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Abstract: Many studies have evaluated the effects of resistance training (RT) and protein intake
to attenuate the age-related loss of skeletal muscle. However, the effects of graded protein intake
with conjunctive RT in older adults are unclear. Older adults (n = 18) performed 10 weeks of whole-
body RT with progressions to intensity and volume while consuming either a constant protein (CP)
diet (0.8–1.0 g/kg/d) with no protein supplement or a graded protein (GP) diet progressing from
0.8 g/kg/d at week 1 to 2.2 g/kg/d at week 10 with a whey protein supplement. Data were collected
prior to commencement of the RT protocol (PRE), after week 5 (MID), and after week 10 (POST).
Dual Energy X-ray Absorptiometry derived lean/soft tissue mass, ultrasonography derived muscle
thickness, and a proxy of muscle quality were taken at PRE and POST, while isokinetic dynamometry
derived peak torque were taken at PRE, MID, and POST. This study demonstrated the feasibility of
the RT protocol (attendance = 96%), and protein intake protocol (CP in range all weeks; GP deviation
from prescribed = 7%). Peak torque, muscle quality scores, and appendicular lean/soft tissue mass
demonstrated the main effects of time (p < 0.05) while no other main effects of time or group * time
interactions were seen for any measure. In conclusion, RT improved appendicular lean/soft tissue
mass, peak torque, and muscle quality, with no differential effects of graded or constant protein intake.

Keywords: resistance training; skeletal muscle; aging; protein; hypertrophy

1. Introduction

It has long been accepted that aging is associated with increased physiological dysfunc-
tion of many physiological processes [1] including the age-related loss of skeletal muscle
mass and quality [2,3]. This age-driven process of skeletal muscle mass and quality loss is
implicated in the lean body mass loss-mediated decline in resting energy expenditure [4],
increased risk of mortality in disease [5,6], and increased risk of metabolic syndrome, frailty,
and insulin response dysfunction [7]. This process is termed sarcopenia, and is character-
ized by the loss of 3–8% of lean muscle mass per decade after the age of 30 [8]. In an analysis
from the Third National Health and Nutrition Examination Survey, it was estimated that
up to 59% of women and 45% of men ≥ 60 years of age are classified as sarcopenic [9].
Importantly, however, whether classified as sarcopenic or not, loss of skeletal muscle mass
with aging is a debilitating process and attention has been turned to the development of
pragmatic interventions.

In particular, resistance training (RT) has been the focus of many interventions in hopes
to attenuate or reverse the age-related decline in skeletal muscle mass. In many instances,
RT has been proven an effective intervention to combat the effects of aging on skeletal
muscle [10–13]. Indeed, studies and meta-analyses in populations aged ≥50 years have
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found significant increases to lean mass and muscle morphology measures [10,14–16]. RT
has additionally been shown to increase strength outcomes and muscle activation in older
adults [16–18]. Many interventions in older individuals have found significant strength
increases as measured by one repetition maximum (RM) testing, isokinetic dynamometry,
and isometric dynamometry [19–22].

While these results are promising, such adaptations in older adults typically do not
occur to the same degree as their younger counterparts [20]. It has been posited that this
difference in magnitude of response is due to a phenomenon termed anabolic resistance, or
the reduction in muscle protein synthesis in response to an anabolic stimulus (e.g., resis-
tance training) [19]. In order to combat this, the combination of enhanced protein intake
and RT has been the subject of attention. Indeed, it has been suggested for older adults
performing RT that acutely, ≥40 g of protein intake in a single bolus may be optimal [23–26],
while chronically intake of ~1.6 g of protein per kg of bodyweight per day (g/kg/d) might
provide maximal benefit as demonstrated in a breakpoint analysis [27]. Notably, in this
aforementioned analysis the 95% confidence interval ranged from 1.03 to 2.20 g/kg/d.
Furthermore, Antonio et al. have demonstrated that chronic protein intakes > 3 g/kg/d
demonstrate no adverse effects in a one-year crossover study [28]. Interventions adopt-
ing strategies comparable to these have shown promising results, as meta-analyses have
found that protein supplementation augments fat free mass gain [29] and strength mea-
sures [27,30] in older adults as compared to RT alone. There are, however, conflicting
findings, as several studies found no benefit to enhanced protein intake and/or protein
supplementation when combined with RT in regard to body composition and/or muscle
morphology [14,21,31,32], and strength measures [33–35].

It stands to reason that increasing protein intake concurrently with training inten-
sity/volume could enhance skeletal muscle outcomes given that (a) large single protein
boluses (≥40 g) have proven beneficial for older adults, (b) 1.6 g/kg/d has proven more
effective than the RDA of 0.8 g/kg/d for adults undergoing RT, and (c) increased protein
intake, specifically enhanced leucine intake, has shown promising effects in older adults at
the cell signaling level [19,36–38].

While many studies have examined the effects of enhanced protein intake in con-
junction with RT on skeletal muscle adaptation in older adults, none have adopted the
strategy of grading protein intake to RT intensity and volume. Therefore, the purpose
of the present study was to examine the feasibility and effects of graded protein intake
in conjunction with RT while maintaining both large single protein boluses and average
sustained intake of ~1.6 g/kg/d as compared to constant protein intake in conjunction with
RT on skeletal muscle outcomes in older adults. The primary outcome of this study was
change in overall and appendicular lean/soft tissue mass. Secondary aims of this study
were change in vastus lateralis thickness, muscle quality, isokinetic dynamometry derived
strength measures, and lean/soft tissue mass index. We additionally aimed to assess the
feasibility of both the RT and nutritional protocols, defined as at least 80% attendance
to training sessions and deviation of no more than 20% from target protein intakes. We
primarily hypothesized that graded protein intake with RT would produce greater total
and appendicular lean/soft tissue mass gain than would constant protein intake with RT.
We additionally hypothesized that graded protein intake with RT would provide greater
adaptation to vastus lateralis tissue thickness, muscle quality scores, and strength measures
than would constant protein intake with RT. Finally, we set out to examine the feasibility of
the RT and nutrition protocols amongst participants.

2. Materials and Methods
2.1. Participants

This study was approved by the Institutional Review Board at Wake Forest University
Reynolda Campus and conformed to standards set by the latest revision of the Declaration
of Helsinki (IRB Approval No. IRB00024112). This trial was registered as a clinical trial at
www.clinicaltrials.gov (ID: NCT04845282), accessed on 27 April 2022. Healthy, community-
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dwelling older men and post-menopausal women (≥55 years) were recruited to participate
in this study. Participants provided verbal and written informed consent and were screened
prior to study initiation. Participants were required to be free from comorbidities that could
be exacerbated by study protocols such as: cardiovascular disease, type 1 or type 2 diabetes,
renal failure, or thyroid disorders; or were required to provide explicit written consent from
a physician stating that they were medically cleared to participate in the study after review
of study protocols by the participant’s primary care physician. Participants were excluded
if they were: currently consuming an agent known to be confounding to skeletal muscle
adaptation, used a whey protein supplement regularly over the previous three months, or
if they had adhered to a progressive RT program in the 3 months prior to study initiation.
A progressive RT program was defined as a program primarily consisting of RT wherein
volume, intensity, frequency, or overall difficulty were monitored and modulated. Prior
to study initiation, participants were instructed to cease any other RT activities outside
of study protocols. Importantly, participants were instructed to refrain from external RT,
or the use of any sort of protein supplement other than what was prescribed by study
protocols (GP only).

2.2. Study Design

This was a two-arm, 10-week randomized clinical trial. Study design is depicted
visually in Figure 1 and Table 1. Briefly, prior to randomization, interested individuals
gave consent and underwent baseline testing. After screening and baseline data collection,
18 participants were randomly assigned to one of two groups: graded protein (GP) and
constant protein (CP). Select measures were obtained after week 5 (MID) and the full testing
battery was taken after completion of week 10 (POST). Measures and descriptions of the
intervention groups are provided below.
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Table 1. Study design.

PRE Wk 0 Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 MID Wk 6 Wk 7 Wk 8 Wk 9 Wk 10 POST

DXA Scan X X X

Ultrasound X X

Dynamometry X X X

Acclimation X

Training X X X X X X X X

Deload X X

Nutrition Protocol X X X X X X X X X X

3 RM Testing X

Training Intensity
(% 1 RM) - - 60 65 70 75 50 - 70 75 80 85 30 -

Sets/Exercise - - 2 2 3 3 2 - 2 3 3 3 1 -

Repetitions/Set - - 8–12 8–12 8–12 8–12 8–12 - 8–12 8–12 8–12 8–12 8–12 -

GP Target Protein
Intake (g/kg/day) - - 0.8 1.0 1.2 1.4 1.4 - 1.6 1.8 2.0 2.2 2.2 -

CP Target Protein
Intake (g/kg/day) - - 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 - 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 0.8–1.0 -

GP Protein
Supplement

Prescribed (g)
- - 25 25 25 25 25 - 50 50 or 75 * 50 or 75 * 50 or 75 * 50 or 75 * -

* Supplemental protein either 50 or 75 g depending on participant preference or failure to meet the previous week’s
protein goal. Wk: Week; DXA: Dual Energy X-ray Absorptiometry; RM: Repetition Maximum; CP: Constant
Protein Group; GP: Graded Protein Group.

2.2.1. Resistance Training Protocol

After baseline data collection, participants familiarized themselves to equipment
and movements, and completed 3 RM testing to derive an estimated 1 RM that was
used for intensity prescription throughout the study. The 3 RM testing was conducted in
accordance with National Strength and Conditioning Association protocols [39]. Following
the acclimation and 3 RM testing week, participants performed 3 lower extremity-focused,
full-body RT sessions per week at Wake Forest University’s Department of Health and
Exercise Science Clinical Research Center (CRC). RT protocols were in accordance with
the American College of Sports Medicine’s 2009 position stand, “Progression models in
resistance training for healthy adults” [40]. The RT progression model is depicted in Table 1.

Briefly, training intensities began at 60% predicted 1 RM at week 1 and progressed
to 75% 1 RM by week 4, after which participants underwent a deload week (50% 1 RM),
or an intentional drop in intensity and volume, to potentiate recovery and performance
for subsequent training and testing. After completing the deload week, the second 5 week
training block commenced at 70% 1 RM and progressed to 85% 1 RM by week 9. Participants
again underwent a deload week prior to post-testing. Participants were instructed to
complete 8–12 repetitions per set per exercise. If this repetition range was unattainable for
a participant, intensity was decreased by 5% per repetition missed. Exercises completed in
each session were: Session 1: leg press, machine incline chest press, compound machine
row, machine triceps pressdown, leg extension; Session 2: machine chest press, machine
hamstring curl, machine calf raise, machine bicep curl, leg press; Session 3: leg extension,
machine overhead press, compound machine row, machine triceps pressdown, leg press.
These exercises were chosen based on their common inclusion into RT programs as well
as availability at the CRC. Adherence to training session was monitored throughout the
study, and defined as training sessions attended divided by training sessions prescribed.
All training sessions were overseen by an investigator in order to ensure proper technique.

2.2.2. Nutrition Protocol

The present nutrition modification intervention commenced at week 1 after the accli-
mation and 3 RM testing week. Participants were randomly assigned to either GP or CP,
and protein intake levels differed between groups. Protein intake levels by week for each
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group are depicted below in Table 1. Briefly, the GP group began at 0.8 g of protein per kg
of bodyweight per day (g/kg/d) from both a whey protein supplement and dietary sources.
Protein intake subsequently increased throughout the course of the study to 2.2 g/kg/d at
weeks 9 and 10. Notably, protein intake levels did not increase for deload weeks (week 5,
week 10) due to training intensity and volume decreasing. The protein intake strategy was
chosen because (a) the targeted mean protein intake across 10 weeks was 1.56 g/kg/d,
very close to the value of 1.6 g/kg/d recommended by Morton et al. [27], (b) by increasing
protein intake to 2.2 g/kg/d at weeks 9 and 10 the full 95% confidence interval presented
by Morton et al. was consumed by participants, and (c) high protein intakes > 2.0 g/kg/d
have previously been observed to be safe and efficacious in older adults [41,42]. The
whey protein supplement, Combat 100% Whey (MusclePharm®, Las Vegas, NV, USA),
was provided to this group to assist in achieving protein intake goals. Whey protein was
chosen based on its high leucine content as compared to other protein supplements [43,44].
Additionally, supplementation was provided as one serving (25 g) per day in weeks 1–5
after which it increased to two servings (50 g) per day at week 6. In the weeks thereafter
(weeks 7–10), protein supplementation could be increased to 75 g per day at any time by
either choice of the participant, or failure to meet protein intake goals through the diet.
For protein supplement boluses up to 50 g, all protein was consumed immediately after
training on training days, and between meals on non-training days. If protein supplement
intake reached 75 g, participants were instructed to take 50 g immediately post-training
and 25 g between meals on training days, and at two separate occasions in between meals
on non-training days. Notably, on weeks in which protein supplementation remained
constant and overall protein prescription increased, participants were instructed to increase
dietary protein intake (e.g., weeks 1–5 where protein intake targets increased from 0.8 to
1.4 g/kg/d while supplemental protein was held constant at 25 g/d).

Conversely, the CP group was instructed to consume protein at a constant level of
0.8–1.0 g/kg/d, in accordance with the recommended daily allowance, for the duration of
the study. This group was additionally not provided a protein supplement. Adherence to
prescribed protein intake levels was monitored by study staff throughout the study for both
groups. Additionally, both groups were prescribed a caloric surplus of 200–300 kcal based
on the Harris-Benedict equation using the moderate activity factor in order to potentiate
skeletal muscle hypertrophy [45]. Participants were also instructed to consume 3–5 g of
carbohydrates per day based on recommendations from Slater and Phillips [46]. Fats made
up the remainder of calories for a given day. A heavy emphasis was placed on protein
intake levels, as this was the differentiating intervention strategy between groups. Nutrient
intake was tracked via a mobile application (MyFitnessPal, Inc.; Baltimore, MD, USA) that
has been validated against paper-based food records [47]. Investigators maintained access
to each participants dietary entries for the duration of the study, allowing for collection and
analysis of data. Participants were asked to track food intake 3 days per week (2 weekdays
and 1 weekend day), a strategy that has been used previously [48]. Nutrient intake was
monitored weekly by study staff, and if participants were out of the desired range for
protein they were instructed on how to adjust intake the following week to meet their goals.
Overall target protein intakes by group are presented in Table 1 below.

2.3. Measures

As outlined in Table 1, the following measures were taken prior to (PRE), during (MID)
and after (POST) the 10 week RT protocol. Participants were instructed to arrive to testing
sessions involving imaging (PRE and POST) in an overnight fasted state, approximately
48–72 h after their most recent training session (POST) or exercise (PRE).

2.3.1. Height, Weight, and Body Mass Index

Height was measured using a wall-mounted Seca 216 stadiometer (Seca; Hamburg,
Germany) at PRE. Participants were instructed to remove their shoes and stand with
their back to the wall with eyes facing straight in front. The measuring bracket was then
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pulled down until it laid flat against the head of participants. Height was recorded to the
nearest 0.5 cm. Weight was measured at all testing sessions using a Tanita scale (Tanita;
Arlington Heights, IL, USA) after the removal of all outerwear and shoes. Weight was
recorded to the nearest 0.1 kg. Body Mass Index (BMI) was calculated by using the CDC
promoted equation of weight in kg/height in m2.

2.3.2. Lean/Soft Tissue Mass

Whole-body and regional lean/soft tissue mass were determined via dual energy X-ray
absorptiometry (DXA) scan at both PRE and POST. Participants were instructed to perform
an overnight fast and were then subjected to total-body DXA testing (GE Lunar iDXA; GE
Corporation, Fairfield, CT, USA). The DXA was calibrated immediately prior to each testing
session and passed all quality checks. Participants were instructed to wear clothing free of
any metal; if this instruction was violated, participants were provided standard hospital
gowns. All metal objects (i.e., jewelry), shoes, and outer clothing were then removed,
and participants were instructed to lay supine with palms down in the field of view of
the machine by the same trained and experienced research staff at all time points. After
participants were positioned, the DXA scan commenced and lasted approximately 10 min
per participant. Regions of interest were set to create accurate regional measurements
and underwent quality control adjustments by a departmental certified bone densitometry
technologist. The DXA system in our department has a coefficient of variation of 0.85% for
measures of lean/soft tissue mass. Notably, both total body and appendicular lean/soft
tissue mass were collected and subject to analysis. Appendicular lean/soft tissue mass was
defined as the combined value of lean/soft tissue mass from the arm and leg regions.

2.3.3. Muscle Tissue Thickness

Following body composition testing, participants were tested for vastus lateralis thick-
ness using ultrasound at PRE and POST. Vastus lateralis thickness was determined by
placing a 13–6 MHz transducer (SonoSite M-Turbo; FUJIFILM Corporation, Minato City,
Tokyo, Japan) midway between the inguinal crease and the superior aspect of the patella.
Measurements were taken from the supine position after ≥10 min to account for fluid shift-
ing. Measurements were taken with accompanying software and were made by aligning
the measuring calipers with the outer connective tissue and the inner connective tissue,
thus surrounding the vastus lateralis. Measurements were taken immediately after image
capture and saved according to manufacturer protocols. All images and measurements
were taken by the same investigator in order to minimize intertester variability among
measurements as suggested previously [49,50]. This investigator (JMM) possessed an
intraclass correlation coefficient of 0.994 as determined by a test-retest protocol on a subset
of 10 participants.

2.3.4. Peak Torque

Knee extensor peak torque was assessed with the use of an isokinetic dynamometer
(Humac Norm; Computer Sports Medicine Incorporated, Stoughton, MA, USA). The
subject’s dominant leg was tested at PRE, MID, and POST at 60◦/s and 120◦/s moving
through a 30◦ range of motion. Upon entry, the subject was informed of protocols and
the purpose for the test. Participant anthropometric information was entered into the
accompanying software after which the dynamometer was adjusted to software derived
recommendations. The rotational axis was then aligned with the lateral epicondyle of the
subject’s dominant leg and the testing protocol began. Participants performed 3 repetitions
of concentric extension and flexion at both 60◦/s and 120◦/s to practice the motion that
would be required for the test. After practice repetitions were complete, participants
completed 5 repetitions at 60◦/s and 120◦/s respectively and the peak torque achieved
over 5 repetitions was calculated by the dynamometer. After the test was complete, data
were saved and exported for analysis.
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2.3.5. Skeletal Muscle Quality and Skeletal Muscle Index

Given that muscle quality has been defined as strength per unit area of muscle, a
proxy measure of skeletal muscle quality has previously been defined as a strength measure
divided by lean mass of the area of interest [51]. Given the particular interest in skeletal
muscle quality in older adults, we attempted to measure skeletal muscle quality as knee
extensor peak torque /leg lean mass at a given time point (PRE and POST). We additionally
used DXA derived lean/soft tissue mass to determine lean mass index, defined as lean/soft
tissue mass in kg/height in m2 at PRE and POST.

2.4. Analytic Plan

All data were initially checked for normality using a Shapiro–Wilk test set at a sig-
nificance level of p ≤ 0.05. If data were normally distributed, parametric techniques were
used. If data were not normally distributed, a square-root transformation was performed.
If data were then normally distributed parametric techniques were used. For analyses
using repeated measures analysis of variance (ANOVA), data were tested for assump-
tions of sphericity by using Mauchly’s test of sphericity at a significance level of p ≤ 0.05.
For those data sets where sphericity was violated, Greenhouse–Geisser corrections were
used. Independent samples t-tests were additionally performed across all measures at
baseline to ensure no significant differences at baseline. A significance level of p ≤ 0.05
was adopted for all analyses. To test measures with 2 timepoints (PRE, POST) (Lean/Soft
Tissue Mass, Muscle Tissue Thickness, Muscle Quality Score, Skeletal Muscle Index) a 2 × 2
(group * time) ANOVA was performed to examine the main effects of group and time as
well as group * time interaction. Measures taken at 3 timepoints (PRE, MID, POST) (peak
torque) were analyzed using a 2 × 3 (group * time) ANOVA. These data were tested for
the main effects of group and time as well as for group * time interaction. For all of the
statistical models described above, if a significant group * time interaction was present,
data were tested for the simple main effects of group and time with Bonferonni post hoc
comparisons. Additionally, Bonferroni post hoc comparisons were generated in the absence
of a significant group * time interaction to compare the main effects of group or time.
All analyses were performed using IBM SPSS v28.0 (Chicago, IL, USA). In addition to
formal statistical analyses presented above, post hoc power analyses were conducted for
all measures in G * Power v3.1 to present a summary of effects.

3. Results
3.1. Participants

Participants did not differ significantly in any baseline descriptive characteristics;
these data are presented in Table 2. Mean age for participants was 69.7 ± 8.2 years. Both
the GP and the CP had the same number of participants (n = 9), with the CP group having
three males and six females and the GP group having four males and five females.

Table 2. Participant descriptive characteristics.

Variable Constant Protein Graded Protein Total p-Value

Participant Number 9 9 18 -
Age (Years) 72.11 ± 7.17 67.33 ± 8.93 69.72 ± 8.23 0.229

Sex (Number of males) 3 4 7 0.653
Height (cm) 168.44 ± 8.22 169.06 ± 10.17 168.75 ± 8.98 0.890
Weight (kg) 77.87 ± 19.31 69.47 ± 12.72 73.67 ± 16.44 0.292

Body Mass Index (kg/m2) 27.27 ± 5.45 24.31 ± 4.34 25.79 ± 5.02 0.221
Total Lean/Soft Tissue Mass (kg) 45.32 ± 11.24 46.40 ± 8.96 45.86 ± 9.88 0.825
Leg Press Estimated 1 RM (KG) 118.17 ± 32.37 128.05 ± 73.87 123.11 ± 55.56 0.718

Leg Extension Estimated 1 RM (KG) 56.92 ± 15.60 66.04 ± 32.06 61.48 ± 24.90 0.458
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3.2. Self-Reported Dietary Intake

Nutritional analyses were performed on all participants, given all 18 participants
logged ≥90% of requisite inputs. There was a significant group * time interaction as well as
a main effect of time for both absolute (kcal/day) and relative (kcal/kg/day) energy intake
(p < 0.001), where the GP group increased kcal intake over time, and the CP group did not
significantly increase energy intake over the course of the study. There was a main effect of
group for relative (p = 0.010), but not for absolute energy intake (p = 0.096). These data are
presented in Table 3.

Table 3. Self-reported energy intake.

Week Constant Protein Graded Protein

Absolute
(kcals/d) SD Relative

(kcals/kg/d) SD Absolute
(kcals/d) SD Relative

(kcals/kg/d) SD

Energy
(kcal/d or
kcal/kg/d)

1 1717 359 22.58 4.11 1594 458 23.16 5.35

2 1698 220 22.66 4.54 1601 436 23.05 4.05

3 1508 242 20.17 4.89 1665 439 23.95 4.17

4 1474 292 20.12 6.38 1864 # 431 27.17 # 5.42

5 1555 309 20.44 3.63 1887 # 275 27.47 # 2.68

6 1655 238 22.05 4.52 1822 428 26.43 4.74

7 1580 187 21.15 4.32 1939 590 28.21 # 7.46

8 1573 155 21.17 4.73 2013 667 29.21# 8.18

9 1484 342 19.57 4.26 2259 *# 578 32.86 *# 7.04

10 1623 297 21.22 2.20 2240 *# 700 32.32 *# 7.53

* Significantly different from Week 1, # Significantly different from CP group. kcals: kilocalories; d: days.

By study design, there were the main effects of group and time as well as a significant
group * time interaction for both absolute (g/day) and relative (g/kg/day) protein intake
(p < 0.001). These data are presented in Table 4. The GP group exceeded prescribed protein
intake for weeks 1–2 by 37.92% and 15.10% respectively, after which this group deviated no
more than ~5%. Target vs. actual protein intake values for the GP group are presented in
Table 5. The CP group fell within the prescribed protein intake range for all 10 weeks of the
intervention. Protein supplement adherence in the GP group was 81% as determined via
bag return (supplement bags returned/supplement bags distributed * 100).

Table 4. Self-reported protein intake.

Week Constant Protein Graded Protein

Absolute (g/d) SD Relative (g/kg/d) SD Absolute (g/d) SD Relative (g/kg/d) SD

Protein
(g/d or g/kg/d)

1 73 16 0.96 0.11 80 22 1.18 0.33

2 77 16 1.00 0.15 81 23 1.16 0.24

3 72 15 0.94 0.13 86 15 1.25 # 0.16

4 69 15 0.91 0.15 98 # 17 1.41 # 0.08

5 72 16 0.94 0.07 99 # 18 1.42 # 0.05

6 79 21 1.01 0.08 116 *# 18 1.69 *# 0.15

7 72 15 0.93 0.09 125 *# 21 1.81 *# 0.13

8 71 16 0.94 0.21 134 *# 26 1.93 *# 0.13

9 74 17 0.96 0.07 152 *# 27 2.20 *# 0.08

10 75 19 0.97 0.18 150 *# 26 2.17 *# 0.16

* Significantly different from Week 1, # Significantly different from CP group; d: days.



Nutrients 2022, 14, 2739 9 of 19

Table 5. Graded protein group prescribed protein intake vs. actual protein intake.

Week 1 2 3 4 5 6 7 8 9 10

Target Protein Intake (g/day) 0.8 1.0 1.2 1.4 1.4 1.6 1.8 2.0 2.2 2.2
Actual Protein Intake (g/day) 1.17 1.16 1.25 1.41 1.42 1.69 1.81 1.93 2.20 2.17

% Difference 37.92 15.10 4.43 0.40 1.42 5.41 0.55 −3.45 −0.10 −1.58

3.3. Training Volume and Attendance

By study design, there was a significant main effect of time observed for overall train-
ing total volume load (total reps * sets * load) (p < 0.001), with no significant group * time
interaction (p = 0.653), nor a significant main effect of group (p = 0.631). Training session
attendance was 98% overall, and did not differ between groups at any week (p = 0.286).
These data are presented in Figure 2 below.
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3.4. Lean/Soft Tissue Mass and Lean/Soft Tissue Mass Index

Analyses of overall lean/soft tissue mass and lean/soft tissue mass index did not
demonstrate a significant group * time interaction, a significant main effect of time, or a
significant main effect of group. Data are presented in greater detail in Figure 3a,b. Analyses
of appendicular lean/soft tissue mass revealed no significant group * time interaction
(p = 0.634) nor a significant main effect of group (p = 0.974), but did reveal a significant
main effect of time (p = 0.028) with POST being greater than PRE by 0.269 kg across both
groups. These data are presented in Figure 3c.
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3.5. Vastus Lateralis Thickness

Analyses of ultrasonography derived vastus lateralis thickness did not indicate a
significant main effect of time (p = 0.455) or a significant group * time interaction (p = 0.384).
These analyses did, however, demonstrate a significant main effect of group (p = 0.040),
with GP having a larger mean vastus lateralis thickness by 0.373 cm. These data are
presented in Figure 3d.

3.6. Peak Torque

Analyses of knee extensor and flexor peak torque at both 60◦/s and 120◦/s demon-
strated the significant main effects of time (p ≤ 0.004) with values increasing over time.
There were no significant main effects of group (p ≤ 0.197) nor any significant group * time
interactions (p ≤ 0.225). These data are presented in Figure 4a–d.

3.7. Muscle Quality Score

Analyses of muscle quality score (knee extensor peak torque values divided by leg
lean mass at the corresponding time point) at both 60◦/s and 120◦/s demonstrated the sig-
nificant main effects of time (p ≤ 0.015) with POST being greater than PRE by 1.011 N·m/kg
at 60◦/s and 0.676 N·m/kg at 120◦/s. There were no significant main effects of group
(p ≥ 0.198) nor any significant group * time interactions (p ≥ 0.152). These data are pre-
sented in Figure 5a,b.
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3.8. Analysis of Effects

An overall analysis of effects was performed as a part of this study. p-values, F-values,
ηp

2, observed power, and estimated sample size are presented for each outcome measure
in Table 6 below.
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Table 6. Summary of effects, calculated power, and estimated sample size for each measured variable.

Outcome Main
Effect/Interaction p-Value F-Value ηp

2 Observed
Power (%) *

Estimated
Sample Size *

Total Lean/Soft
Tissue Mass

Time 0.245 1.457 0.083 66.9 24

Group 0.867 0.029 0.002 5.5 2940

G * T 0.209 1.714 0.097 74.3 22

Appendicular
Lean/Soft

Tissue Mass

Time 0.028 5.819 0.267 99.7 8

Group 0.974 0.001 <0.001 - -

G * T 0.634 0.236 0.015 16.6 132

Lean/Soft Tissue
Mass Index

Time 0.281 1.244 0.072 60.3 28

Group 0.838 0.043 0.003 5.7 1960

G * T 0.207 1.729 0.098 74.7 22

Vastus Lateralis
Thickness

Time 0.455 0.586 0.035 33.0 58

Group 0.040 5.003 0.238 72.9 22

G * T 0.384 0.802 0.048 43.3 42

Knee Extensor Peak
Torque 60◦/s

Time <0.001 10.218 0.390 99.9 6

Group 0.199 1.797 0.101 33.9 56

G * T 0.225 1.564 0.089 70.2 24

Knee Flexor Peak
Torque 60◦/s

Time <0.001 23.623 0.596 99.9 6

Group 0.588 0.305 0.019 9.8 306

G * T 0.293 1.277 0.074 61.5 28

Knee Extensor Peak
Torque 120◦/s

Time 0.004 6.608 0.292 99.9 8

Group 0.197 1.814 0.102 34.2 54

G * T 0.514 0.679 0.041 37.8 48

Knee Flexor Peak
Torque 120◦/s

Time <0.001 12.155 0.432 99.9 6

Group 0.570 0.336 0.021 10.4 278

G * T 0.782 0.247 0.015 16.6 132

Muscle Quality
Score 60◦/s

Time 0.001 16.052 0.501 100.00 6

Group 0.198 1.802 0.101 33.9 56

G * T 0.152 2.263 0.124 85.0 18

Muscle Quality
Score 120◦/s

Time 0.015 7.408 0.316 99.9 8

Group 0.271 1.298 0.075 25.9 76

G * T 0.444 0.616 0.037 34.6 54

* Observed power and estimated sample size only calculated for ηp
2 values > 0.001.

4. Discussion

The purpose of the present study was to examine the effects of graded protein intake
vs. constant protein intake on skeletal muscle adaptations in older adults undergoing RT.
The main findings of this study include: (i) appendicular lean/soft tissue mass improved
across time; (ii) vastus lateralis thickness was significantly higher in the GP group than the
CP group; (iii) muscle quality scores improved across time at two different knee extension
velocities; (iv) all strength measures improved across time; (v) there were no significant
between group improvements or group * time interactions for total body or appendicular
lean/soft tissue mass; (vi) the protein intake and RT protocol were feasible among both
groups. The primary hypotheses that the GP group would realize greater adaptation to total
body and appendicular lean/soft tissue mass than the CP group were not supported. The
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secondary hypotheses that the GP group would have greater increases in vastus lateralis
thickness, peak torque, muscle quality score, and lean/soft tissue mass index to a greater
degree than the CP group were also not supported. However, it was observed that both the
RT and graded protein protocols were feasible in a cohort of older adults.

4.1. Nutrition and Resistance Training Intervention

Based on self-reported dietary records, the CP group remained in desired range of
protein intake for the entire 10-week intervention, and the GP group deviated no more
than 5.4% after week 2 of the intervention. This demonstrates the feasibility of the dietary
protein intervention. Additionally, overall average self-reported protein intakes per group
as compared to prescribed were 1.59 g/kg/d (actual) vs. 1.56 g/kg/d (prescribed) for
the GP group and 0.96 g/kg/d (actual) vs. 0.8–1.0 (prescribed) for the CP group. Sup-
plementation adherence was 81% measured via bag return. Self-reported total energy
consumption was lower than prescribed. The literature regarding self-reported dietary
intake consistently demonstrates that self-reported energy intake underreports true energy
intake [52–54]. Despite the limitations of self-reported dietary intake, the results from the
present study indicate that the proposed protein intake paradigm is feasible in a population
of older adults.

4.2. Lean/Soft Tissue Mass and Vastus Lateralis Thickness

While appendicular lean/soft tissue mass improved ubiquitously over time, overall
lean/soft tissue mass did not demonstrate any significant changes. This perhaps stands
to reason given that the primary focus of the training intervention was the lower body.
The lack of difference between groups is supported by findings where an increase in
appendicular lean/soft tissue mass has been seen in both protein intake modification [55,56]
and RT [57] interventions alike. Indeed, even in a cohort of young adults, it has been
seen that extremely high-volume RT increased full-body and appendicular lean body
mass similarly regardless of supplementation [58]. Gain in appendicular lean/soft tissue
mass is of particular interest given its role in maintaining proper locomotion and general
functionality in older adults. Indeed, appendicular lean mass has been associated with
higher dynamic balance scores [59] and a 50% lower risk of all-cause mortality [60] in older
adults. While total body lean/soft tissue mass did not exhibit significant changes, it is
possible that in an increased study period, gains in appendicular lean/soft tissue mass
could have proved robust enough to influence overall lean/soft tissue mass values.

Lack of overall gain in lean/soft tissue mass has been observed previously in RT
interventions ranging from 6 to 12 weeks [61–64]. One potential contributing factor to this
finding is deficits between self-reported vs. prescribed energy intake. Previous studies
have found that energy deficits of ~500 kcal/day [65] and ~600 kcal/day [66] impaired
lean mass gain in older adults undergoing RT. Energy deficits in the present study on
average exceeded both the 500 kcal/day and 600 kcal/day threshold. While it is possible
that energy intake was underreported in the present study, it remains plausible that a lack
of sufficient energy intake contributed to a lack of significant gain in overall lean/soft tissue
mass. Given the high bioenergetic cost of de novo MPS over and above simple regulatory
muscle protein turnover [45], participants were likely poorly bioenergetically positioned
to accrue lean/soft tissue mass. It is additionally possible that participants experienced
hypertrophy only in those areas most heavily recruited by study protocols, namely, the
lower extremity. Another consideration in the lack of overall lean/soft tissue mass seen in
participants herein is the advanced age of participants (age = 69.7 ± 8.2 years). While it has
been shown that adults in the oldest segment of the population (age range = 85–97 years)
can achieve gains in fiber cross-sectional area [15], it has additionally been demonstrated
via meta-regression that age has an inverse relationship with lean mass gain (β= −0.03;
p = 0.01) [10]. It is likely that age of participants in this study impacted their achievable
lean/soft tissue mass gain from the outset.
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The lack of group effects between differential protein intakes is consistent with other
research. Ten Haaf et al. report in a recent meta-analysis that protein supplementation while
undergoing concomitant RT produced no extra benefit to measures of DXA derived LBM in
older adults [67]. Indeed, several studies have reported that protein enhancement strategies
(overall diet and/or supplementation) do not lead to lean mass gain when undergoing
concomitant RT [14,21,31,68–71]. While there is evidence to suggest that enhanced protein
intake can play a role in the augmentation of lean mass gain in older adults [29,35,72,73],
findings to this point remain equivocal, a notion supported by the results of this study.
Further research examining the effects of prolonged RT on appendicular and whole-body
lean/soft tissue mass, particularly as it relates to functional and clinical outcomes in older
adults, is warranted. Additionally, further research examining graded protein intake with
sufficient energy intake, and more rigorous nutrient intake measurements are warranted.

Vastus lateralis tissue thickness demonstrated significant between-group differences
with the GP group being significantly greater than the CP group. While there is a paucity of
literature assessing dietary protein interventions along with RT on vastus lateralis thickness
in older adults, it was seen in a study by Aas and colleagues that RT combined with 34 g of
a milk protein supplement enhanced ultrasound derived vastus lateralis tissue thickness in
a cohort of older adults [74]. Vastus lateralis thickness has been shown both to increase over
time with RT in older adults [62,64] and, similar to the present study, show no difference
over time with RT [75]. While a significant group * time interaction was not observed for
measures of vastus lateralis thickness, it is noteworthy that baseline measures were not
significantly different between intervention groups. While this is potentially indicative
of a differential improvement due to the graded protein intake intervention, it is also
worth noting that neither group demonstrated improvements over time. Further research
investigating muscle tissue thickness in response to RT and protein intake in older adults
is warranted.

4.3. Isokinetic Dynamometry and Muscle Quality Score

Measures of peak torque and muscle quality score at two different velocities responded
similarly, with both measures improving over time, but not differentially between groups.
Such improvements are in line with several meta-analyses that have shown improve-
ment to muscle quality (defined identically to the present study) [76] and lower body
strength [11,16] after a progressive RT intervention. In another study, Brooks et al. reported
in a cohort of older (n = 62; age ≥ 55 years) adults with type 2 diabetes, those undergoing
an RT intervention (16 weeks, 3 sessions/week, 60–80% 1 RM) improved muscle quality
and lower body muscle strength to a greater degree than those only receiving standard care
(p < 0.001) [77]. Additionally, Tracy et al. report that in response to unilateral leg training,
muscle quality and 1 RM strength is increased to a greater degree in the trained leg than
the untrained leg in a cohort of older adults (age ≥ 65 years) [78]. Notably, these studies
defined muscle quality as 1 RM/DXA derived leg lean mass and 1 RM/MRI derived muscle
volume respectively.

The reported responses of strength and muscle quality to protein intake modification
are variable. At the meta-analytic level, certain findings suggest that enhanced protein
intake augments strength gain beyond RT alone [27,73], while another suggests no benefit
of enhanced protein intake with RT [35]. At the individual study level, it is commonly
reported that strength improves similarly regardless of protein intake status in older adults
when an RT intervention is performed [14,17,20,21]. Similarly, certain cross-sectional
analyses suggest that enhanced protein intake is beneficial for muscle quality [79,80], while
results from a randomized trial in a cohort of elderly women (n = 91; mean age = 83.6 years)
demonstrate similar improvements to muscle quality between augmented protein intake
with RT and RT alone [81]. Given such discordant results, it appears that RT in older adults
is the primary driver of improvements in strength and subsequently muscle quality. Indeed,
improvements to strength are perhaps the most robust and commonly reported adaptation
to RT interventions in older adults. Given the modest, yet significant improvement to
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appendicular lean/soft tissue mass seen herein and the significance of improvements to
muscle quality scores, it appears that improvements to strength outpaced improvement to
leg lean/soft tissue mass. This could be due to improvements in neuromuscular adaptation.
It has been reported that power output in adults ≥ 65 years declines at a rate of up to
3.5% per annum [82], but RT can improve motor unit discharge rate at maximal force
production [83] as well as voluntary agonist activation [84] in older adults. This perhaps
provides a basis for the ubiquitous strength increases. Further research examining the
precise effects of differential protein intakes in combination with RT on muscle quality is
warranted.

4.4. Experimental Considerations

Similar to many studies involving intensive RT, the present study is limited to a
small sample size. Another limitation of this study is the inability to collect meaningful
biological markers of protein accretion or turnover. Given the suggestion that concomitant
protein intake and RT is beneficial for inducing anabolic cell signaling events in older
adults [26,85], the collection of relevant skeletal muscle signaling markers could have
provided a broader picture about what was occurring at the molecular level in these
participants. The nature of self-report measures is an additional limitation to this study,
as it is apparent that self-report measures do not reflect actual dietary intake with a high
degree of certainty [52–54,86]. To the authors’ knowledge, however, this was the first study
to examine the effectiveness and feasibility of a graded protein intake paradigm in a cohort
of older adults. Additionally, this study employed a multifactorial approach to assess aging
muscle. A variety of measures aimed at targeting not only muscle mass, but also muscle
quality, muscle architecture/morphology, and muscle strength were used.

5. Conclusions

In conclusion, the data presented in this preliminary trial suggest that the protein
intake and RT paradigm used in this study are feasible in a population of older adults,
and further research to examine muscle protein synthesis and degradation using graded
protein intake and RT is warranted. Additionally, these data suggest that RT, but not
differential protein intake, can improve muscle quality scores at 60◦/s and 120◦/s and
appendicular lean/soft tissue mass in older adults. Vastus lateralis thickness demonstrated
the only between-group difference, potentially suggesting that the GP intake intervention is
beneficial for improving this measure. Despite ubiquitous improvements across groups, no
group * time interactions were observed, suggesting that differential protein intake did not
play a role in lean/soft tissue mass, strength, and muscle quality adaptation, provided that
0.8–1.0 g/kg/d of protein is consumed. This study serves as a step to investigate pragmatic
interventions to combat the age-related loss of skeletal muscle mass.
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