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Abstract: Several studies by our group and others have determined that expression levels of Bcl-2
and/or Bcl-xL, pro-survival molecules which are associated with chemoresistance, are elevated in
patients with muscle invasive bladder cancer (MI-BC). The goal of this study was to determine
whether combining Obatoclax, a BH3 mimetic which inhibits pro-survival Bcl-2 family members,
can improve responses to cisplatin chemotherapy, the standard of care treatment for MI-BC.
Three MI-BC cell lines (T24, TCCSuP, 5637) were treated with Obatoclax alone or in combination
with cisplatin and/or pre-miR-34a, a molecule which we have previously shown to inhibit MI-BC
cell proliferation via decreasing Cdk6 expression. Proliferation, clonogenic, and apoptosis assays
confirmed that Obatoclax can decrease cell proliferation and promote apoptosis in a dose-dependent
manner. Combination treatment experiments identified Obatoclax + cisplatin as the most effective
treatment. Immunoprecipitation and Western analyses indicate that, in addition to being able
to inhibit Bcl-2 and Bcl-xL, Obatoclax can also decrease cyclin D1 and Cdk4/6 expression levels.
This has not previously been reported. The combined data demonstrate that Obatoclax can inhibit
cell proliferation, promote apoptosis, and significantly enhance the effectiveness of cisplatin in
MI-BC cells via mechanisms that likely involve the inhibition of both pro-survival molecules and cell
cycle regulators.
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1. Introduction

The current 5-year survival rate for patients with muscle invasive bladder cancer (MI-BC) is
estimated to be approximately 50% [1]. Several clinical studies support neoadjuvant chemotherapy
(NAC), primarily in the form of platinum-based DNA damaging agents such as cisplatin, as being the
standard of care therapy for MI-BC patients [2,3]. While NAC does improve overall survival rates,
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only approximately half of all patients benefit from this treatment option [4]. Chemoresistance to
therapy is a major contributing factor to this low response rate.

There are multiple mechanisms that can lead to chemoresistance and thereby the non-response
or diminished response of a patient to chemotherapy [5,6]. These include increased DNA
repair, formation of trapping agents (e.g., some tumor cells produce glutathione which can
trap and thereby inhibit activity of certain anti-cancer drugs), alterations in target molecules,
decreased activation of prodrugs, inactivation of anticancer drugs, decreased drug accumulation
(e.g., due to increased expression of P-glycoprotein (MDR1)), and increased expression of pro-survival
molecules. Recent genomic and RNA sequencing studies of bladder cancer cell lines and/or patient
tumors have revealed that alterations in genes associated with DNA repair, cell cycle, and apoptosis
occur with the highest frequency in bladder cancer [7,8]. Affected genes include ATM, ERCC1, TP53,
MDM2, CDKN2A, RB1, CDKN1A, PTEN, CCNE1, FBXW7, CDKN1B, CCND1/2/3, CDK4/6, TSC1, FGFR3,
PIK3CA, PPARG, E2F3, EGFR, ERBB2, YAP1, MYC, ZNF703, MYCL1, and BCL2L1. Subsequent studies
of some of these genes have confirmed that their altered activity and/or expression level can contribute
to chemoresistance in MI-BC cells. For example, overexpression of BCL2L1 and its protein product,
Bcl-xL, has been shown to occur in MI-BC tumors and cell lines and cause resistance to cisplatin and
other chemotherapies which are used to treat MI-BC [7,9,10]. Alterations in these genes may affect
intrinsic and/or de novo (also referred to as acquired) chemoresistance, thereby impacting initial
responses to first line chemotherapy as well as contributing to subsequent treatment failure [11,12].

The development and use of drugs which target the pro-survival members of the Bcl-2 family
such as Bcl-2 and Bcl-xL is becoming an increasingly common strategy to combat intrinsic resistance to
first line chemotherapy in multiple cancer types [13–17]. These drugs have also shown success as single
agents to treat cancers which are driven by dysregulation of apoptosis [18]. Several approaches to
inhibit the pro-survival members of the Bcl-2 family have been employed, including the development
of anti-sense drugs and synthetic peptides [19–21]; however, BH3 mimetics appear to be the most
successful of these [14]. BH3 mimetics prevent the binding of pro-survival members of the Bcl-2 family
to pro-apoptotic members, thereby allowing for the dimerization of the pro-apoptotic members
and activation of the intrinsic pathway of apoptosis. There are currently six BH3 mimetics in
clinical development, and one of these, Venitoclax, has FDA approval for the treatment of chronic
lymphocytic leukemia (CLL) [13,14,18]. All of these drugs have shown success in both hematological
cancers as well as solid cancers. As would be expected, BH3 mimetics are most effective in patients
whose tumors overexpress pro-survival members of the Bcl-2 family. In CLL patients, high levels
of Bcl-2 expression are driven by dysregulation of miR-15/16 expression as well as chromosomal
rearrangements [22]. Other reasons for the overexpression of pro-survival Bcl-2 members include
gene amplification (e.g., diffuse large B-cell lymphomas), chromosomal translocation (e.g., Hodgkin’s
lymphoma), and alterations in promoter methylation (e.g., bladder cancer) [23–25]. The successful
usage of BH3 mimetics to reduce chemoresistance in multiple cancer types, along with the knowledge
that Bcl-2 and/or Bcl-xL are overexpressed in many MI-BC patients, indicate that the concurrent
treatment of BH3 mimetics with cisplatin could improve MI-BC patients’ response rate to NAC.

Another reason we used a BH3 mimetic in our current study was to determine whether it could
improve responses to treatment with pre-miR-34a. We previously demonstrated that pre-miR-34a
can mediate a dramatic decrease in the clonogenicity of MI-BC cell lines via inhibition of Cdk6,
a cell cycle regulator; however, it also caused increased Bcl-2 expression and thereby decreased
levels of apoptosis [26]. We hypothesized that treatment with a BH3 mimetic may abrogate
this negative effect. miR-34a is a downstream effector of p53 which can regulate the cell cycle,
senescence, and apoptosis [27], and its decreased expression can contribute to carcinogenesis and
chemoresistance [26,28]. Decreased expression of miR-34a can occur as a result of p53 mutation and/or
miR-34a gene promoter methylation (both of which are known to occur in MI-BC cells [26,29]) and
restoring miR-34a levels has been shown to reduce the impact of the loss of p53 and/or miR-34a
function in several cancer types [30]. It is noteworthy that our finding that treatment with pre-miR-34a
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can inhibit MI-BC clonogenicity has been validated by several recent studies [31–33]. This, along with
the knowledge that miR-34a expression can be dysregulated in MI-BC cells, indicates that increasing
miR-34a expression could be a viable therapeutic strategy. The development and usage of miRNAs
as therapeutics and biomarkers is becoming increasing common in the treatment of cancer [34,35].
Major advantages of using miRNAs include the fact that they can simultaneously target multiple
molecules and are extremely stable in body fluids. While there are challenges associated with use of
miRNA-based therapies in patients, including difficulties in the development of effective delivery
methods and unanticipated off target effects, results from on-going studies remain promising [36,37].

The goals of the current study were to determine whether using Obatoclax, a BH3 mimetic,
in combination with cisplatin and/or pre-miR-34a, can further inhibit the cell proliferation and
clonogenicity of MI-BC cell lines as well as promoting apoptosis, and to identify the potential molecular
mechanisms involved.

2. Results

2.1. Treatment of Muscle Invasive Bladder Cancer Cell Lines with Obatoclax Inhibits Cell Proliferation and
Clonogenicity and Promotes Apoptosis in a Dose-Dependent Manner

Three cells lines that were originally derived from patients with muscle invasive bladder
cancer (MI-BC) were used for these studies; T24, TCCSuP, and 5637. All cell lines showed a
dose-dependent response to Obatoclax treatment in both cell proliferation and clonogenic assays
(Figure 1A). T24 cells, which harbor a Tp53 mutation, were the most sensitive to Obatoclax treatment
(MTT assay IC50 = 20 nM, clonogenic assay IC50 = 45 nM), followed by 5637 cells, which harbor a Tp53
mutation and an Rb mutation (MTT assay IC50 = 28 nM, clonogenic assay IC50 = 75 nM), then TCCSuP,
which harbors an Rb mutation (MTT assay IC50 = 70 nM, clonogenic assay IC50 = 90 nM). Annexin V
flow cytometry studies demonstrated that Obatoclax also promoted apoptosis in a dose-dependent
manner in all 3 cells lines (Figure 1B). The highest levels of apoptosis were observed in 5637 cells,
followed by TCCSuP cells, then T24 cells (treatment with the highest dose of Obatoclax (80 nM)
resulted in 77.8%, 35.0%, and 33.4% apoptosis, respectively). The dose-dependent responses that
are observed indicate that Obatoclax is acting in a specific manner to inhibit cell proliferation and
clonogenicity and to promote apoptosis. It is noteworthy that the observed effects all occur within the
physiologically acceptable dose ranges of Obatoclax which have been established through clinical trials
(Phase I clinical studies conducted on various cancer types showed that the peak plasma concentration
(Cmax) of Obatoclax ranged from 7 to 39 nM following 24-h infusions and between 34 to 375 nM
following 3-h infusions [38]). IC30 concentrations of Obatoclax for T24, TCCSuP, and 5637 cells were
used for subsequent combination studies to allow us to more easily observe any additive effects (IC30

doses used for clonogenic assay-based combination study experiments: 25, 60, and 40 nM, respectively;
IC30 doses used for Western and apoptosis assay-based combination experiments: 8, 40, and 12 nM,
respectively (these IC30 doses were calculated using the cell proliferation dose response curves)).
Note that IC30 values derived from MTT dose curve assays were used for Western and apoptosis assay
experiments because the time period between treatment and analysis is comparable (MTT dose curve
assay: 1, 3, 5 days; Western and apoptosis assay: 3 days). Clonogenic assays are analyzed 10 days
post-treatment. IC30 values derived from clonogenic dose curve assays were used for the clonogenic
assay-based combination study experiments.

2.2. Obatoclax Can Inhibit the Binding of Bcl-2 and Bcl-xL to Bak, and Decreases Expression Levels of Bcl-2
and Bcl-xL

Obatoclax is a BH3 mimetic. Immunoprecipitation experiments using 5637 cells confirmed
that Obatoclax can inhibit the binding of Bcl-2 and Bcl-xL to Bak (a BH3 protein); treatment with
40 nM Obatoclax mediated a ~25% decrease in binding of Bcl-2 and Bcl-xL to Bak (Figure 2A).
This finding aligns with the known mechanism of action of Obatoclax (Figure 2B). Western blot
analyses determined that treatment with Obatoclax causes a dose-dependent decrease in Bcl-xL
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expression levels in T24, TCCSuP, and 5637 cells (minimal decreases in Bcl-xL expression levels
were observed in T24 and TCCSuP cells, a more dramatic decrease was observed in 5637 cells).
Obatoclax also causes a dose-dependent decrease in Bcl-2 expression levels in T24 and 5637 cells
(Figure 2C). Obatoclax caused a minimal decrease in the expression of Bcl-2 in TCCSuP but did not
appear to act in a dose-dependent manner (Figure 2C). Treatment with cisplatin (5 uM) also resulted in
decreased Bcl-2 and Bcl-xL expression.
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Figure 1. Obatoclax inhibits proliferation and clonogenic potential and promotes apoptosis of muscle
invasive bladder cancer cells in a dose-dependent manner. Treatment of T24, TCCSuP, and 5637,
muscle invasive bladder cancer (MI-BC) cells with Obatoclax mediated a dose-dependent decrease in
cell proliferation (A.i) and clonogenic potential (A.ii). T24 cells, which harbor a Tp53 mutation, were the
most sensitive to Obatoclax treatment (MTT assay IC50 = 20 nM, clonogenic assay IC50 = 45 nM),
followed by 5637 cells, which harbor a Tp53 mutation and an Rb mutation (MTT assay IC50 = 28 nM,
clonogenic assay IC50 = 75 nM), then TCCSuP, which harbor an Rb mutation (MTT assay IC50 = 70 nM,
clonogenic assay IC50 = 90 nM) (A.iii). Treatment with Obatoclax also mediated a dose-dependent
increase in levels of apoptosis (B.i–iv). The highest levels of apoptosis were observed in 5637 cells,
followed by TCCSuP cells, then T24 cells (treatment with the highest dose of Obatoclax (80 nM) resulted
in 77.8%, 35.0%, and 33.4% apoptosis, respectively). These dose-dependent responses to Obatoclax
indicate that Obatoclax is acting in a specific manner to inhibit cell proliferation and clonogenicity
and to promote apoptosis. It is noteworthy that all of the doses used in this study fall within the
physiologically acceptable dose ranges for Obatoclax which have been established through clinical
trials [38]. B.i–iii.; x-axis = FL1-H (FITC), y-axis = cell count, line bar = annexin V positive cells.
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Figure 2. Obatoclax, a BH3 mimetic, is able to inhibit the binding of Bcl-2 and Bcl-xL to Bak and reduces
Bcl-2 and Bcl-xL expression levels in muscle invasive bladder cancer cells. Immunoprecipitation
analyses demonstrated that the treatment of 5637 cells with 40 nM Obatoclax caused a ~25% decrease
in the binding of Bcl-2 and Bcl-xL to Bak (A); this finding aligns with the known mechanism of
action of Obatoclax (B). Obatoclax also mediated reduced expression levels of Bcl-2 and Bcl-xL (C).
A dose-dependent reduction in Bcl-xL was observed in T24, TCCSuP, and 5637 cells. A dose-dependent
reduction in Bcl-2 was observed in T24 and 5637 cells, but not TCCSuP cells. Treatment with cisplatin
(5 µM) also resulted in decreased Bcl-2 and Bcl-xL expression (IP = immunoprecipitation, Veh = vehicle
control, Cis = cisplatin).

2.3. Combining Obatoclax with Cisplatin, the Standard of Care Treatment for Muscle Invasive Bladder Cancer,
Can Further Decrease Cell Clonogenicity and Increase Apoptosis

Treatment of T24, TCCSuP, and 5637 cells with Obatoclax (IC30 value concentrations calculated
from clonogenic assay dose curve experiments: 25, 60, and 40 nM, respectively) mediated a ~20–25%
decrease in clonogenicity, while treatment with cisplatin (5 µM) mediated a ~20% decrease in
clonogenicity in T24 and TCCSuP cells and a 40% decrease in clonogenecity in 5637 cells (Figure 3A).
Combining Obatoclax and cisplatin treatment mediated a further reduction in clonogenicity;
the combination treatment mediated a ~70% decrease in T24 cells, a ~60% decrease in TCCSuP
cells, and a 50% decrease in 5637 cells (Figure 3A). Annexin V analyses demonstrated combining
Obatoclax (IC30 value concentrations calculated from MTT dose curve experiments: 8, 40, and 12 nM
for T24, TCCSuP, and 5637, respectively) and cisplatin treatment also mediated a further increase in
apoptosis in 5637 cells compared to treatment with single agents: Obatoclax alone = 31.6% apoptosis,
cisplatin alone = 35.3% apoptosis, Obatoclax + cisplatin = 42.1% apoptosis (Figure 3B).
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Figure 3. Combining Obatoclax with cisplatin further reduces clonogenic potential and further increases
apoptosis. The inclusion of pre-miR-34a in combination treatments can abrogate pro-apoptotic effects.
Treatment with Obatoclax as a single agent caused a reduction of clonogenicity in all 3 MI-BC cell lines
(p < 0.001 for all 3 cell lines) (T24, TCCSuP, and 5637 were treated with IC30 value concentations of
Obatoclax; 25, 60, and 40 nM, respectively) (A); Further reductions were observed when Obatoclax was
combined with cisplatin (5 µM), the standard of care treatment for MI-BC (~2.5-fold (p < 0.001), ~2.0-fold
(p < 0.001), and ~1.5-fold (p < 0.05) reductions were observed in T24, TCCSuP, and 5637, respectively).
Combining Obatoclax with pre-miR-34 treatment also caused further reductions in clonogenicity
compared to treatment with Obatoclax or pre-miR-34a as single agents (~1.7-fold (p < 0.001), ~1.2-fold
(p < 0.01), and ~2.0-fold (p < 0.001) reduction, respectively). In T24 and TCCSuP, the Obatoclax +
cisplatin outperformed the Obatoclax + pre-miR-34a treatment (~2.0-fold (p < 0.05), ~1.2-fold (p < 0.05)
reduction, respectively), but the reverse was true in 5637 cells (~2-fold (p < 0.001) reduction). Combining
cisplatin with pre-miR-34a, or combining all 3 treatments (Obatoclax + cisplatin + pre-miR-34a) did
not result in any further reduction in clonogenicity compared to Obatoclax + cisplatin. Apoptosis
assays conducted using 5637 cells demonstrated that the Obatoclax + cisplatin outperformed any of the
other treatments (B). It is noteworthy that combining pre-miR-34a with Obatoclax + cisplatin caused a
dramatic decrease in apoptosis compared to treatment with Obatoclax + cisplatin (32.9% compared to
42.1%, respectively). (Veh = vehicle control, Cis = cisplatin, 34a = pre-miR-34a, Obato = Obatoclax).
(* = p < 0.05, ** = p < 0.01, *** = p < 0.001)

2.4. Combining pre-miR-34a with Obatoclax and/or Cisplatin Can Decrease Cell Clonogenicity but Also
Decreases Levels of Apoptosis

We have previously shown that miR-34a can inhibit Cdk6 expression in MI-BC cell lines and
thereby decrease cell proliferation [26]. Our goal here was to determine whether increasing miR-34a
expression levels could enhance the efficacy of Obatoclax and/or cisplatin. Combining pre-miR-34a
treatment with cisplatin or Obatoclax treatment mediated a further decrease in clonogenicity in
all 3 cells lines (Figure 3A). While pre-miR-34a did improve Obatoclax and cisplatin efficacy with
regards to their impact on clonogenicity, it was not able to increase levels of apoptosis when used
in combination with these drugs; in fact, decreased levels of apoptosis were observed, as combining
pre-miR-34a with Obatoclax or cisplatin treatment caused minor decreases in apoptosis of 5637 cells
compared to treatment with Obatoclax or cisplatin as single agents (Obatoclax = 31.6%, cisplatin =
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35.3%m, pre-miR-34a + Obatoclax = 30.1%, pre-miR-34a + cisplatin = 30.8%). Combining pre-miR-34a
with both cisplatin and Obatoclax caused a dramatic decrease in apoptosis (pre-miR-34a + Obatoclax
+ cisplatin = 32.9% apoptosis while Obatoclax + cisplatin = 42.1%) (Figure 3B). These data from our
apoptosis analyses reduce the enthusiasm for pursuing pre-miR-34a as a potential treatment for MI-BC.

2.5. Treatment with Obatoclax and Cisplatin Can Further Reduce Bcl-2, Bcl-xL, and Cyclin D1 Expression
Levels, While Treatment with pre-miR-34a Reduces Cdk6 and Cyclin D1 Expression Levels

Treatment with Obatoclax + cisplatin, the combination treatment which showed highest efficacy
in the clonogenic and apoptosis assays (Figure 3A,B), resulted in a further reduction in Bcl-xL, Bcl-2,
and cyclin D1 expression levels compared to treatment with Obatoclax and cisplatin as single agents in
TCCSuP (Figure 4). In 5637 cells, the Obatoclax + cisplatin combination treatment did not outperform
Obatoclax treatment alone in regards to its impact on the expression of these molecules; both Obatoclax
alone and Obatoclax + cisplatin reduced Bcl-2 levels by similar amounts, and did not appear to impact
Bcl-xL or cyclin D1 expression levels (Figure 4). It is noteworthy that treatment with Obatoclax as
a single agent mediated a decreased expression of cyclin D1 and Cdk6 in both cell lines. To our
knowledge, the finding that Obatoclax can impact the expression of these molecules in MI-BC cells has
not previously been reported.
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Figure 4. Combining Obatoclax with cisplatin and/or pre-miR-34a can impact expression levels of
Bcl-xL and Bcl-2 as well as expression levels of cyclin D1 and cdk4/6. In TCCSuP cells, the Obatoclax +
cisplatin combination treatment was the most effective treatment with regards to its ability to decrease
the expression levels of Bcl-xl and Bcl-2. In 5637 cells, this combination treatment caused a similar
impact on these molecules compared to treatment with Obatoclax as a single agent. Combining
pre-miR-34a with Obatoclax and/or cisplatin caused increased levels of Bcl-2 expression both TCCSuP
and 5637 cells, and increased levels of Bcl-xL in 5637 cells compared to treatment with Obatoclax and/or
cisplatin. Treatment with Obatoclax as a single agent or in combination with cisplatin reduced the
expression of cyclin D1 and Cdk6 in both cell lines. Treatment with pre-miR-34a also caused the reduced
expression of cyclin D1 and Cdk6; however, it caused increased Bcl-2 expression and negated the effect
on Obatoclax on Bcl-2 expression in the combination treatments in both cell lines. Unlike the other
treatments, pre-miR-34a was also able to reduce Cdk4 expression levels at the treatment doses used for
this experiment (Obatoclax; 25, 60, and 40 nM, respectively, in T24, TCCSuP, and 5637, cisplatin; 5 µM,
pre-miR-34a; 50 nm). (Veh = vehicle control, Cis = cisplatin, 34a = pre-miR-34a, Obato = Obatoclax,
triple combo = Obatoclax + cisplatin + pre-miR-34a).
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Our current data confirm our previous finding that pre-miR-34a can mediate the inhibition of
Cdk6 expression in MI-BC cells [26] (Figure 4). We now demonstrate that pre-miR-34a can also
inhibit the expression of cyclin D1 (Figure 4). The latter observation has not previously been reported.
Combining pre-miR-34a with Obatoclax caused a further reduction in Cdk6 and cyclin D1 expression
levels in both TCCSuP and 5637 cells (Figure 4), and this observation aligns with the further decrease in
clonogenicity that combining pre-miR-34a with Obatoclax mediated (Figure 3A). It is noteworthy that
pre-miR-34a caused increased Bcl-2 expression and negated the effect of Obatoclax on Bcl-2 expression
in the combination treatments (Figure 4). Increases in Bcl-xL levels were also observed in 5637 cells.
These data align with our finding that the concurrent treatment of 5637 cells with pre-miR-34a and
Obatoclax and/or cisplatin causes a reduction in levels of apoptosis (Figure 3B).

2.6. Confirmation That Obatoclax Can Inhibit Cyclin D1 and Cdk6 Expression Levels, and Can Inhibit Cdk4
Expression Levels

The ability of Obatoclax to inhibit cyclin D1 and Cdk6 in MI-BC cells has not previously been
reported. To confirm that Obatoclax can inhibit the expression of these molecules, we performed dose
response experiments (Figure 5). Clear dose-dependent reductions in the expression of cyclin D1 were
observed in TCCSuP and 5637 cells. In T24 cells, the highest dose of Obatoclax (80 nM) caused a slight
reduction in cyclin D1 expression. A clear dose-dependent reduction in Cdk6 expression levels was
observed in T24 and TCCSuP, and the 80 nM inhibited Cdk6 expression in 5637 cells. Decreases in Cdk4
expression were also observed in T24 and 5637 at the 80nM dose of Obatoclax. Again, it is noteworthy
that all of the 3 doses used are well within the range of what are considered to be physiological doses
for Obatoclax [38]. The combined data provide strong evidence that Obatoclax can inhibit cyclin D1,
Cdk4, and Cdk6 at physiologically relevant doses.
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Figure 5. Dose curve experiments confirm that Obatoclax can cause the decreased expression of cyclin
D1 and Cdk4/6. Treatment with Obatoclax caused dose-dependent reductions in the expression of
cyclin D1 in TCCSuP and 5637 cells. In T24 cells, the highest dose of Obatoclax (80 nM) caused a
slight reduction in cyclin D1 expression. A clear dose-dependent reduction in Cdk6 expression levels
was observed in all three cell lines, while dose-dependent reductions in Cdk4 expression levels were
observed in T24 and 5637 cells. (Veh = vehicle control, Cis = cisplatin).

3. Discussion

Cisplatin is the cornerstone of neoadjuvant chemotherapy (NAC), the standard of care therapy for
MI-BC patients [2,3]. To our knowledge, this is the first study to demonstrate that combining Obatoclax
with cisplatin can increase levels of MI-BC cell apoptosis and further reduce cell proliferation and
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clonogenicity compared to treatment with cisplatin as a single agent. The ability of Obatoclax to inhibit
cyclin D1, cdk4, and cdk6 in MI-BC cells in addition to its known targets (pro-survival members of the
Bcl-2 family) has also not previously been reported.

While our finding that combining Obatoclax with cisplatin increases levels of MI-BC cell apoptosis
has not been previously reported, the results are somewhat expected based on our knowledge that
the expression of pro-survival members of the Bcl-2 family are elevated in many MI-BC cell lines and
tumors and contribute to chemoresistance. Combining inhibitors of pro-survival Bcl-2 family members
with cisplatin treatment has been successful in other cancer types which overexpress these molecules.
For example, combining small molecule inhibitors with cisplatin treatment can enhance the apoptosis
of non-small cell lung cancer, breast cancer, and esophageal cancer cells [39–41]. It is noteworthy that
another group has shown that combining Obatoclax with paclitaxel treatment increases apoptosis and is
able to overcome paclitaxel resistance in urothelial cancer cells (paclitaxel is a second-line treatment for
metastatic bladder cancer; it prevents cell division via inhibition of microtubule function) [42]. In their
study, they assessed the impact of Obatoclax on Mcl-1 (another pro-survival member of the Bcl-2 family)
expression levels and demonstrated that the inhibition of Mcl-1 contributed to Obatoclax-mediated
apoptosis. They did not assess Bcl-2 or Bcl-xL expression levels; however, their data are compelling
and further support the use of Obatoclax to abrogate pro-survival Bcl-2 family member-mediated
intrinsic chemoresistance in bladder cancers.

Our data clearly demonstrate that Obatoclax can inhibit the activity of Bcl-2 and Bcl-xL in
MI-BC cells, and can inhibit the expression of these molecules in a dose-dependent manner. We also
demonstrate that Obatoclax can inhibit the expression of cyclin D in MI-BC cells. Cyclin D1 is a cell
cycle regulator which can drive MI-BC cell proliferation when overexpressed [43]. While our finding
that Obatoclax can inhibit cyclin D1 in MI-BC cells was initially unexpected and has not previously
been reported, a subsequent review of the literature revealed that two other studies have shown
that Obatoclax can inhibit cyclin D1 in colorectal cancer cells [44,45]. In combination with our study,
these help validate Obatoclax as being a cell cycle inhibitor in addition to being an inhibitor that
promotes apoptosis. Certainly, this dual role increases the attractiveness of Obatoclax as an anti-cancer
drug. The colorectal cancer study data indicate that Obatoclax mediates decreased expression of
cyclin D1 via accelerating proteasome-mediated cyclin D1 degradation; the inhibition of proteasomal
degradation using MG132 abrogated the ability of Obatoclax to cause decreased cyclin D1 expression.
Obatoclax triggered the proteasomal degradation of cyclin D1 by causing T286 phosphorylation of
cyclin D1 in some but not all colorectal cancer cell lines. The kinase responsible for this phosphorylation
was not identified, indicating that an unknown mechanism which promotes proteasomal degradation
exists. Clearly, there is much more that needs to be done to fully elucidate the mechanism by which
Obatoclax mediates the inhibition of cyclin D1 in cancer cells.

Another goal of the current study was to determine whether Obatoclax could negate
pre-miR-34a-mediated increase in Bcl-2. We had previously demonstrated that pre-miR-34a is able to
reduce MI-BC proliferation and clonogenicity through the inhibition of Cdk6, a cell cycle regulator,
but it is unable to significantly increase levels of apoptosis due to increased Bcl-2 expression [26].
Treatment with Obatoclax was unable to overcome this Bcl-2 response, and in fact combining
pre-miR-34a treatment with Obatoclax and/or cisplatin treatment decreased levels of apoptosis.
While this negative result was disappointing, the assessment of Cdk6 in our combination study
experiments led us to discover that Obatoclax can also inhibit Cdk6. In addition, we found that
Obatoclax can inhibit Cdk4, which is also a cell cycle regulator. To our knowledge, the ability of
Obatoclax to inhibit Cdk4 and Cdk6 has not previously been described in any cancer type. Inhibiting
cancer cell proliferation via targeting Cdk4/6 and other cell cycle regulators is a therapeutic strategy
which appears to show much promise in the treatment of several solid tumor types, including bladder
cancers [43,46–48]. It is noteworthy that the deletion of CDKN2A and CDKN2B, key regulators of
Cdk4/6 expression, occurs in ~50% of bladder cancers, as this indicates that many MI-BC patients may
be responsive to Cdk4/6 inhibitors [49].
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The ability of Obatoclax to inhibit multiple pro-survival members of the Bcl-2 family, including
Bcl-2, Bcl-xL, and Mcl-1, as well as cyclin D1 and Cdk4/6, is important clinically because a comparison
of MI-BC patient studies reveals that they differ with regards to which pro-survival Bcl-2 family
members are overexpressed [7,50]. The broad spectrum of activity of Obatoclax makes it a viable drug
choice regardless of which pro-survival member of the Bcl-2 family is overexpressed in a particular
patient. The ability of Obatoclax to target multiple molecules should also allow it to abrogate the
development of de novo chemoresistance in addition to intrinsic chemoresistance. While we did not
observe increased expression of Bcl-2 or Bcl-xL following treatment with cisplatin as a single agent,
others have reported that cisplatin can mediate an enhanced expression of these molecules in MI-BC
cells, indicating that the development of de novo chemoresistance to cisplatin may be a concern [51–53].
In support of this, prognostic studies have shown that increased expression of pro-survival Bcl-2 family
members is observed in some post-chemotherapy MI-BC tumor samples and that this is associated
with worse patient outcomes [54–57]. MI-BC tumor heterogeneity has also been shown to further
increase following chemotherapy [50].

In addition to causing cell death by apoptosis, studies in esophageal and ovarian cancer cells
have demonstrated that Obatoclax can also induce and/or potentiate autophagy-induced cell death
as well as promote necroptosis, a recently described type of cell death that is linked to inflammatory
responses [41,58–62]. Several of these studies indicate that the alkalinization of lysosomes may play
a role in mediating these effects. The precise mechanisms involved, and whether Obatoclax can
mediate autophagy and/or necroptosis as well as apoptosis in MI-BC cells, remain unknown. It will
be interesting to see if the inhibition of cyclin D1 and Cdk4/6 as well as the inhibition of pro-survival
Bcl-2 family members plays a role in these processes.

In summary, our findings show that combining Obatoclax with cisplatin can increase MI-BC cell
apoptosis as well as inhibit cell proliferation and clonogenicity, and that Obatoclax can inhibit cyclin
D1 and Cdk4/6 as well as Bcl-2 and Bcl-xL in MI-BC cells; these results are novel and warrant further
investigation. Another BH3 mimetic, Venitoclax, has already received FDA approval for the treatment
of CLL. This information, combined with the ability of Obatoclax to inhibit multiple molecules that
are associated with MI-BC carcinogenesis and resistance to chemotherapy, indicate it could be a
viable treatment option for MI-BC and may help improve response rates to NAC. With the current
response rate of MI-BC patients to NAC standing at approximately 50%, new treatment options are
clearly needed.

4. Materials and Methods

4.1. Reagents

Antibodies: Bcl-2 (2870S, Cell Signaling, Danvers, MA, USA), Bcl-xL (2762S, Cell Signaling),
cyclin D1 (2922S, Cell Signaling), Cdk4 (sc-601, Santa Cruz Biotechnologies, Dallas, TX, USA),
Cdk6 (Ab-2 K6.9, Neomarker, Fremont, CA, USA), Gapdh (MAB374, EMD Millipore, Burlington, MA,
USA), Bak (AM03, EMD Millipore), IgG (3900S, Cell Signaling), HRP antibodies (W401B (anti-mouse),
W402B (anti-rabbit), Promega, Madison, WI, USA). Protein A/G agarose beads were purchased from
Cell Signaling. Cisplatin and Obatoclax were purchased from Selleck Chemicals (Houston, TX, USA).
Pre-miR-34a and the premiRNA negative control were purchased from Applied Biosystems (Foster City,
CA, USA). Pre-miR-34a mimics the product of Dicer cleavage and thereby increases miR-34a activity.

4.2. Cell Line and Culture

T24, TCCSuP and 5637 cell lines were obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA). Cells were maintained in RPMI1640 media (Invitrogen/GIBCO, Carlsbad, CA,
USA) supplemented with 10% fetal bovine serum (Omega Scientific, Inc., Tarzana, CA, USA), 2 mM
L-glutamine, and 100 U/mL penicillin-100 µg/mL streptomycin. Cells were kept at 37 ◦C in a
humidified environment of 5% CO2 in air.
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4.3. Cell Proliferation Assays

Cells were plated in 96-well plates (T24; 1500 cells/well, TCCSuP; 2000 cells/well, 5637;
2000 cells/well). Treatments were initiated after 24 h. MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide; thiazolyl blue) (Sigma, St Louis, MA, USA) assays were performed to
assess cell proliferation as previously described [63].

4.4. Clonogenic Assay

Cells were plated into 35-mm culture dishes (T24; 2500 cells, TCCSUP; 3500 cells, 5637; 2500 cells)
and allowed to attach for 24 h at 37 ◦C prior to treatment. Following treatment, cells were cultured for
10 days. After 10 days, colonies were fixed in 1.0% crystal violet and 0.5% glacial acetic acid in ethanol.
Visible colonies containing approximately 50 or more cells were then counted.

4.5. Annexin V Flow Cytometry

The TACS annexin V-FITC kit (R&D Systems, Minneapolis, MN, USA) was used to quantitate
apoptosis as per manufacturer’s protocol. A Coulter Epics XL flow cytometer (Beckman Coulter,
Indianapolis, IN, USA) was used to perform the flow cytometry analyses. Compensation analyses
were performed using FlowJo software (FlowJo, Ashland, OR, USA).

4.6. Pre-miR-34 Transfection

Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) was used for pre-miR-34a transfections as
per manufacturer’s instructions.

4.7. Western Blot

Analyses were performed as previously described [63].

4.8. Immunoprecipitation

Cells were lysed in immunoprecipitation (IP) buffer supplemented with a protease inhibitor
tablet (both from Thermo Fisher, Waltham, MA, USA). One milligram of protein was incubated
with 4 ug anti-Bak antibody (AM03, EMD Millipore) overnight at 4 ◦C followed by incubation with
50 µL of protein A/G agarose beads (Cell Signaling) for 2 h at 4 ◦C and then washed with IP buffer.
Immunoprecipitates were boiled in sample buffer for 5 min.

4.9. Statistical Analyses

At least three independent experiments were completed for each analysis described in this article.
Data are shown as mean ± standard deviation. Multiple group comparisons were performed by
ANOVA followed by the Bonferroni post-test procedure for comparison of means using a commercially
available software program (GraphPad Prism, GraphPad Software, La Jolla, CA, USA). p < 0.05 was
considered statistically significant.
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Abbreviations

Cis Cisplatin
CLL Chronic lymphocytic leukemia
Cmax Peak plasma concentration
IC30 Thirty percent of maximal inhibitory concentration
IC50 Half maximal inhibitory concentration
IP Immunoprecipitation
MI-BC Muscle invasive bladder cancer
NAC Neoadjuvant chemotherapy
Veh Vehicle

References

1. Ebbing, J.; Heckmann, R.C.; Collins, J.W.; Miller, K.; Erber, B.; Friedersdorff, F.; Fuller, T.F.; Busch, J.;
Seifert, H.H.; Ardelt, P.; et al. Oncological outcomes, quality of life outcomes and complications of partial
cystectomy for selected cases of muscle-invasive bladder cancer. Sci. Rep. 2018, 8, 8360. [CrossRef]

2. Lobo, N.; Mount, C.; Omar, K.; Nair, R.; Thurairaja, R.; Khan, M.S. Landmarks in the treatment of
muscle-invasive bladder cancer. Nat. Rev. Urol. 2017, 14, 565–574. [CrossRef] [PubMed]

3. Dall’Era, M.A.; Cheng, L.; Pan, C.X. Contemporary management of muscle-invasive bladder cancer.
Expert Rev. Anticancer Ther. 2012, 12, 941–950. [CrossRef] [PubMed]

4. Grossman, H.B.; Natale, R.B.; Tangen, C.M.; Speights, V.O.; Vogelzang, N.J.; Trump, D.L.; deVere White, R.W.;
Sarosdy, M.F.; Wood, D.P., Jr.; Raghavan, D.; et al. Neoadjuvant chemotherapy plus cystectomy compared
with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 2003, 349, 859–866. [CrossRef]
[PubMed]

5. Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017, 8, 59950–59964.
[CrossRef]

6. Pan, S.T.; Li, Z.L.; He, Z.X.; Qiu, J.X.; Zhou, S.F. Molecular mechanisms for tumour resistance to chemotherapy.
Clin. Exp. Pharmacol. Physiol. 2016, 43, 723–737. [CrossRef]

7. Martin-Doyle, W.; Kwiatkowski, D.J. Molecular biology of bladder cancer. Hematol./Oncol. Clin. N. Am. 2015,
29, 191–203. [CrossRef]

8. Mari, A.; D’Andrea, D.; Abufaraj, M.; Foerster, B.; Kimura, S.; Shariat, S.F. Genetic determinants for chemo-
and radiotherapy resistance in bladder cancer. Transl. Androl. Urol. 2017, 6, 1081–1089. [CrossRef]

9. Kirsh, E.J.; Baunoch, D.A.; Stadler, W.M. Expression of bcl-2 and bcl-X in bladder cancer. J. Urol. 1998, 159,
1348–1353. [CrossRef]

10. Gazzaniga, P.; Gradilone, A.; Vercillo, R.; Gandini, O.; Silvestri, I.; Napolitano, M.; Albonici, L.; Vincenzoni, A.;
Gallucci, M.; Frati, L.; et al. Bcl-2/bax mRNA expression ratio as prognostic factor in low-grade urinary
bladder cancer. Int. J. Cancer 1996, 69, 100–104. [CrossRef]

11. Wilson, T.R.; Longley, D.B.; Johnston, P.G. Chemoresistance in solid tumours. Ann. Oncol. 2006, 17 (Suppl. 10),
x315–x324. [CrossRef]

12. Kerbel, R.S.; Kobayashi, H.; Graham, C.H. Intrinsic or acquired drug resistance and metastasis: Are they
linked phenotypes? J. Cell. Biochem. 1994, 56, 37–47. [CrossRef]

13. Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: Targeting mitochondrial apoptotic pathways in cancer therapy.
Clin. Cancer Res. 2009, 15, 1126–1132. [CrossRef]

14. Merino, D.; Kelly, G.L.; Lessene, G.; Wei, A.H.; Roberts, A.W.; Strasser, A. BH3-Mimetic Drugs: Blazing the
Trail for New Cancer Medicines. Cancer Cell 2018, 34, 879–891. [CrossRef]

15. Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018, 8. [CrossRef]
16. Montero, J.; Letai, A. Why do BCL-2 inhibitors work and where should we use them in the clinic?

Cell Death Differ. 2018, 25, 56–64. [CrossRef]
17. Ittmann, M.; Huang, J.; Radaelli, E.; Martin, P.; Signoretti, S.; Sullivan, R.; Simons, B.W.; Ward, J.M.;

Robinson, B.D.; Chu, G.C.; et al. Animal models of human prostate cancer: The consensus report of the
New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee.
Cancer Res. 2013, 73, 2718–2736. [CrossRef]

http://dx.doi.org/10.1038/s41598-018-26089-x
http://dx.doi.org/10.1038/nrurol.2017.82
http://www.ncbi.nlm.nih.gov/pubmed/28675174
http://dx.doi.org/10.1586/era.12.60
http://www.ncbi.nlm.nih.gov/pubmed/22845409
http://dx.doi.org/10.1056/NEJMoa022148
http://www.ncbi.nlm.nih.gov/pubmed/12944571
http://dx.doi.org/10.18632/oncotarget.19048
http://dx.doi.org/10.1111/1440-1681.12581
http://dx.doi.org/10.1016/j.hoc.2014.10.002
http://dx.doi.org/10.21037/tau.2017.08.19
http://dx.doi.org/10.1016/S0022-5347(01)63614-0
http://dx.doi.org/10.1002/(SICI)1097-0215(19960422)69:2&lt;100::AID-IJC5&gt;3.0.CO;2-4
http://dx.doi.org/10.1093/annonc/mdl280
http://dx.doi.org/10.1002/jcb.240560108
http://dx.doi.org/10.1158/1078-0432.CCR-08-0144
http://dx.doi.org/10.1016/j.ccell.2018.11.004
http://dx.doi.org/10.1098/rsob.180002
http://dx.doi.org/10.1038/cdd.2017.183
http://dx.doi.org/10.1158/0008-5472.CAN-12-4213


Int. J. Mol. Sci. 2019, 20, 1285 13 of 15

18. Seymour, J.F.; Kipps, T.J.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Gerecitano, J.;
Robak, T.; De la Serna, J.; et al. Venetoclax-Rituximab in Relapsed or Refractory Chronic Lymphocytic
Leukemia. N. Engl. J. Med. 2018, 378, 1107–1120. [CrossRef]

19. Herbst, R.S.; Frankel, S.R. Oblimersen sodium (Genasense bcl-2 antisense oligonucleotide): A rational
therapeutic to enhance apoptosis in therapy of lung cancer. Clin. Cancer Res. 2004, 10, 4245s–4248s.
[CrossRef]

20. Sternberg, C.N.; Dumez, H.; Van Poppel, H.; Skoneczna, I.; Sella, A.; Daugaard, G.; Gil, T.; Graham, J.;
Carpentier, P.; Calabro, F.; et al. Docetaxel plus oblimersen sodium (Bcl-2 antisense oligonucleotide):
An EORTC multicenter, randomized phase II study in patients with castration-resistant prostate cancer.
Ann. Oncol. 2009, 20, 1264–1269. [CrossRef]

21. Wang, J.L.; Zhang, Z.J.; Choksi, S.; Shan, S.; Lu, Z.; Croce, C.M.; Alnemri, E.S.; Korngold, R.; Huang, Z. Cell
permeable Bcl-2 binding peptides: A chemical approach to apoptosis induction in tumor cells. Cancer Res.
2000, 60, 1498–1502.

22. Pekarsky, Y.; Croce, C.M. Role of miR-15/16 in CLL. Cell Death Differ. 2015, 22, 6–11. [CrossRef]
23. Friedrich, M.G.; Weisenberger, D.J.; Cheng, J.C.; Chandrasoma, S.; Siegmund, K.D.; Gonzalgo, M.L.;

Toma, M.I.; Huland, H.; Yoo, C.; Tsai, Y.C.; et al. Detection of methylated apoptosis-associated genes
in urine sediments of bladder cancer patients. Clin. Cancer Res. 2004, 10, 7457–7465. [CrossRef]

24. Bende, R.J.; Smit, L.A.; van Noesel, C.J. Molecular pathways in follicular lymphoma. Leukemia 2007, 21,
18–29. [CrossRef]

25. Yamamoto, K.; Okamura, A.; Yakushijin, K.; Hayashi, Y.; Matsuoka, H.; Minami, H. Tandem triplication
of the BCL2 gene in CD5-positive intravascular large B cell lymphoma with bone marrow involvement.
Ann. Hematol. 2014, 93, 1791–1793. [CrossRef]

26. Vinall, R.L.; Ripoll, A.Z.; Wang, S.; Pan, C.X.; deVere White, R.W. MiR-34a chemosensitizes bladder cancer
cells to cisplatin treatment regardless of p53-Rb pathway status. Int. J. Cancer 2012, 130, 2526–2538. [CrossRef]

27. Li, X.J.; Ren, Z.J.; Tang, J.H. MicroRNA-34a: A potential therapeutic target in human cancer. Cell Death Dis.
2014, 5, e1327. [CrossRef]

28. Saito, Y.; Nakaoka, T.; Saito, H. microRNA-34a as a Therapeutic Agent against Human Cancer. J. Clin. Med.
2015, 4, 1951–1959. [CrossRef]

29. McConkey, D.J.; Choi, W.; Dinney, C.P. Genetic subtypes of invasive bladder cancer. Curr. Opin. Urol. 2015,
25, 449–458. [CrossRef]

30. Xiao, Z.; Chen, Y. Small molecule targeting miR-34a for cancer therapy. Mol. Cell. Oncol. 2015, 2, e977160.
[CrossRef]

31. Li, H.; Yu, G.; Shi, R.; Lang, B.; Chen, X.; Xia, D.; Xiao, H.; Guo, X.; Guan, W.; Ye, Z.; et al. Cisplatin-induced
epigenetic activation of miR-34a sensitizes bladder cancer cells to chemotherapy. Mol. Cancer 2014, 13, 8.
[CrossRef] [PubMed]

32. Sun, H.; Tian, J.; Xian, W.; Xie, T.; Yang, X. miR-34a inhibits proliferation and invasion of bladder cancer cells
by targeting orphan nuclear receptor HNF4G. Dis. Mark. 2015, 2015, 879254. [CrossRef]

33. Yu, G.; Yao, W.; Xiao, W.; Li, H.; Xu, H.; Lang, B. MicroRNA-34a functions as an anti-metastatic microRNA
and suppresses angiogenesis in bladder cancer by directly targeting CD44. J. Exp. Clin. Cancer Res. 2014, 33,
779. [CrossRef] [PubMed]

34. Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.;
Mak, R.H.; Ferrando, A.A.; et al. MicroRNA expression profiles classify human cancers. Nature 2005, 435,
834–838. [CrossRef] [PubMed]

35. Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004.
[CrossRef] [PubMed]

36. Baumann, V.; Winkler, J. miRNA-based therapies: Strategies and delivery platforms for oligonucleotide and
non-oligonucleotide agents. Futur. Med. Chem. 2014, 6, 1967–1984. [CrossRef] [PubMed]

37. Shah, M.Y.; Ferrajoli, A.; Sood, A.K.; Lopez-Berestein, G.; Calin, G.A. microRNA Therapeutics in Cancer—An
Emerging Concept. EBioMedicine 2016, 12, 34–42. [CrossRef]

38. Goard, C.A.; Schimmer, A.D. An evidence-based review of obatoclax mesylate in the treatment of
hematological malignancies. Core Evid. 2013, 8, 15–26. [CrossRef]

http://dx.doi.org/10.1056/NEJMoa1713976
http://dx.doi.org/10.1158/1078-0432.CCR-040018
http://dx.doi.org/10.1093/annonc/mdn784
http://dx.doi.org/10.1038/cdd.2014.87
http://dx.doi.org/10.1158/1078-0432.CCR-04-0930
http://dx.doi.org/10.1038/sj.leu.2404426
http://dx.doi.org/10.1007/s00277-014-2035-y
http://dx.doi.org/10.1002/ijc.26256
http://dx.doi.org/10.1038/cddis.2014.270
http://dx.doi.org/10.3390/jcm4111951
http://dx.doi.org/10.1097/MOU.0000000000000200
http://dx.doi.org/10.4161/23723556.2014.977160
http://dx.doi.org/10.1186/1476-4598-13-8
http://www.ncbi.nlm.nih.gov/pubmed/24423412
http://dx.doi.org/10.1155/2015/879254
http://dx.doi.org/10.1186/s13046-014-0115-4
http://www.ncbi.nlm.nih.gov/pubmed/25551284
http://dx.doi.org/10.1038/nature03702
http://www.ncbi.nlm.nih.gov/pubmed/15944708
http://dx.doi.org/10.1038/sigtrans.2015.4
http://www.ncbi.nlm.nih.gov/pubmed/29263891
http://dx.doi.org/10.4155/fmc.14.116
http://www.ncbi.nlm.nih.gov/pubmed/25495987
http://dx.doi.org/10.1016/j.ebiom.2016.09.017
http://dx.doi.org/10.2147/CE.S42568


Int. J. Mol. Sci. 2019, 20, 1285 14 of 15

39. Li, J.; Viallet, J.; Haura, E.B. A small molecule pan-Bcl-2 family inhibitor, GX15-070, induces apoptosis and
enhances cisplatin-induced apoptosis in non-small cell lung cancer cells. Cancer Chemother. Pharmacol. 2008,
61, 525–534. [CrossRef]

40. Arisan, E.D.; Kutuk, O.; Tezil, T.; Bodur, C.; Telci, D.; Basaga, H. Small inhibitor of Bcl-2, HA14-1, selectively
enhanced the apoptotic effect of cisplatin by modulating Bcl-2 family members in MDA-MB-231 breast
cancer cells. Breast Cancer Res. Treat. 2010, 119, 271–281. [CrossRef]

41. Yu, L.; Wu, W.K.; Gu, C.; Zhong, D.; Zhao, X.; Kong, Y.; Lin, Q.; Chan, M.T.; Zhou, Z.; Liu, S. Obatoclax
impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells.
Oncotarget 2016, 7, 14693–14707. [CrossRef]

42. Jimenez-Guerrero, R.; Gasca, J.; Flores, M.L.; Perez-Valderrama, B.; Tejera-Parrado, C.; Medina, R.;
Tortolero, M.; Romero, F.; Japon, M.A.; Saez, C. Obatoclax and Paclitaxel Synergistically Induce Apoptosis
and Overcome Paclitaxel Resistance in Urothelial Cancer Cells. Cancers 2018, 10, 490. [CrossRef]

43. Carneiro, B.A.; Meeks, J.J.; Kuzel, T.M.; Scaranti, M.; Abdulkadir, S.A.; Giles, F.J. Emerging therapeutic
targets in bladder cancer. Cancer Treat. Rev. 2015, 41, 170–178. [CrossRef]

44. Or, C.R.; Chang, Y.; Lin, W.C.; Lee, W.C.; Su, H.L.; Cheung, M.W.; Huang, C.P.; Ho, C.; Chang, C.C. Obatoclax,
a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal
Carcinoma Cells. Int. J. Mol. Sci. 2016, 18, 44. [CrossRef]

45. Koehler, B.C.; Scherr, A.L.; Lorenz, S.; Elssner, C.; Kautz, N.; Welte, S.; Jaeger, D.; Urbanik, T.;
Schulze-Bergkamen, H. Pan-Bcl-2 inhibitor obatoclax delays cell cycle progression and blocks migration of
colorectal cancer cells. PLoS ONE 2014, 9, e106571. [CrossRef]

46. Schettini, F.; De Santo, I.; Rea, C.G.; De Placido, P.; Formisano, L.; Giuliano, M.; Arpino, G.; De Laurentiis, M.;
Puglisi, F.; De Placido, S.; et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front. Oncol.
2018, 8, 608. [CrossRef]

47. Roskoski, R., Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs.
Pharmacol. Res. 2018, 139, 471–488. [CrossRef]

48. Sathe, A.; Koshy, N.; Schmid, S.C.; Thalgott, M.; Schwarzenbock, S.M.; Krause, B.J.; Holm, P.S.; Gschwend, J.E.;
Retz, M.; Nawroth, R. CDK4/6 Inhibition Controls Proliferation of Bladder Cancer and Transcription of RB1.
J. Urol. 2016, 195, 771–779. [CrossRef]

49. Shariat, S.F.; Tokunaga, H.; Zhou, J.; Kim, J.; Ayala, G.E.; Benedict, W.F.; Lerner, S.P. p53, p21, pRB, and p16
expression predict clinical outcome in cystectomy with bladder cancer. J. Clin. Oncol. 2004, 22, 1014–1024.
[CrossRef]

50. Knowles, M.A.; Hurst, C.D. Molecular biology of bladder cancer: New insights into pathogenesis and clinical
diversity. Nat. Rev. Cancer 2015, 15, 25–41. [CrossRef]

51. Hong, J.H.; Lee, E.; Hong, J.; Shin, Y.J.; Ahn, H. Antisense Bcl2 oligonucleotide in cisplatin-resistant bladder
cancer cell lines. BJU Int. 2002, 90, 113–117. [CrossRef] [PubMed]

52. Kim, S.H.; Ho, J.N.; Jin, H.; Lee, S.C.; Lee, S.E.; Hong, S.K.; Lee, J.W.; Lee, E.S.; Byun, S.S. Upregulated
expression of BCL2, MCM7, and CCNE1 indicate cisplatin-resistance in the set of two human bladder cancer
cell lines: T24 cisplatin sensitive and T24R2 cisplatin resistant bladder cancer cell lines. Investig. Clin. Urol.
2016, 57, 63–72. [CrossRef] [PubMed]

53. Cho, H.J.; Kim, J.K.; Kim, K.D.; Yoon, H.K.; Cho, M.Y.; Park, Y.P.; Jeon, J.H.; Lee, E.S.; Byun, S.S.;
Lim, H.M.; et al. Upregulation of Bcl-2 is associated with cisplatin-resistance via inhibition of Bax
translocation in human bladder cancer cells. Cancer Lett. 2006, 237, 56–66. [CrossRef] [PubMed]

54. Cooke, P.W.; James, N.D.; Ganesan, R.; Burton, A.; Young, L.S.; Wallace, D.M. Bcl-2 expression identifies
patients with advanced bladder cancer treated by radiotherapy who benefit from neoadjuvant chemotherapy.
BJU Int. 2000, 85, 829–835. [CrossRef] [PubMed]

55. Yoshimine, S.; Kikuchi, E.; Kosaka, T.; Mikami, S.; Miyajima, A.; Okada, Y.; Oya, M. Prognostic significance
of Bcl-xL expression and efficacy of Bcl-xL targeting therapy in urothelial carcinoma. Br. J. Cancer 2013, 108,
2312–2320. [CrossRef] [PubMed]

56. Karam, J.A.; Lotan, Y.; Karakiewicz, P.I.; Ashfaq, R.; Sagalowsky, A.I.; Roehrborn, C.G.; Shariat, S.F. Use
of combined apoptosis biomarkers for prediction of bladder cancer recurrence and mortality after radical
cystectomy. Lancet Oncol. 2007, 8, 128–136. [CrossRef]

57. Kong, G.; Shin, K.Y.; Oh, Y.H.; Lee, J.J.; Park, H.Y.; Woo, Y.N.; Lee, J.D. Bcl-2 and p53 expressions in invasive
bladder cancers. Acta Oncol. 1998, 37, 715–720. [CrossRef]

http://dx.doi.org/10.1007/s00280-007-0499-3
http://dx.doi.org/10.1007/s10549-009-0343-z
http://dx.doi.org/10.18632/oncotarget.7492
http://dx.doi.org/10.3390/cancers10120490
http://dx.doi.org/10.1016/j.ctrv.2014.11.003
http://dx.doi.org/10.3390/ijms18010044
http://dx.doi.org/10.1371/journal.pone.0106571
http://dx.doi.org/10.3389/fonc.2018.00608
http://dx.doi.org/10.1016/j.phrs.2018.11.035
http://dx.doi.org/10.1016/j.juro.2015.08.082
http://dx.doi.org/10.1200/JCO.2004.03.118
http://dx.doi.org/10.1038/nrc3817
http://dx.doi.org/10.1046/j.1464-410X.2002.02799.x
http://www.ncbi.nlm.nih.gov/pubmed/12081782
http://dx.doi.org/10.4111/icu.2016.57.1.63
http://www.ncbi.nlm.nih.gov/pubmed/26966728
http://dx.doi.org/10.1016/j.canlet.2005.05.039
http://www.ncbi.nlm.nih.gov/pubmed/16009487
http://dx.doi.org/10.1046/j.1464-410x.2000.00612.x
http://www.ncbi.nlm.nih.gov/pubmed/10792161
http://dx.doi.org/10.1038/bjc.2013.216
http://www.ncbi.nlm.nih.gov/pubmed/23674090
http://dx.doi.org/10.1016/S1470-2045(07)70002-5
http://dx.doi.org/10.1080/028418698430098


Int. J. Mol. Sci. 2019, 20, 1285 15 of 15

58. Liang, L.Z.; Ma, B.; Liang, Y.J.; Liu, H.C.; Zhang, T.H.; Zheng, G.S.; Su, Y.X.; Liao, G.Q. Obatoclax induces
Beclin 1- and ATG5-dependent apoptosis and autophagy in adenoid cystic carcinoma cells. Oral Dis. 2015,
21, 470–477. [CrossRef]

59. Pan, J.; Cheng, C.; Verstovsek, S.; Chen, Q.; Jin, Y.; Cao, Q. The BH3-mimetic GX15-070 induces autophagy,
potentiates the cytotoxicity of carboplatin and 5-fluorouracil in esophageal carcinoma cells. Cancer Lett. 2010,
293, 167–174. [CrossRef]

60. Champa, D.; Orlacchio, A.; Patel, B.; Ranieri, M.; Shemetov, A.A.; Verkhusha, V.V.; Cuervo, A.M.;
Di Cristofano, A. Obatoclax kills anaplastic thyroid cancer cells by inducing lysosome neutralization and
necrosis. Oncotarget 2016, 7, 34453–34471. [CrossRef]

61. Stamelos, V.A.; Fisher, N.; Bamrah, H.; Voisey, C.; Price, J.C.; Farrell, W.E.; Redman, C.W.; Richardson, A.
The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization. PLoS ONE 2016,
11, e0150696. [CrossRef] [PubMed]

62. Dasgupta, A.; Nomura, M.; Shuck, R.; Yustein, J. Cancer’s Achilles’ Heel: Apoptosis and Necroptosis to the
Rescue. Int. J. Mol. Sci. 2016, 18, 23. [CrossRef] [PubMed]

63. Vinall, R.L.; Tepper, C.G.; Shi, X.B.; Xue, L.A.; Gandour-Edwards, R.; de Vere White, R.W. The R273H p53
mutation can facilitate the androgen-independent growth of LNCaP by a mechanism that involves H2
relaxin and its cognate receptor LGR7. Oncogene 2006, 25, 2082–2093. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/odi.12305
http://dx.doi.org/10.1016/j.canlet.2010.01.006
http://dx.doi.org/10.18632/oncotarget.9121
http://dx.doi.org/10.1371/journal.pone.0150696
http://www.ncbi.nlm.nih.gov/pubmed/26950068
http://dx.doi.org/10.3390/ijms18010023
http://www.ncbi.nlm.nih.gov/pubmed/28025559
http://dx.doi.org/10.1038/sj.onc.1209246
http://www.ncbi.nlm.nih.gov/pubmed/16434975
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Treatment of Muscle Invasive Bladder Cancer Cell Lines with Obatoclax Inhibits Cell Proliferation and Clonogenicity and Promotes Apoptosis in a Dose-Dependent Manner 
	Obatoclax Can Inhibit the Binding of Bcl-2 and Bcl-xL to Bak, and Decreases Expression Levels of Bcl-2 and Bcl-xL 
	Combining Obatoclax with Cisplatin, the Standard of Care Treatment for Muscle Invasive Bladder Cancer, Can Further Decrease Cell Clonogenicity and Increase Apoptosis 
	Combining pre-miR-34a with Obatoclax and/or Cisplatin Can Decrease Cell Clonogenicity but Also Decreases Levels of Apoptosis 
	Treatment with Obatoclax and Cisplatin Can Further Reduce Bcl-2, Bcl-xL, and Cyclin D1 Expression Levels, While Treatment with pre-miR-34a Reduces Cdk6 and Cyclin D1 Expression Levels 
	Confirmation That Obatoclax Can Inhibit Cyclin D1 and Cdk6 Expression Levels, and Can Inhibit Cdk4 Expression Levels 

	Discussion 
	Materials and Methods 
	Reagents 
	Cell Line and Culture 
	Cell Proliferation Assays 
	Clonogenic Assay 
	Annexin V Flow Cytometry 
	Pre-miR-34 Transfection 
	Western Blot 
	Immunoprecipitation 
	Statistical Analyses 

	References

