Wu and colleagues (Rabindran et al., 1993), would be an

intramolecular reaction and consequently independent of concentration. Thus, the concentration of

Hsf1 could be an important parameter for controlling the setpoint of the temperature response

curve. Consistent with this hypothesis we noticed spontaneous trimerization of Hsf1 even at 4˚C
upon concentrating the protein. To explore this hypothesis more quantitatively, we devised a fluo-

rescence anisotropy assay to determine the fraction of Hsf1 capable of binding DNA after treatment

at different temperatures. We treated different concentrations of Hsf1 at 30, 35, 37, 39, and 42˚C
for 10 min, serially diluted the samples, incubated them with fluorescent labeled double-stranded

DNA containing heat shock elements and measured fluorescence anisotropy (Figure 6). None of the

formed Hsf1 trimers dissociated upon dilution and incubation at room temperature (Figure 3G). If

Hsf1 trimerization were not concentration dependent in the concentration range tested, all data

points would fall onto the same titration curve. This was obviously not the case. The quadratic solu-

tion of the binding equilibrium, modified for fractional active protein was globally fitted to the data,

assuming identical KD values for all formed Hsf1 trimers and similar minimum and maximum anisot-

ropy values for no binding and complete binding, respectively. This fit yielded the fraction of DNA

binding competent Hsf1 trimers. For 100 nM Hsf1, no activation was observed up to 42˚C
(Figure 6F). At 300 nM, less than 20% of the theoretical possible Hsf1 trimers had formed at 42˚C

Figure 5. Hydrophobic residues in HR-A are essential for stability of HR-A and HR-C at all temperatures. (A–D) HX-MS analysis of Hsf1-I130S,V137S,

L140S,V144S,M147S,M154S, L158S,M161S,L168S,V172S,L175S (Hsf1-HR-A-S11). Mutant protein was incubated at the different temperatures for 10 min

and then analyzed by HX-MS. Shown are peptides from HR-A/B (A, aa 147–169, 634.804+; B, aa 170–189, 465.265+) and HR-C (C, aa 380–388, 535.762+;

D, aa 389–395, 765.311+). For all peptides, the 100% deuterated control is shown and for the HR-C peptides a wild-type control, which was incubated

for 30 min at 20˚C to emphasize the decreased stability of the mutant protein. For the peptides from HR-A, no wild-type control peptides could be

shown due to different sequence and cleavage by pepsin. Shown is one of three experiments with identical results.

DOI: 10.7554/eLife.11576.011
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Figure 6. Temperature-induced acquisition of DNA-binding competence of Hsf1 is concentration dependent. (A–E) DNA-binding competence of

monomeric Hsf1 after pre-incubation at the indicated temperature as measured by fluorescence anisotropy of 5’-Alexa 488-labeled HSE-DNA

(5’ccccTTCccGAAtaTTCcccc3’). Monomeric Hsf1 was pre-incubated at 30-42˚C at different concentrations (100–5000 nM) as indicated, then twofold

dilution series were prepared and labeled DNA added. Plotted is fluorescence anisotropy (relative values) versus theoretical concentration of Hsf1

trimer. Curves represent a global fit of the quadratic solution of the binding equilibrium modified for fractional activity of Hsf1 to all data together

resulting in a KD of 1.10 ± 0.2 nM for fully active trimeric Hsf1 and a fraction of Hsf1 that formed DNA-binding competent trimers as shown in panel (F).

Data of one representative experiment is shown. Error bars represent standard error of the mean of four technical replicates. (F) Fraction of Hsf1 that

formed DNA-binding competent trimers at the given Hsf1 concentration and temperature as calculated from data in panels A to E. Mean and standard

error of the mean of three independent sets of experiments are shown.

DOI: 10.7554/eLife.11576.012
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within 10 min. In contrast, at 1 and 5 mM concentrations a substantial fraction of Hsf1 trimers had

formed already at lower temperatures. At 42˚C the apparent fraction of DNA-binding competent

Hsf1 species may decrease due to the formation of high order oligomers as observed by blue native

gel (Figure 1C).

Since these data indicated that the temperature transition of Hsf1 is concentration dependent,

we wondered whether only trimerization is affected or HR-C unfolding as well. We therefore

repeated the HX-MS experiments at lower concentration (2 mM). Interestingly, not only trimerization

but also unfolding of HR-C was concentration dependent and the differences between the transition

temperatures of HR-A/B and HR-C were not statistically significant (Figure 7B). However, the differ-

ence in transition temperature between Hsf1 at 5 mM and at 2 mM was highly statistically significant

(p<0.0001). We could not test lower concentrations of Hsf1 due to lacking sensitivity in the mass

spectrometric detection of the important peptides.

Taken together, these data clearly demonstrate that HR-C unfolding, trimerization and the frac-

tion of DNA-competent Hsf1 trimers are a function of temperature and concentration.

Influence of phosphorylation on the thermosensor function
Human Hsf1 is heavily modified by posttranslational modifications (29 phosphorylation sites, 5 acety-

lation sites and 1 sumoylation site; www.phosphosite.org). Some of these modifications have been

shown to influence Hsf1 activation (Holmberg et al., 2001; Guettouche et al., 2005; Xia et al.,

1998; Xia and Voellmy, 1997; Chu et al., 1996; Wang et al., 2006; Soncin et al., 2003; Kim et al.,

2005; Hietakangas et al., 2006; Westerheide et al., 2009; Raychaudhuri et al., 2014). Phosphory-

lation of Ser307 was proposed to negatively regulate the activation of Hsf1, because Hsf1-S307A

was constitutively active in vivo (Chu et al., 1996; Xia et al., 1998). In contrast, phosphorylation of

the close-by Ser303 had no influence on Hsf1 activation (Xia et al., 1998). Therefore, we constructed

phosphomimetic variants of human Hsf1 (S307D and S303D as control) and determined their tem-

perature response curves using HX-MS. The transition temperature for the phosphomimetic variants

was slightly but statistically significantly lower than for Hsf1wt, indicating that phosphorylation at

these sites does not prevent temperature-induced trimerization and might even aid it at physiologi-

cal concentrations of Hsf1 (Figure 7B).

Influence of Hsp90 on Hsf1 activation
Several lines of evidence suggested that Hsp90 inhibits Hsf1 activation (Zou et al., 1998) and the

current model assumes that Hsp90 binds Hsf1 in the monomeric state in unstressed cells

(Anckar and Sistonen, 2011). We therefore studied the effect of human Hsp90b on the conforma-

tional dynamics of Hsf1, in particular the temperature response curve (Figure 8A–C). Surprisingly, in

the presence of Hsp90 the midpoint of transition was lower than in its absence and the response

curve was less steep, stretching the transition window from ~10˚ in the absence of Hsp90 to ~20˚.
Interestingly, the midpoint temperature of transition in the presence of Hsp90 was slightly lower for

the peptide derived from HR-C than for the HR-A/B peptides (Figure 8G). A significant difference in

midpoint temperature for the two regions was never observed in other experiments with 10-min-

pre-incubation time but with a 30-min-pre-incubation at the different temperatures (compare

Figure 8G with Figure 7B).

To verify that the effect of Hsp90 on trimerization is not an artifact of HX-MS methodology we

performed electrophoretic mobility shift assays under comparable conditions using a fluorescently

labeled DNA probe containing heat shock elements (Figure 8D–F). Within the experimental error,

the results of the DNA binding assay were identical to those of the HX-MS experiments (Figure 8G).

Taken together, our results demonstrate that in an in vitro assay with purified components, Hsp90

neither inhibits Hsf1 trimerization nor its DNA binding but, on the contrary, lowers transition temper-

ature and widens the activation window.

Discussion
In this study we demonstrate that human Hsf1 is a thermosensor. We are the first to show that the

HR-C region of Hsf1 unfolds with temperature-dependent rates, resulting in a release of its repres-

sive effect on Hsf1 trimerization and DNA binding. For relatively short heat shocks unfolding of HR-

C and trimerization through intermolecular interactions of HR-A/B exhibit the same temperature
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Figure 7. Temperature response curve of Hsf1 is concentration dependent. (A) Fraction of high exchanging

species of peptides 159–168 and 389–395 for 5 and 2 mM Hsf1 pre-incubated at the respective temperatures and

analyzed by HX-MS as in Figure 2. Data points and fits of the unfolding equilibrium equation of one

representative of three independent experiments are shown. (B) Calculated midpoint temperature for wild-type

Hsf1 (2 and 5 mM) and two phosphomimetic Hsf1 variants (5 mM). For 5 mM wild-type Hsf1 (10-min and 30-min-

incubations) each data point represents the average of the Tm values for the two peptides observed in the

respective region, which were not significantly different from each other (HR-A: aa 159–168 and 169–175; HR-C:

389–395 and 378–395 or 380–388). For 2 mM wild-type and for 5 mM mutant proteins no statistically significant

differences were observed between the Tm values for the different peptides (159–168, 169–175, 378–395, 389–395)

within an experiment, each data point represents the average of the Tm values of all evaluated peptides for an

independent experiment. In addition to the data points of three to six independent experiments, the mean and

Figure 7 continued on next page
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response curves and follow identical kinetics, suggesting that these are coupled events. For longer

heat shocks the cooperativity of the transition is reduced and HR-C unfolding and HR-A/B trimeriza-

tion seem to uncouple. Most importantly, HR-C unfolding, temperature-induced trimerization and

acquisition of DNA-binding competence depends on the concentration of Hsf1. Moreover, Hsp90

significantly modulated the temperature response of Hsf1, reducing midpoint and steepness of the

response curve, thus widening the temperature window within which Hsf1 transits from monomer to

trimer and low to maximal DNA binding competence. The response curves of Hsf1 in the presence

of Hsp90 are similar to the response curves at prolonged incubation time at elevated temperatures.

Thus, Hsp90 accelerates the response at intermediate heat shock conditions.

Our data with purified human Hsf1 are consistent with previous in vivo and in vitro work

(Rabindran et al., 1993; Zhong et al., 1998; Baler et al., 1993; Zuo et al., 1994;

1995; Sarge et al., 1993; Zou et al., 1998), substantiating the hypothesis that Hsf1 trimerization

and DNA binding is controlled by HR-C. Most previous work was performed in cellular systems or

complex cell extracts and only few studies used purified components. Purified Drosophila Hsf1 was

shown to exist in a trimer-monomer equilibrium that was influenced by temperature and oxidative

stress (Zhong et al., 1998). However, human HSF1 does not seem to exist in such an equilibrium, as

we did not observe dissociation of trimeric human Hsf1 upon dilution and heat-induced trimerization

was irreversible in our hands (Figure 3). These data suggest that there are principle differences

between Drosophila and human Hsf1.

For human Hsf1 we observed striking differences between the temperature response curves of 10

and 30-min-incubation at elevated temperatures. How can these differences be explained? Under

our conditions temperature-induced Hsf1 transitions were irreversible. Therefore, at low tempera-

tures even rare unfolding fluctuations of HR-C will eventually lead to trimerization, which will not be

observed at short incubation times. Two effects could be responsible for the difference in Tm for HR-

A/B and HR-C. At low temperature HR-C dissociation from HR-A/B and re-association might be fast

as compared to trimerization. In the free state, HR-C could exist in an unfolding-refolding equilib-

rium, allowing exchange of protons for deuterons. If refolding is slow in comparison to the intrinsic

chemical exchange rate, this would be visible as unfolded species, but HR-C would still refold and

reassociate with HR-A/B, repressing trimerization. With increasing temperature unfolding rates

would increase, shifting the equilibrium to the completely unfolded state, then allowing HR-A/B tri-

merization. Alternatively, additional temperature-induced conformational changes in HR-A/B are

necessary to allow trimerization and these changes are slow as compared to HR-C unfolding at low

temperatures.

Phosphorylation of Ser307 was suggested to repress human Hsf1 activation because the Ser307

to Ala replacement caused constitutively active Hsf1 in vivo (Xia et al., 1998). The temperature

response curve of the phosphomimetic Hsf1-S307D variant measured by HX-MS showed a slightly

reduced midpoint of transition as compared to wild-type Hsf1, suggesting that phosphorylation at

this site does not inhibit heat-induced trimerization but might rather favor it and the repressive effect

must be at a different level. Our observations are consistent with more recent data on non-phos-

phorylatable Hsf1 variants which were not constitutively active, casting a doubt on the repressive

effect of phosphorylation at this site (Budzyński et al., 2015).

Most surprising was our finding that Hsp90 does not prevent trimerization and DNA binding of

Hsf1 but in the contrary reduces midpoint and steepness of the temperature response curve. This

observation seems to be at odds with the known repressive function of Hsp90 on the heat shock

response (Zou et al., 1998; Whitesell et al., 2003; 2014; Sittler et al., 2001; Ali et al., 1998). This

discrepancy may have different reasons. First, Hsp90 also inhibits the heat shock response in yeast,

although yeast Hsf1 is constitutively trimeric and bound to DNA, suggesting that Hsp90 could exert

its inhibiting function on human Hsf1 after trimerization and DNA binding as well, consistent with

observations for human Hsf1 (Duina et al., 1998; Sorger et al., 1987; Guo et al., 2001). Second, in

our experiments we only used one isoform of Hsp90, Hsp90b, and did not add any of the some 30

Figure 7 continued
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Figure 8. Hsp90 modulates midpoint and steepness of the temperature response curves of human Hsf1. (A)

Difference plot of deuteron incorporation of human Hsf1 in the presence of Hsp90b minus deuteron incorporation

into Hsf1 at the indicated temperatures. (B and C) Fraction of high-exchanging species of peptic peptides 169–175

(B) and 389–395 (C) of Hsf1 (5 mM) pre-incubated in the absence (blue) and presence of human Hsp90b (15 mM,

red) at the indicated temperature before HX at 20˚C for 30 s, quenching with low-pH buffer, peptic digestion, and

MS analysis. Data points and fits of the unfolding equilibrium equation for three independent experiments are

shown. (D and E Electrophoretic mobility shift assay (EMSA). HSE-DNA binding of monomeric Hsf1 pre-incubated

at the indicated temperature in the absence (D) or presence of Hsp90 (E). (F) Quantification of data from panels D

and E. Fraction of DNA bound by Hsf1 versus temperature is plotted. Data points and fits of the unfolding

equilibrium equation to the data of two independent experiments are shown. (G) Transition midpoints calculated

Figure 8 continued on next page
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co-chaperones known to assist chaperoning by Hsp90. Further experiments with Hsp90a and differ-

ent combinations of co-chaperones will be necessary to elucidate whether there exist isoform speci-

ficity in Hsf1 regulation or whether Hsp90-co-chaperone complexes have a different effect on Hsf1

trimerization than Hsp90b alone. Third, effects of Hsp90 down-regulation or inhibition could also be

indirect, especially because interaction of Hsp90 with Hsf1 seems only to be observed after cross-

linking (Neef et al., 2014; Zou et al., 1998), suggesting a very transient interaction. Hsp90 chaper-

ones many kinases, and inhibition of Hsp90 leads to inactivation and degradation of these client pro-

teins. Loss of such kinases could reduce inhibitory effects of phosphorylation or phosphorylation-

dependent sumoylation of Hsf1 (Soncin et al., 2003; Wang et al., 2006; Hietakangas et al., 2003;

2006).

Originally, it was proposed that HR-C forms a coiled-coil with HR-A or HR-B to prevent trimeriza-

tion in unstressed HSF1 (Rabindran et al., 1993; Zuo et al., 1994). Together with the observation

that Hsf1 spontaneously trimerizes at high concentrations in the absence of a heat shock

([Zhong et al., 1998] and our own observations) and with our HX-MS data, showing temperature-

induced unfolding of HR-C, the model shown in Figure 9A can be derived. Under non-stress condi-

tions, HSF1 is in a conformational equilibrium between a closed conformation with HR-C interacting

with HR-A/B and an open conformation, in which the two heptad repeat regions are dissociated.

Since association of HR-C with HR-A/B is an intramolecular interaction, limiting the diffusional free-

dom of the interaction partners, association rates would be very high due to the apparent high local

concentration. In addition, the net charge of HR-A/B and HR-C are +6 and -7, respectively, favoring

association of the two regions by electrostatic attraction. Only at high concentrations of HSF1 associ-

ation of HR-A/B regions of several HSF1 molecules, which are in the open conformation, would be

able to compete with the intramolecular reaction, forming the thermodynamically more stable tri-

mer. This would explain the spontaneous Hsf1 trimerization at high concentrations even at low tem-

peratures (Zhong et al., 1998). Temperature-induced unfolding of HR-C in the closed conformation

favors HR-C dissociation. Alternatively or in addition, HR-C unfolding in the open conformation pre-

vents coiled-coil interaction with HR-A/B and thus reduces the back-reaction to the closed conforma-

tion. As a consequence, trimer association is favored even at lower HSF1 concentrations.

For two reasons we do not consider this model as very likely: First, single helices free in solutions

are usually not stable but are in a rapid equilibrium with the unfolded state due to the low energy

difference between helix-internal hydrogen bonds and hydrogen bonds with water. In such a state,

we would not expect to see much protection in HX-MS experiments, which is in contrast to our

observation (Figure 1E). The amount of heat necessary to unfold a single helix seems too small to

account for the temperature control, the steepness, the kinetics and the substantial activation energy

of 249 kJ�mol-1 for the unfolding/trimerization transition, observed in our experiments. Second, HR-

C unfolding would be independent of concentration in this model, also inconsistent with our data

(Figure 7).

Based on our data we propose a novel ‘dimer activation model’ (Figure 9B). In this model HR-C

remains bound to HR-A/B in the unstressed Hsf1 monomer. However, unstressed Hsf1 could tran-

siently dimerize due to the larger size of the HR-A/B region (75 amino acids) as compared to HR-C

(42 amino acids). Such dimers would be destabilized by the interaction of HR-C with HR-A/B, result-

ing in high dissociation rates and a high fraction of Hsf1 monomers in unstressed cells. However, HR-

A/B-HR-A/B interaction could also destabilize the interaction of HR-C with HR-A/B. At high Hsf1 con-

centrations, association of a third Hsf1 monomer to the transient Hsf1 dimer could occur, displacing

the then more-weakly bound HR-C and leading to a stable Hsf1 trimer. Heat-induced unfolding of

HR-C and possibly also its binding partner within HR-A/B (in our experiments obscured by subse-

quent trimerization) would lead to HR-C undocking. This would reduce Hsf1 dimer dissociation rates

and favor Hsf1 trimerization even at low Hsf1 concentrations.

In this model, HR-C unfolding and trimerization are kinetically coupled processes, at least for

short heat shocks (up to 15 min), explaining why they occur at identical rate constants (Figure 4).

Figure 8 continued
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Figure 9. Kinetic models of the thermosensor function of Hsf1. (A) Monomer activation model, based on the originally proposed mechanism modified

with our HX-MS data. In unstressed cells monomeric Hsf1 is in equilibrium between a closed, HR-C docked to HR-A/B, and open conformation, with

HR-C dissociated from HR-A/B. Owing to high local concentration and electrostatic attraction the intramolecular association rate kon,i of the HR-C–HR-

A/B interaction are very high as compared to the dissociation rate koff,i. Since only uncomplexed HR-A/B can trimerize and Hsf1 trimerization therefore

depends on the concentration of the open conformation, at low temperatures, trimerization only occurs at high Hsf1 concentrations. Temperature-

induced unfolding of HR-C in the docked or undocked state reduces the intramolecular association rates and/or increases the dissociation rate of the

intramolecular HR-C–HR-A/B complex, thereby increasing the concentration of Hsf1 in the open conformation and allowing trimerization at low Hsf1

concentrations. (B) Dimer activation model. At low temperatures, HR-C is constitutively docked onto HR-A/B and monomeric Hsf1 transiently dimerizes

through the free part of HR-A/B. Such transient dimerization may partially destabilize the HR-C–HR-A/B interaction. At high Hsf1 concentrations a third

Hsf1 monomer could interact with a transient Hsf1 dimer to form a thermodynamically stable Hsf1 trimer with completely released HR-C even at low

temperatures. Increasing temperatures lead to unfolding of HR-C in the dimeric Hsf1 species leading to stabilization of the Hsf1 dimer and increased

probability of trimerization. Hsp90 might modulate the temperature response by stabilizing the dimeric Hsf1 species. (C) Estimation of the

concentration dependence of the transition temperature of Hsf1. Data points are all the Tm values determined for 10 min incubation at elevated

temperatures for Hsf1 wild type in the absence (black) or presence (green) of Hsp90 by HX-MS and by anisotropy. Black curve is a fit of the quadratic

solution of the law of mass action of the monomer-dimer equilibrium, assuming that the fraction of dimer determines the Tm. This fit results in a Tm,M

for the monomer of Hsf1 (extrapolation to 0 nM) of 53˚C, the Tm,D for the dimer of 33˚C, and a KD of the monomer-dimer equilibrium of 330 nM. Due to

the sensitivity of the fit to data points at low Hsf1 concentrations, these are only rough estimates. The blue and red dotted lines are simulations using a

lower value for KD (100 nM, blue) or KD (200 nM) and Tm,D (29˚C, red) to simulate the effect of Hsp90. (D) Tentative model of the dimeric Hsf1 based on

the recent crystal structure of the trimerization domain of C. thermophilum Skn7, which formed tetramers in two different crystal forms (PDB ID 5D5Y

and 5D5Z, [Neudegger et al., 2016]). HR-A, HR-B and HR-C were homology modeled on the tetrameric Skn7 using I-TASSER (Roy et al., 2010;

Zhang, 2008; Yang and Zhang, 2015; Yang et al., 2015). HR-C was positioned to accommodate interactions with HR-A and HR-B. The homology

model is colored according to HX-MS data (Figure 1E). Residues of the heptad repeat involved in the tetramer interface are shown as sticks.
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Furthermore, the average energy to unfold a protein which does not contain a co-factor is 1.4

kJ�mol-1 (Privalov and Gill, 1988; Alexander et al., 1992). Dividing the activation energy for HR-C

unfolding determined by us, 249 kJ�mol-1, by 1.4 results in 175, suggesting that 175 residues are

involved in this unfolding process. This is close to 168, the number of residues corresponding to a

dimer of the coiled-coil between HR-C (42 residues) with a similar sized region in HR-A/B.

Our dimer activation model assumes that the proposed Hsf1 dimer has a lower Tm (Tm,D) than the

Hsf1 monomer and that the measured Tm depends on the fraction of Hsf1 dimer present in the

assay. We therefore plotted all of our Tm values derived for wild-type Hsf1 and incubation times of

10 min versus Hsf1 concentration and fitted the quadratic solution of the law of mass action for the

monomer-dimer equilibrium to the data (Figure 9C). This fit results in a KD for the monomer-dimer

equilibrium, the Tm,M for the monomer and the Tm,D for the dimer. However, the derived values are

only very rough estimates due to the sensitivity of the curve to values of very low concentrations of

Hsf1, which, for technical reasons, we could not determine so far. However, the steepness of the

curve demonstrates that already small changes in concentration can dramatically change the transi-

tion temperature for Hsf1 activation.

Although there are no concentration determinations for Hsf1 in different tissues available to our

knowledge, using the relative quantification data determined by mass spectrometry for 11 different

cancer cell lines (Geiger et al., 2012), and assuming that these cells have a total protein concentra-

tion of about 150 mg/ml as determined for HEK293 cells (Gillen and Forbush, 1999), results in Hsf1

concentrations between 10 and 130 nM. The resulting Tm values would be between 47 and 53˚C.
However, Hsf1 is not equally distributed throughout the cytosol but shuttles in and out of the

nucleus with various stress conditions preventing Hsf1 export out of the nucleus (Vujanac et al.,

2005), resulting in a locally increased Hsf1 concentration between 4- and 17-fold (Fujioka et al.,

2006) and a local concentration between 40 and 2210 nM. This is well within the range that would

lead to a functional heat shock response according to our model.

Interestingly, the recent crystal structure of the trimerization domain of the Hsf1 homolog Skn7 of

Chaetomium thermophilum contains trimers but also tetramers (PDB ID 5D5Z and 5D5Y,

[Neudegger et al., 2016]). This tetramer might be a proxy for the dimer of HR-C-HR-A/B coiled-

coils. To visualize how such an Hsf1 dimer might look like, we modeled the structure of HR-A, HR-B

and HR-C using I-TASSER (Roy et al., 2010; Zhang, 2008; Yang and Zhang, 2015; Yang et al.,

2015) and the tetramer structure of the trimerization domain of Skn7 as template (Figure 9D).

Hsp90 could modulate the monomer-trimer transition by stabilizing HR-A-HR-A interactions and/

or destabilize HR-A/B-HR-C interactions, resulting in a reduced dimer dissociation rate and an

increased rate of trimerization at lower temperatures. Stabilization of the HR-A-HR-A dimer and con-

comitant destabilization of HR-A/B-HR-C interaction would automatically destabilize HR-C ,since sin-

gle helices are not stabile in solution and only stabilized by interaction with other structural

elements, leading to a reduced unfolding transition temperature. To distinguish between stabiliza-

tion of HR-A-HR-A interaction and destabilization of HR-A/B-HR-C interactions we simulated the

effect of Hsp90 on the Tm by varying the apparent KD for dimerization and/or the Tm,D of the dimer

(see Figure 9C, dotted lines). With the current data available only changing the KD does not reduce

the Tm sufficiently to fit the measured values. However, small changes in KD and Tm,D would give sat-

isfying results. This would also explain the observation that Hsp90 reduced the Tm for HR-C unfold-

ing significantly more than the Tm for trimerization. In this respect Hsp90, curiously, had a similar

effect as the prolonged incubation at elevated temperatures (compare transition curves in Figure 2E

and G and Figure 8B, C, and F). Thus, Hsp90 accelerates temperature-induced changes in confor-

mation of Hsf1. It is not surprising that the chaperone Hsp90 destabilizes the HR-C conformation.

Chaperones have been shown to locally unfold native proteins (Rodriguez et al., 2008;

Sharma et al., 2010; Kirschke et al., 2014) and Hsp90 is believed to destabilize an a-helix in steroid

hormone receptors to allow hormone binding.

How could Hsf1 be active at non-heat stress conditions, for example during development

(Xiao et al., 1999), and how could it be activated by salicylate, low pH, Ca2+ ions, hypoxia, or pro-

teotoxic stress other than heat shock as demonstrated previously (Mosser et al., 1990;

Jurivich et al., 1992; Huang et al., 1995; Liu et al., 1996; Zhong et al., 1999; Ahn and Thiele,

2003)? According to our model Hsf1 exists in a monomer-dimer equilibrium, and trimerization of

Hsf1 with subsequent DNA binding may occur continuously at low levels, promoted by Hsp90, as

shown by us, and inhibited by TriC/CCT (Neef et al., 2014). This may ensure basal Hsf1
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transcriptional activity under non-stress conditions. At the same time inhibition of Hsf1 activity by

Hsp90, Hsp70-mediated attenuation and continuous Hsf1 monomerization would keep heat shock

gene transcription at a low level. Any condition that would favor Hsf1 dimerization and thus trimeri-

zation or inhibit chaperone-mediated inhibition or attenuation would, as a consequence, increase

heat shock gene transcription. All of the conditions mentioned above, including development, have

been associated with an imbalance in proteostasis affecting Hsf1 through titrating away chaperones.

However, Hsf1 dimerization could also be affected directly by changing its local concentration, as

through transport of Hsf1 into the nucleus (Dai et al., 2003) or preventing its export (Vujanac et al.,

2005), and by posttranslational modifications, including glutathionylation of the cysteine in HR-A in

response to oxidative stress or alkylating agents (Liu et al., 1996), and phosphorylation of Thr142 in

HR-A (Soncin et al., 2003), both of which would reduce the positive net charge of HR-A and thus

the electrostatic repulsion.

Our model could explain why the temperature setpoint of activation was lower when human Hsf1

was expressed in Drosophila cells or in Xenopus oocytes (Baler et al., 1993; Clos et al., 1993). In

transient or stable transfection experiments, usually a strong promoter is used to express the trans-

fected gene. Thus, the concentration of Hsf1 might have been much higher in the transfected cell

than is naturally the case in human cells. Similarly, in Xenopus oocyte-injection experiments the

amount of injected mRNA determines the final concentration of HSF1 and might have been so high

that the resulting Hsf1 concentration might have allowed activation already at 37˚C. Finally, our

kinetic Hsf1 activation model would allow each cell to adjust its setpoint of activation by changing

the concentration of Hsf1 by producing more Hsf1 or by concentrating it in a smaller compartment,

for example by transport from the cytoplasm into the nucleus. This would easily explain the different

setpoints in testis (Sarge et al., 1995; Sarge, 1995), mouse T-lymphocytes (Gothard et al., 2003)

and mouse motor neurons (Batulan et al., 2003). This might be particularly important for cancer

cells for which it was shown that Hsf1 is a driver of malignancy (Dai et al., 2007).

Materials and methods

Protein purification
A culture of BL21 Rosetta, freshly transformed with a plasmid encoding the 6xHis-SUMO-Hsf1 wild-

type or Hsf1-HR-A-S11 mutant sequence (Hsf1-I130S,V137S,L140S,V144S,M147S,M154S, L158S,

M161S,L168S,V172S,L175S), was grown at 37˚C to an OD600 of 0.6 and then shifted to 20˚C. Expres-
sion was induced by addition of IPTG to a final concentration of 0.1 mM, the culture grown for 2 hr

at 20˚C and cells were subsequently harvested by centrifugation (4500 � g for 15 min). All following

steps need to be carried out at 4˚C. Cell pellets were resuspended in lysis buffer (25 mM Hepes pH

7.4, 150 mM NaCl and 10% glycerol, 3 mM b-mercaptoethanol) containing protease inhibitors (10

mg/ml aprotinin, 5 mg/ml leupeptin, 8 mg/ml pepstatin, one cOmplete Protease Inhibitor Cocktail

tablet [Roche Diagnostics, Mannheim, Germany]). Cells were disrupted by subjecting the suspension

two times to a chilled microfluidizer at a pressure of 1000 bar. The resulting lysate was immediately

centrifuged (16000 � g for 45 min) to remove cell debris.

The supernatant fraction containing 6xHis-tagged HSF1 was incubated for 20 min at 4˚C with 1 g

of Protino Ni2+-IDA resin (Macherey-Nagel, Düren, Germany) in a rotation shaker. The resin was

transferred to an empty gravity-flow column and the flow-through was collected. In a first step the

resin was washed with 10 column volumes (CV) of wash buffer and 10 CV of high salt buffer (25 mM

Hepes pH 7.4, 1 M NaCl, 10% glycerol, 3 mM b-mercaptoethanol). After a final washing step with

another 10 CV of wash buffer the protein was eluted by addition of 1.5 CV elution buffer (25 mM

Hepes pH 7.4, 1 M NaCl, 10% glycerol, 3 mM b-mercaptoethanol, 250 mM imidazole) to the column.

The SUMO-Tag was cleaved off by incubation with Ulp1 SUMO-protease for 2 hr at 4˚C.
The cleaved Hsf1 was further separated by size-exclusion on a S200 HiLoad 16/60 column (GE

Healthcare Europe, Freiburg, Germany), equilibrated with Hsf1-buffer (25 mM Hepes pH 7.4, 150

mM NaCl, 10% glycerol, 2 mM DTT). The fractions containing monomeric Hsf1 were adjusted to a

concentration of 10 mM, flash-frozen in liquid nitrogen and stored at -80˚C.
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EMSA for trimerization of HSF1
300 nM Hsf1 premixed with 200 nM Cy3–labeled HSE-oligonucleotide were incubated for 10 min

either on ice or at 42˚C. As a positive control purified trimeric Hsf1 was kept on ice for 10 min. After

incubation the samples were kept at room temperature for additional 30 min, mixed with glycerol

and loaded onto a pre-chilled 1% agarose gel (TBE) at 4˚C. The agarose gel was run for 30 min at

150 V in the cold room. Labeled HSE-DNA was detected on a FUJI LAS-4000 fluorescence imager

(Fuji Photo Film, Düsseldorf, Germany).

For Hsp90 experiments, 5 mM Hsf1 was premixed with 2.5 mM Cy3–labeled HSE-oligonucleotide

and 20 mM Hsp90b in buffer containing 10 mM ATP/20 mM MgCl2.

Samples were incubated for 10 min at different temperatures (20˚C–42˚C), diluted 1:6 in Hsf1-

buffer and incubated for 30 min at room temperature. An amount of sample containing 850 nM

Hsf1, 3.4 mM Hsp90b and 425 nM HSE-DNA was loaded onto a 1% agarose gel and processed as

described above.

HDX for temperature response curve
For the determination of the temperature response curve of Hsf1 activation, 5 mM Hsf1 or mutants

(S303D or S307D) in Hsf1-buffer (25 mM Hepes pH 7.4, 150 mM NaCl, 10% glycerol, 2 mM DTT)

were heat shocked for 10 or 30 min at different temperatures (20˚C–42˚C). The samples were then

diluted 1:20 in D2O buffer and incubated for 30 s at 20˚C. Deuterated samples were quenched 1:1

with ice-cold quench buffer (400 mM sodium phosphate pH 2.2), quickly injected into the injection

valve and subjected to LC-MS using an Agilent UPLC and a MaXis mass spectrometer (Bruker, Bre-

men, Germany). For each experiment at least one unexchanged sample and one fully deuterated

control was measured. To determine the Hsf1 activation temperature at lower concentrations, Hsf1

was diluted to a concentration of 2 mM before the experiment.

For HX-MS experiments in the presence of Hsp90b, 10 mM Hsf1 were mixed 1:1 with 40 mM

human Hsp90b in reaction buffer (25 mM Hepes, 150 mM NaCl, 10% Glycerol, 20 mM MgCl2, 10

mM ATP and 2 mM DTT) and incubated for 10 min at 20˚C. Equilibrated samples were then trans-

ferred to a thermomixer for a 10 min-incubation at seven different temperatures (20˚C–42˚C). Dilu-
tion in D2O buffer and subsequent steps were performed as described above.

The unexchanged protein sample was diluted 1:20 in H2O buffer and then mixed 1:1 with quench

buffer. The fully deuterated sample (protein in Hsf1-buffer containing 6 M guanidine hydrochloride,

lyophilised and redissolved in pure D2O at least three times) was treated equally to normal samples.

Data analysis was performed manually (Data Analysis 4.1, Bruker).

HDX for kinetic studies
5 mM HSF1 in Hsf1-buffer were heat-shocked for different amounts of time (10 s, 30 s, 60 s, 100 s,

300 s, 600 s, 1000 s) at four different temperatures (35˚C, 37˚C, 39˚C, 42˚C). The samples were then

diluted 1:20 in D2O buffer and incubated for 30 s at 20˚C. Deuterated samples were quenched 1:1

with ice-cold quench buffer (400 mM sodium phosphate pH 2.2) and quickly injected into the injec-

tion valve and subjected to LC-MS. For each experiment at least one unexchanged sample and one

fully deuterated control was measured.

Data analysis was performed manually (Data Analysis 4.1, Bruker).

Data evaluation
Evaluation of bimodal isotope peak distribution: the intensity versus m/z plots of the isotope peaks

were fitted with an equation for two Gaussian peaks (see Figures 2,4 or Figure 2—figure supple-

ment 3):

I ¼ A1

s �
ffiffiffiffiffiffi

2p
p � e�1

2

���1
s

� � 2

þ A2

s �
ffiffiffiffiffiffi

2p
p � e�1

2

���2
s

� �2

with A1/2 being the area of the two peaks; �, the m/z values; �1=2 , the means of the Gaussian peaks,

representing the centroid of each of the two subpopulations; and s, the standard deviation of the

Gaussian peaks, representing the width of the isotope peak distribution (see Figure 2—figure sup-

plement 2B and D for individual Gaussian curves, the sum of which results in the fit curves of Fig-

ure 2). For each peptide showing a bimodal distribution all intensity values belonging to one
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temperature (Figures 2,3,5,7,8) or time (Figure 4) series was globally fitted assuming that s, m1 and

m2 are constant within this series. Independent experiments were treated independently. Then the

parameters of the fit results, A1/2, �1=2 and s, were used to calculate for each individual isotope

peak which part of the intensity belongs to the low exchanging subpopulation and which part

belongs to the high exchanging subpopulation (see Figure 2—figure supplement 2A and C panels:

calculated intensity values for low [blue] and high [red] exchanging subpopulations for each isotope

peak stacked on top of each other for comparison with original spectra). For all isotope peaks the

intensities belonging to one subpopulation (low or high) was summed up to calculate the fraction of

this subpopulation within the sample.

To calculate the temperature midpoint of the transition we used the thermal unfolding equation:

F ¼ f0 þðfmax� f0Þ.
e
ðT�TmÞ.DH
R.T .Tm

1þ e
ðT�TmÞ.DH
R.T .Tm

with f0 and fmax being the fraction of high exchanging subpopulation at low and high temperatures,

respectively; T, absolute temperature in K; Tm, temperature at midpoint of activation; R, gas con-

stant; DH, unfolding enthalpy.

Blue native gel
Hsf1 (10 mM) in Hsf1-buffer were incubated for 30 min at 0˚C (control) or 42˚C (heat shock). Natively

purified dimer and trimer of Hsf1 were added as additional controls. After incubation 7 mg of Hsf1

were loaded on a 7% native gel or a 4–16% native gradient gel and separated by blue native poly-

acrylamide gel electrophoresis as described in (Wittig et al., 2006) except that Coomassie Brillant

Blue G250 was only present in the sample buffer (0.2%) not in the running buffer. For western blot

analysis, an anti-Hsf1 antibody was used (Santa Cruz Biotech, HSF1 H-311).

Fluorescence anisotropy
Aliquots of Hsf1 were thawed and immediately centrifuged (4˚C, 15 min, 15000 rpm). In order to

capture any occurring trimeric Hsf1, the supernatant was incubated for 20 min on ice with DNA con-

taining three HSEs coupled to magnetic beads (5’-CCCCTTCCCGAATATTCCCCC-3’, 0.5 mg per ali-

quot, Dynabeads M-280 by Invitrogen). The supernatant concentration was determined by

absorbance at 280 nm. Subsequently, four discrete concentrations of Hsf1 (5 mM, 1 mM, 300 nM, 100

nM) were prepared with Hsf1-buffer and heat-shocked for 10 min at five different temperatures

(30˚C, 35˚C, 37˚C, 39˚C and 42˚C) using a temperature-controlled water bath. Additionally, 300 nM

Hsf1 was kept on ice for the same period of time as a control. Fluorescence anisotropy measure-

ments were performed with a CLARIOstar microplate reader (BMG Labtech) and 384-well black flat-

bottom microplates (Corning) in a final sample volume of 30 mL. Samples were serial diluted 1:2 until

concentrations were below 1 nM. 10 nM of Alexa Fluor 488-labelled DNA containing three HSEs (5’-

[A488]CCCCTTCCCGAATATTCCCCC-3’ (Sigma-Aldrich) was added by the injection system of the

plate reader to start the measurement.
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Budzyński MA, Puustinen MC, Joutsen J, Sistonen L. 2015. Uncoupling stress-inducible phosphorylation of heat
shock factor 1 from its activation. Molecular and Cellular Biology 35:2530–2540. doi: 10.1128/MCB.00816-14

Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK. 1996. Sequential phosphorylation by mitogen-
activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock
factor-1. Journal of Biological Chemistry 271:30847–30857. doi: 10.1074/jbc.271.48.30847

Clos J, Rabindran S, Wisniewski J, Wu C. 1993. Induction temperature of human heat shock factor is
reprogrammed in a drosophila cell environment. Nature 364:252–255. doi: 10.1038/364252a0

Clos J, Westwood JT, Becker PB, Wilson S, Lambert K, Wu C. 1990. Molecular cloning and expression of a
hexameric drosophila heat shock factor subject to negative regulation. Cell 63:1085–1097. doi: 10.1016/0092-
8674(90)90511-C

Dai C, Whitesell L, Rogers AB, Lindquist S. 2007. Heat shock factor 1 is a powerful multifaceted modifier of
carcinogenesis. Cell 130:1005–1018. doi: 10.1016/j.cell.2007.07.020

Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D,
Patterson C. 2003. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. The
EMBO Journal 22:5446–5458. doi: 10.1093/emboj/cdg529

Duina AA, Kalton HM, Gaber RF. 1998. Requirement for Hsp90 and a CyP-40-type cyclophilin in negative
regulation of the heat shock response. Journal of Biological Chemistry 273:18974–18978. doi: 10.1074/jbc.273.
30.18974

Fujioka A, Terai K, Itoh RE, Aoki K, Nakamura T, Kuroda S, Nishida E, Matsuda M. 2006. Dynamics of the Ras/
ERK MAPK cascade as monitored by fluorescent probes. Journal of Biological Chemistry 281:8917–8926. doi:
10.1074/jbc.M509344200

Geiger T, Wehner A, Schaab C, Cox J, Mann M. 2012. Comparative proteomic analysis of eleven common cell
lines reveals ubiquitous but varying expression of most proteins. Molecular & Cellular Proteomics 11:M111.
014050. doi: 10.1074/mcp.M111.014050

Gillen CM, Forbush B. 1999. Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl
cotransporter in HEK-293 cells. The American Journal of Physiology 276:C328–336.

Gothard LQ, Ruffner ME, Woodward JG, Park-Sarge OK, Sarge KD. 2003. Lowered temperature set point for
activation of the cellular stress response in t-lymphocytes. Journal of Biological Chemistry 278:9322–9326. doi:
10.1074/jbc.M209412200

Hentze et al. eLife 2016;5:e11576. DOI: 10.7554/eLife.11576 21 of 24

Research article Biochemistry Biophysics and structural biology

http://orcid.org/0000-0002-7859-3112
http://dx.doi.org/10.1101/gad.6.7.1153
http://dx.doi.org/10.1101/gad.6.7.1153
http://dx.doi.org/10.1101/gad.5.11.2117
http://dx.doi.org/10.1101/gad.1044503
http://dx.doi.org/10.1021/bi00129a007
http://dx.doi.org/10.1128/MCB.18.9.4949
http://dx.doi.org/10.1146/annurev-biochem-060809-095203
http://dx.doi.org/10.1128/MCB.13.4.2486
http://dx.doi.org/10.1038/onc.2009.188
http://dx.doi.org/10.1128/MCB.00816-14
http://dx.doi.org/10.1074/jbc.271.48.30847
http://dx.doi.org/10.1038/364252a0
http://dx.doi.org/10.1016/0092-8674(90)90511-C
http://dx.doi.org/10.1016/0092-8674(90)90511-C
http://dx.doi.org/10.1016/j.cell.2007.07.020
http://dx.doi.org/10.1093/emboj/cdg529
http://dx.doi.org/10.1074/jbc.273.30.18974
http://dx.doi.org/10.1074/jbc.273.30.18974
http://dx.doi.org/10.1074/jbc.M509344200
http://dx.doi.org/10.1074/jbc.M509344200
http://dx.doi.org/10.1074/mcp.M111.014050
http://dx.doi.org/10.1074/jbc.M209412200
http://dx.doi.org/10.1074/jbc.M209412200
http://dx.doi.org/10.7554/eLife.11576


Graf C, Stankiewicz M, Kramer G, Mayer MP. 2009. Spatially and kinetically resolved changes in the
conformational dynamics of the Hsp90 chaperone machine. The EMBO Journal 28:602–613. doi: 10.1038/
emboj.2008.306

Guettouche T, Boellmann F, Lane WS, Voellmy R. 2005. Analysis of phosphorylation of human heat shock factor
1 in cells experiencing a stress. BMC Biochemistry 6:4. doi: 10.1186/1471-2091-6-4

Guisbert E, Yura T, Rhodius VA, Gross CA. 2008. Convergence of molecular, modeling, and systems approaches
for an understanding of the escherichia coli heat shock response. Microbiology and Molecular Biology Reviews
72:545–554. doi: 10.1128/MMBR.00007-08

Guo Y, Guettouche T, Fenna M, Boellmann F, Pratt WB, Toft DO, Smith DF, Voellmy R. 2001. Evidence for a
mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. Journal of
Biological Chemistry 276:45791–45799. doi: 10.1074/jbc.M105931200

Harrison C, Bohm A, Nelson H. 1994. Crystal structure of the DNA binding domain of the heat shock
transcription factor. Science 263:224–227. doi: 10.1126/science.8284672

Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI, Mikhailov A, Palvimo JJ,
Pirkkala L, Sistonen L. 2003. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO
modification of heat shock factor 1. Molecular and Cellular Biology 23:2953–2968. doi: 10.1128/MCB.23.8.
2953-2968.2003

Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L. 2006. PDSM, a motif for
phosphorylation-dependent SUMO modification. Proceedings of the National Academy of Sciences of the
United States of America 103:45–50. doi: 10.1073/pnas.0503698102

Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N,
MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L. 2001. Phosphorylation of serine 230 promotes inducible
transcriptional activity of heat shock factor 1. The EMBO Journal 20:3800–3810. doi: 10.1093/emboj/20.14.
3800

Huang LE, Caruccio L, Liu AY, Chen KY. 1995. Rapid activation of the heat shock transcription factor, HSF1, by
hypo-osmotic stress in mammalian cells. Biochemical Journal 307:347–352. doi: 10.1042/bj3070347

Jolly C, Morimoto RI. 2000. Role of the heat shock response and molecular chaperones in oncogenesis and cell
death. Journal of the National Cancer Institute 92:1564–1572. doi: 10.1093/jnci/92.19.1564

Jurivich D, Sistonen L, Kroes R, Morimoto R. 1992. Effect of sodium salicylate on the human heat shock
response. Science 255:1243–1245. doi: 10.1126/science.1546322

Kim S-A, Yoon J-H, Lee S-H, Ahn S-G. 2005. Polo-like kinase 1 phosphorylates heat shock transcription factor 1
and mediates its nuclear translocation during heat stress. Journal of Biological Chemistry 280:12653–12657.
doi: 10.1074/jbc.M411908200

Kirschke E, Goswami D, Southworth D, Griffin PR, Agard DA. 2014. Glucocorticoid receptor function regulated
by coordinated action of the Hsp90 and Hsp70 chaperone cycles. Cell 157:1685–1697. doi: 10.1016/j.cell.2014.
04.038

Lee J-H, Gao J, Kosinski PA, Elliman SJ, Hughes TE, Gromada J, Kemp DM. 2013. Heat shock protein 90 (hSP90)
inhibitors activate the heat shock factor 1 (hSF1) stress response pathway and improve glucose regulation in
diabetic mice. Biochemical and Biophysical Research Communications 430:1109–1113. doi: 10.1016/j.bbrc.
2012.12.029

Liu H, Lightfoot R, Stevens JL. 1996. Activation of heat shock factor by alkylating agents is triggered by
glutathione depletion and oxidation of protein thiols. The Journal of Biological Chemistry 271:4805–4812.

Lu M, Kim H-E, Li C-R, Kim S, Kwak I-J, Lee Y-J, Kim S-S, Moon J-Y, Kim CH, Kim D-K, Kang HS, Park J-S. 2008.
Two distinct disulfide bonds formed in human heat shock transcription factor 1 act in opposition to regulate its
DNA binding activity. Biochemistry 47:6007–6015. doi: 10.1021/bi702185u

Morimoto RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat
shock factors, molecular chaperones, and negative regulators. Genes & Development 12:3788–3796. doi: 10.
1101/gad.12.24.3788

Morimoto RI. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and
aging. Genes & Development 22:1427–1438. doi: 10.1101/gad.1657108

Mosser DD, Kotzbauer PT, Sarge KD, Morimoto RI. 1990. In vitro activation of heat shock transcription factor
DNA-binding by calcium and biochemical conditions that affect protein conformation. Proceedings of the
National Academy of Sciences of the United States of America 87:3748–3752. doi: 10.1073/pnas.87.10.3748

Neef DW, Jaeger AM, Gomez-Pastor R, Willmund F, Frydman J, Thiele DJ. 2014. A direct regulatory interaction
between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Reports 9:955–966. doi: 10.
1016/j.celrep.2014.09.056

Neudegger T, Verghese J, Hayer-Hartl M, Hartl FU, Bracher A. 2016. Structure of human heat-shock transcription
factor 1 in complex with DNA. Nature Structural & Molecular Biology 23:140–146. doi: 10.1038/nsmb.3149

Pattaramanon N, Sangha N, Gafni A. 2007. The carboxy-terminal domain of heat-shock factor 1 is largely
unfolded but can be induced to collapse into a compact, partially structured state. Biochemistry 46:3405–3415.
doi: 10.1021/bi061124c

Powers MV, Clarke PA, Workman P. 2008. Dual targeting of HSC70 and HSP72 inhibits HSP90 function and
induces tumor-specific apoptosis. Cancer Cell 14:250–262. doi: 10.1016/j.ccr.2008.08.002

Powers MV, Workman P. 2007. Inhibitors of the heat shock response: biology and pharmacology. FEBS Letters
581:3758–3769. doi: 10.1016/j.febslet.2007.05.040

Prahlad V, Cornelius T, Morimoto RI. 2008. Regulation of the cellular heat shock response in caenorhabditis
elegans by thermosensory neurons. Science 320:811–814. doi: 10.1126/science.1156093

Hentze et al. eLife 2016;5:e11576. DOI: 10.7554/eLife.11576 22 of 24

Research article Biochemistry Biophysics and structural biology

http://dx.doi.org/10.1038/emboj.2008.306
http://dx.doi.org/10.1038/emboj.2008.306
http://dx.doi.org/10.1186/1471-2091-6-4
http://dx.doi.org/10.1128/MMBR.00007-08
http://dx.doi.org/10.1074/jbc.M105931200
http://dx.doi.org/10.1126/science.8284672
http://dx.doi.org/10.1128/MCB.23.8.2953-2968.2003
http://dx.doi.org/10.1128/MCB.23.8.2953-2968.2003
http://dx.doi.org/10.1073/pnas.0503698102
http://dx.doi.org/10.1093/emboj/20.14.3800
http://dx.doi.org/10.1093/emboj/20.14.3800
http://dx.doi.org/10.1042/bj3070347
http://dx.doi.org/10.1093/jnci/92.19.1564
http://dx.doi.org/10.1126/science.1546322
http://dx.doi.org/10.1074/jbc.M411908200
http://dx.doi.org/10.1016/j.cell.2014.04.038
http://dx.doi.org/10.1016/j.cell.2014.04.038
http://dx.doi.org/10.1016/j.bbrc.2012.12.029
http://dx.doi.org/10.1016/j.bbrc.2012.12.029
http://dx.doi.org/10.1021/bi702185u
http://dx.doi.org/10.1101/gad.12.24.3788
http://dx.doi.org/10.1101/gad.12.24.3788
http://dx.doi.org/10.1101/gad.1657108
http://dx.doi.org/10.1073/pnas.87.10.3748
http://dx.doi.org/10.1016/j.celrep.2014.09.056
http://dx.doi.org/10.1016/j.celrep.2014.09.056
http://dx.doi.org/10.1038/nsmb.3149
http://dx.doi.org/10.1021/bi061124c
http://dx.doi.org/10.1016/j.ccr.2008.08.002
http://dx.doi.org/10.1016/j.febslet.2007.05.040
http://dx.doi.org/10.1126/science.1156093
http://dx.doi.org/10.7554/eLife.11576


Prahlad V, Morimoto RI. 2011. Neuronal circuitry regulates the response of caenorhabditis elegans to misfolded
proteins. Proceedings of the National Academy of Sciences of the United States of America 108:14204–14209.
doi: 10.1073/pnas.1106557108

Privalov PL, Gill SJ. 1988. Stability of protein structure and hydrophobic interaction. Advances in Protein
Chemistry 39:191–234. doi: 10.1016/S0065-3233(08)60377-0

Rabindran S, Haroun R, Clos J, Wisniewski J, Wu C. 1993. Regulation of heat shock factor trimer formation: role
of a conserved leucine zipper. Science 259:230–234. doi: 10.1126/science.8421783

Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl FU. 2014. Interplay of
acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156:
975–985. doi: 10.1016/j.cell.2014.01.055

Rist W, Graf C, Bukau B, Mayer MP. 2006. Amide hydrogen exchange reveals conformational changes in Hsp70
chaperones important for allosteric regulation. Journal of Biological Chemistry 281:16493–16501. doi: 10.1074/
jbc.M600847200
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