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Abstract: Protein-protein interactions often involve a complex system of intermolecular interactions
between residues and atoms at the binding site. A comprehensive exploration of these interactions
can help reveal key residues involved in protein-protein recognition that are not obvious using
other protein analysis techniques. This paper presents and extends DiffBond, a novel method for
identifying and classifying intermolecular bonds while applying standard definitions of bonds in
chemical literature to explain protein interactions. DiffBond predicted intermolecular bonds from
four protein complexes: Barnase-Barstar, Rap1a-raf, SMAD2-SMAD4, and a subset of complexes
formed from three-finger toxins and nAChRs. Based on validation through manual literature search
and through comparison of two protein complexes from the SKEMPI dataset, DiffBond was able to
identify intermolecular ionic bonds and hydrogen bonds with high precision and recall, and identify
salt bridges with high precision. DiffBond predictions on bond existence were also strongly correlated
with observations of Gibbs free energy change and electrostatic complementarity in mutational
experiments. DiffBond can be a powerful tool for predicting and characterizing influential residues
in protein-protein interactions, and its predictions can support research in mutational experiments
and drug design.

Keywords: intermolecular bond prediction; bond classifier; DiffBond; ionic bond identificatio

1. Introduction

Chemical bonds play a crucial role in the interaction of proteins. Understanding
intermolecular bonds in particular is an important part of discovering how protein-protein
complexes achieve selective binding. In structural biology, the process of deducing the
role of chemical bonds requires a multi-step geometric and chemical analysis. First, bonds
are identified from the structure of a protein-protein complex by applying appropriate
geometric and chemical constraints. Next, hypotheses are developed about the role that
bonds play in the protein complex—whether the bond stabilizes the complex, assists in the
binding process, or plays a different role. Finally, these hypotheses are tested in a range of
experiments, such as by mutation, which alter the specific residues involved in the bond
and result in changes in binding affinity. Computational methods can support the first two
parts of this process, with a focus on limiting the number of necessary experiments.

This paper aims to assess the predictability of intermolecular bonds while applying
standard definitions of bonds in chemical literature to explain protein interactions. Our
approach is to apply the textbook chemical measurements and constraints of ionic interac-
tions, hydrogen bonds, and salt bridges at biological pH as a predictor for the presence of
intermolecular bonds, and verify these predictors against experimental findings established
from literature. Measurements of hydrogen bonds are extremely well defined [1], but
standard chemical measurements of ionic bonds and salt bridges are less so. Attraction and
repulsion can occur between any charged atoms at any distance based on Coulomb’s law,
however the degree of attraction or repulsion depends significantly on the geometry and
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nature of the dielectric between the charged atoms. As a result, ionic bond measurements
must always be an approximation based on assumptions of the biological environment,
as examined by several groups [2,3]. Chemical literature defines salt bridges as the co-
occurrence of both a hydrogen bond and an ionic bond; salt bridge measurements must also
exist under the same biological assumptions as those of ionic bonds. Following these defi-
nitions, we extend upon [4] to present DiffBond, a method for identifying and classifying
intermolecular bonds while applying standard definitions of bonds in chemical literature to
explain protein interactions. This paper paraphrases significantly the implementation and
verification of DiffBond and also adds additional verification of DiffBond with affinity data.

A broad range of techniques have been developed for identifying different characteris-
tics of protein complexes that influence protein-protein interactions. Some methods analyze
mutation stability from heuristic energy changes [5], rigidity-based structure analysis [6],
or molecular dynamics simulations [7]. Other methods employ computational models to
evaluate electrostatic potential volumes [8] or predict hydrogen bond locations [1] or salt
bridge locations [2,3] from crystal structure. In this context, Diffbond applies these methods
and concepts to contribute a unified tool for finding hydrogen bonds, ionic bonds, and
salt bridges in a protein structure. This capability makes bond analysis more accessible to
non-experts in biochemistry and more automated for larger scale analysis.

DiffBond is the first to classify intermolecular bond interactions across the binding
interface between protein-protein interactions into salt bridge, ionic bond, or hydrogen
bond categories. For hydrogen bonds, DiffBond uses HBPlus for hydrogen bond identi-
fication [1]. For salt bridges, we applied previous definitions developed by [2]. For ionic
bonds, we developed a definition from standard chemical measurements since no explicit
geometric definition has been developed for structural analysis, to our knowledge. Our
implementation of DiffBond follows a bottom-up approach for discovering each type of
intermolecular interaction; we identify each interaction independently using three distinct
methods that can work separately and in combination of one another.

DiffBond contributes to a larger Analytic Ensemble strategy. An Analytic Ensemble
strategy, mentioned first in [9], aims to explain the biochemical mechanisms that achieve spe-
cific binding by creating tools that exclusively examine one mechanism. In earlier work, we
have demonstrated techniques that exclusively identify steric [10,11] and electrostatic [8,9]
influences on specificity. Their exclusivity means that influences they identify must act
through steric or electrostatic mechanisms, respectively, since they examine nothing else.
This deductive approach means that Analytic Ensembles can generate true biochemical
explanations that elucidate real specificity mechanisms, as long as the mechanisms them-
selves are examined by underlying tools. DiffBond enables the identification of bonds for a
future analysis of this kind.

2. Materials and Methods

DiffBond predicts hydrogen bonds, ionic bonds, and salt bridges using separate
methods. In this section, we describe how each bond is identified from these coordinates,
beginning with the atomic coordinates of a protein structure. Following that, we explain
experimental methods used to verify these techniques.

2.1. Intermolecular Bond Searching
2.1.1. Hydrogen Bonds

Hydrogen bonds are found using HBPlus [1], which measures several strict criteria of
hydrogen bonds to predict hydrogen bond formation. First we identify a donor, an atom
covalently bound to a hydrogen, and an acceptor, an atom with a lone pair of electrons that
forms the hydrogen bond with the donor hydrogen. The specific identification of donors
and acceptors is referenced from chemical literature for each amino acid. The biochemical
distance constraints require that a donor must be within a 3.9 Å distance of an acceptor
and that a donor hydrogen must be within 2.5 Å from the acceptor. The angle formed from
the donor-hydrogen-acceptor interaction must also be greater than 90°, and the donor and



Molecules 2022, 27, 6178 3 of 14

acceptor must be a minimum of three covalent bonds apart. These measures ensure that the
donor atom is further from the acceptor atom than the donor hydrogen and that the bond
is not affected by steric hindrance. The angle formed between the hydrogen-acceptor and
acceptor antecedents, neighboring atoms of the acceptor atom, as well as the angle between
donor-acceptor-acceptor antecedent must be a minimum of 90°, to maintain biologically
relevant hydrogen bond conformations between interacting side chains. These parameters
have been used in previous hydrogen bond interaction studies with evidence that these
values yield high specificity [1,12,13].

2.1.2. Ionic Bonds

Intermolecular ionic bonds are found through a search algorithm for residues within
a distance and electrostatic criteria. A distance less than 5 Å between two amino acid
centroids is used as a standard measurement for possible interactions. A cutoff distance
of 5 Å is strict enough to yield most biochemically relevant residues. Ionic bonds, rarely,
can form over longer distances between 5–10 Å [14], and so we also provide ionic bond
predictions at 7.5 Å and 10 Å in Supplemental Table S1. Electrostatically, residues must
be oppositely charged amino acids at physiological pH to form an ionic bond, namely
interactions between positively charged arginine, histidine or lysine with aspartate or
glutamate [15]. An additional constraint requires the charged atoms of the amino acid,
either a positive N (nitrogen) in basic residues or a negative O (oxygen) in acidic residues,
are within the distance cutoff. By applying such a constraint, it forces residue side chains
to be oriented towards each other in the model and be at a distance where interactions by
proximity can be assumed despite the side chain orientation.

2.1.3. Salt Bridges

Intermolecular salt bridges are identified using a similar procedure to that of ionic
bonds. Salt bridge distance and electrostatic measurements are measured between oppo-
sitely charged residues whose side chain charged atoms, N and O, are interacting within
a distance of 4 Å [3]. Ref. [16] also established 4 Å distance as a well defined distance
cutoff that yields biochemically relevant salt bridge geometry. A side effect of using a
4 Å distance cutoff is that oppositely charged atoms within this distance are unable to
accommodate a water molecule in between them, which further supports the possibility of
hydrogen bond formation and simplifies the environmental conditions surrounding salt
bridge prediction [2,17]. As a result, the salt bridge constraints reflect a stricter variant of
the ionic bond and demonstrates electrostatic relevance of ionic interactions and geometric
relevance of hydrogen bonds. Figure 1 shows an example of oppositely charged side
chains, glutamate and arginine of a Barnase-Barstar protein complex, within 4 Å distance
of each other.

This procedure of searching for residue pairs bound by the respective constraints of
each type of intermolecular bond, allows us to identify relevant bond predictions. The
implementation of DiffBond does not require dimeric protein complexes; higher order
oligomers consisting of many subunits or protein-protein interactions involving multiple
proteins can be assessed in a similar way as dimers without losing interface information or
violating assumptions.

2.2. Electrostatic Isopotential Surfaces

An alternate method from bond prediction for finding influential amino acids is by
interpreting protein electrostatic fields using VASP-E [8]. An electrostatic field of a protein
represents the accumulation of charge from charged residues throughout a protein. By
interpreting the electrostatic potential field between protein-protein interactions, especially
of oppositely charged regions, we can evaluate the electrostatic compatibility across the
interface. To evaluate electrostatic fields, we first identify a region within the potential field
at some potential p called an electrostatic isopotential. The electrostatic isopotential is a
subset of the potential field where the potential equals p at all points on the isopotential
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surface. By definition, this isopotential creates a threshold k (kT/e), where one side of
the threshold has potential less than k and the other side has potential greater than k.
Geometrically, an isopotential guarantees a geometric solid with measurable volume,
which is the metric we use for evaluating influential amino acids.

Figure 1. Sidechain visualization of Arg59 on Barnase (green) and Glu76 on Barstar (teal). Arg59 and
Glu76 are within 4 Å and are oppositely charged amino acids, so they are predicted to form a salt
bridge by DiffBond.

2.2.1. Interface Field Comparison

This implementation for calculating volumetric objects representing electrostatic fields
has a unique utility of enabling volumetric comparisons. VASP-E manipulates isopotential
surfaces with constructive solid geometry (CSG) techniques. CSG can calculate the union,
intersection, and difference of volumetric objects [8]. Specifically, we generate fields rep-
resenting the binding interface of proteins from both proteins in a protein complex. For
one side of the interface of one protein, the isopotential surface is generated at +k, while
on the other protein, a surface is generated at -k. The intersection between the +k and -k
surfaces represents the region where the two protein complexes have opposite charges;
accordingly, the intersection of +k and -k measures the degree of complementarity between
opposite sides of the interface; a greater volume means higher electrostatic complementar-
ity. The logic for intersection utility can be seen in Figure 2. Such a comparison measures
even small-scale changes in electrostatic complementarity; for example, mutation of a
single residue may exhibit an almost imperceptible change in charge compared to the full
electrostatic field, however VASP-E is sensitive to these changes.

2.2.2. Nullification

VASP-E is able to detect small-scale changes in electrostatic isopotential volume;
exploiting this feature, we intentionally remove the charge contribution from single amino
acids in a process called nullification [18]. Nullification of residues not only affects the
electrostatic isopotential of the protein, but also measures the degree of the charge on the
residue. A strongly positive residue that is nullified will exhibit a sharp decrease in charge
after nullification. Although DelPhi disperses some of the change in charge across the whole
protein, the change is usually negligible. Thus, we can assume that nullification of amino
acids outside of the protein-protein interface region will result in negligible electrostatic
change at the interface.
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Figure 2. Intersection using CSG involves: (a) Two proteins with oppositely charged electrostatic
fields. (b) When the proteins are in complex, the oppositely charged fields overlap forming an
intersection region shown in orange. (c) The intersection region represents the degree to which the
field of one protein complements the field of the other.

We compare the intersection of interface fields for individual amino acids in the
protein complex to their nullified variant, mirroring lab experiments that compare wild
type proteins to mutant proteins with a single point mutation. Figure 3 demonstrates the
electrostatic volume change from nullifying a single residue in the Barnase-Barstar complex.
Nullification of residue 59 removed a significant amount of electrostatic complementarity
at the interface.

Figure 3. Effect of Nullification on Barnase-Barstar. (a) Wildtype Barnase electrostatic surface at
isopotential of +1 kT/e. (b) Barnase nullified at residue 59, electrostatic surface at isopotential of
+1 kT/e. (c) Overlap of wildtype (transparent yellow) and nullified Barnase (green) surfaces. (a–c) The
red square encompasses the main difference in isopotential surface due to nullification. (d) Wildtype
Barnase (blue) in complex with Barstar (transparent yellow).

2.3. Validating DiffBond
2.3.1. Dataset Construction

To demonstrate that DiffBond is able to identify and classify significant intermolecular
ionic bonds, hydrogen bonds, and salt bridges, we validated DiffBond predictions against
two datasets relating to two extensively studied protein complexes: Barnase-Barstar, Rap1a-
raf, SMAD2-SMAD4, and complexes involving the three-finger toxin family. Data Set A
contains extensively studied amino acid pairs that form intermolecular bonds for all four
protein complexes. Data Set B is a summary of mutations that have been performed on
Barnase-Barstar, Rap1a-raf and SMAD2-SMAD4, paired with the change in binding affinity
due to mutation.

The structures in Data Set A consist of the Barnase-Barstar complex (pdb: 1brs), the
Rap1A-raf complex (pdb: 1c1y), and the SMAD2-SMAD4 trimer (pdb: 1u7v). It also
complexes between members of the three-finger toxin family with neuronal nicotinic
acetylcholine receptors (nAChRs) (pdb: 1yi5, 4hqp, 2qc1, 1kc4). Each of these complexes
have been extensively studied for specific electrostatically influential amino acids and
intermolecular bond formations that affect their binding affinity.

Data Set B uses some of the structures in A (pdb: 1brs, 1c1y), but complements this
structural data with 113 mutations of the proteins in these complexes (1brs(94), 1c1y(17)).
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These mutations, derived from the Structural database of Kinetics and Energetics of Mutant
Protein Interactions (SKEMPI), are paired with experimentally measured changes in binding
affinity that are caused by the mutation. Since no information on three-finger toxin proteins
exists in SKEMPI and only two mutations were reported for SMAD2-SMAD4 complex,
these complexes were omitted from Data Set B.

2.3.2. Barnase-Barstar

Barnase is an extracellular ribonuclease of Bacillus amyloliquefaciens often co-expressed
with its intracellular inhibitor barstar. Barnase can be lethal to the cell by itself, but is
countered by forming a complex with barstar [19]. Barnase and Barstar form a tight com-
plex with many intermolecular electrostatic interactions between residues at the binding
site [20–22]. Experiments have demonstrated several influential residues involved in inter-
molecular interactions that result in enhanced or diminished electrostatic complementarity
between Barnase and Barstar, as well as residues that exhibited no change in electrostatic
complementarity.

2.3.3. Rap1a-raf

Ras is a family of GTPase involved in transmitting signals to regular biological systems
like cell cycle progression, cell division, apoptosis, lipid metabolism, DNA synthesis, and
cytoskeletal organization [23]. Although the structures of ras in complex with many of
its effector ligands are relatively unknown, Rap1a is a functional homolog to ras proteins
and forms a complex with raf that is well studied. Rap1a binding site is almost identical
to ras structures and binds competitively to raf, a ras effector oncogene involved in ERK
1/2 signaling [24,25]. The binding interface of Rap1a-raf consists of several significant
intermolecular bond interactions whose mutations have been shown to alter binding
affinity [24,26,27].

2.3.4. SMAD2-SMAD4

SMADs is a family of proteins that act as main signal transducers for TGF-B receptors,
a super family of proteins that help regulate cell development and growth [28,29]. Specifi-
cally, SMAD2 helps direct TGF-B signaling while SMAD4 mediates heteromeric complex
formation between R-SMADs and SMAD4 [28]. The complex formation results in a trimer
consisting of one SMAD4 with two SMAD2 subunits; the interface between each subunit in
the trimer has been extensively surveyed for electrostatic interactions [30].

2.3.5. Three-Finger Toxin Family

The three-finger toxins are a superfamily consisting of toxin proteins from elapid
snake venom and similar structures [31,32]. Members of the family consist of three beta
strand loops emanating from a cysteine rich core which form the distinct three-finger struc-
ture. Neurotoxin proteins like α-bungarotoxin [33–35] and α-cobratoxin [36] interact with
nAChRs while other members can interact with different neuronal nAChR subtypes [32].
The fast and tight interaction between three-finger toxins and nAChRs consist of several
well studied intermolecular interactions at the toxin-receptor interface. In addition, many
of the three-finger toxins compete with each other for binding at known classical binding
sites for agonists and competitive antagonists, making members of this superfamily an
interesting set of proteins to study [37].

2.3.6. Validation on DataSet A

On Dataset A, we validated DiffBond by comparing bond predictions to known
protein-protein interactions published in experimental findings. Intermolecular bond
formations were gathered from published journal papers where each bond was verified
manually. We required two specific criteria to be met for confirming intermolecular bonds.
First, the bond must verifiably exist between a pair of residues, and explicitly state the
residue from each side of the interface. For salt bridges specifically, we considered existence
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of both a hydrogen bond and an ionic bond to imply existence of a salt bridge even
if a salt bridge is not explicitly stated. Second, the paper must explicitly classify the
bond as either an ionic bond, hydrogen bond, or salt bridge, or provide biochemical
information that establishes one of the three bonds. Through this verification process, we
can compile intermolecular bond information for protein complexes and compare this data
to DiffBond prediction.

In our evaluation of DiffBond, we counted true positives (TPs), false positives (FPs),
true negatives (TNs), and false negatives (FNs). A bond prediction is defined as a TP if
DiffBond predicted the formation of a bond type between two specific amino acids, and
experimental findings confirmed the same amino acid pair and bond type. A prediction is
considered a FP if DiffBond predicted the formation of a bond, but experimental findings
did not agree or did not mention the specific bond. TNs are bond predictions that were
predicted to not occur by DiffBond and from experimental findings. FNs are evaluated as
intermolecular bonds that DiffBond failed to predict when experimental findings confirmed
the existence of the bond. From these measurements, we compute the precision and recall
of DiffBond. Precision is the fraction of correctly predicted bonds among all bonds verified
in experimental findings, and recall (sensitivity) is the fraction of correctly predicted bonds
among all true interactions.

There are two practical issues when evaluating prediction performance using the
above measurements. First, we cannot fully count TNs by nature of experiments in this
field; no studies to our knowledge have exhaustively analyzed the electrostatic influence
of every amino acid in a protein complex. Second, FPs as we measure them include bond
predictions that may not have been experimentally tested before. As a result, FP matches
may include intermolecular bonds that are yet to be found in future experiments. This
conservative criteria for FP matches also implies that the reported precision of DiffBond is
a lower limit of the true precision.

2.3.7. Validation on DataSet B

A second way to validate the authenticity of intermolecular bonds predicted by
DiffBond is to evaluate how their removal corresponds to binding. If the predicted bonds
actually exist and play some role in protein-protein recognition, then we expect that, on
balance, removing them through mutation should reduce affinity, and that affinity is
maintained in mutants that do not remove the bonds. Thus, we used data corresponding to
113 mutants of the Barnase-Barstar and Rap1a-raf.

SKEMPI provides Keq, the equilibrium rate of protein-protein interactions and a
metric for binding affinity, but Keq provided are not easily comparable due to temperature
differences in experiments. We normalized Keq to account for temperature differences and
to view binding affinity with a logarithmic scale; this is done through a 2-step process.
First, we compute the change in ∆G (∆∆G). This value is a measure of the change in energy
for folded and unfolded states when a point mutation is present, and is a good predictor
for whether a point mutation stabilizes the protein complex. Second, we normalize all
∆∆G grouped by protein complex to between 0 and 1; this avoids different scaling of free
energy changes from complex to complex and allows us to compare ∆∆G across all protein
complexes. In the context of protein interactions, a larger ∆∆G predicts that a protein
interaction requires more energy input to stabilize the complex after the mutation, therefore
suggesting an unfavorable mutation; a smaller ∆∆G means less energy input is necessary
for binding to occur and a favorable mutation for protein-protein interaction.

DiffBond attempts to assess electrostatic complementarity through hypothetical changes
in intermolecular bond formation due to mutations. An cartoon of the region that DiffBond
analyzes is shown in Figure 2. As a result of DiffBond, predictions for intermolecular bond
interactions at the interface are compiled. Interpreting each of these interactions according
to their corresponding biochemical role provides a stronger prediction of binding affinity
changes from mutational experiments. Salt bridges and ionic bonds, defined as an interaction
between charged residues, are expected to affect electrostatic complementarity when mutated
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to an uncharged amino acid due to loss of bond formation. While hydrogen bonds are also a
significant contributor to protein binding, hydrogen bonds occur frequently between charged
and uncharged residues and so binding affinity changes are expected to be less correlated to
electrostatic complementarity changes.

Volumetric comparison of interface fields and nullification has been shown to effec-
tively predict binding affinity changes in mutational experiments [8,38]. Consequently,
the predictions from this method are appropriate for validating DiffBond results and also
for possibly refining predictions from DiffBond by utilizing both DiffBond and VASP-E
methods in conjunction.

3. Results
3.1. Validation of DiffBond on Dataset A

The precision and recall of DiffBond predictions, on Barnase-Barstar, Rap1a-raf,
SMAD2-SMAD4, and three-finger toxin-nAChR, are reported in Table 1. Ionic bonds,
hydrogen bonds and salt bridges were separately counted. Although the total number of
predictions for ionic bonds and salt bridges were low at n = 16 and n = 7 respectively,
predictions exhibited high precision in general. Precision for predicting ionic bonds, hy-
drogen bonds, and salt bridges were 87.5%, 87.5%, and 85.7% respectively. Ionic bond and
hydrogen bond prediction showed 82.4% and 74.5% recall, however salt bridge prediction
had lower recall at 50%. The lowered recall is likely due to strict criteria used here and in
previous studies [2,16] to precisely identify biochemically relevant salt bridges at the cost of
missing verified salt bridges whose structure indicates possible biochemical unrelatedness.
These findings indicate that most of the bond predictions made by DiffBond were verified
in literature, giving high precision, and that most verified ionic and hydrogen bonds were
predicted by DiffBond, giving high recall.

Table 1. Precision and Recall of the bond list for predicting the formation of bonds.

Ionic Bond Hydrogen Bond Salt Bridge

True Positive 14 35 6
False Positive 2 5 1
False Negative 3 12 6
True Negative Unknown Unknown Unknown

Precision 87.5% 87.5% 85.7%
Recall 82.4% 74.5% 50.0%

Total Known Bonds 17 47 12
Total Predictions 16 40 7

3.2. Validation of DiffBond on Dataset B

Figure 4 shows a comparison of bond predictions for ionic bonds, salt bridges, and
hydrogen bonds to the Normalized ∆∆G computed for each bond prediction group. The
first group contains the “Bond Broken” case, where DiffBond predicted that the bond exists
before mutation but does not exist after mutation, inferring that a mutation would break
a pre-existing bond. The second group contains the “Bond intact” case, where DiffBond
predicted a bond exists before mutation with no change to bond type after mutation; this
group specifically comprises mutations from one charged amino acid to another similarly
charged amino acid. The third group contains the “Bond Formed” cases where DiffBond
predicted a bond to not exist in the wildtype but exists after mutation.
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Figure 4. Comparison of ∆∆G when a bond is broken and when a bond remains intact for (a) Ionic
bonds, (b) Salt Bridges, and (c) Hydrogen bonds. Each bond compared using normalized average
∆∆G values for Barnase-Barstar (1BRS) and Rap1a-raf (1C1Y). (*) indicates that no bonds were
predicted by DiffBond in those groups. Rap1a-raf hydrogen bond had only one bond broken
prediction, so no intervals were calculated.

It is important to note that amino acids in some bonds have alternate bonding partners,
so the removal of one partner by mutation may result in bond formation with a third party.
Although both ionic bonds and salt bridges are theoretically capable of forming in this way,
Dataset B contained no mutations where this occurred. Figure 4 includes zero-value bars
and an asterisk (*) for formation of ionic bonds and salt bridges to indicate this result.

We found that normalized average ∆∆G was significantly correlated to several groups
of DiffBond predictions for whether a bond was broken or stayed intact due to mutation, as
shown in Figure 4a,b. Ionic bonds and salt bridges showed large differences in normalized
average ∆∆G for bond broken and bond intact groups for both Barnase-Barstar (1BRS) and
Rap1a-raf (1C1Y). A significantly higher normalized average ∆∆G for bond broken group
implies a mutation that breaks an ionic bond or salt bridge is unfavorable for affinity. The
confidence intervals for salt bridge predictions overlap slightly with normalized average
∆∆G having an overlap of (0.516, 0.664) and (0.283, 0.530) for “Bond Broken” and “Bond
Intact” respectively. However, the slight overlap may also be due to high variance of
normalized average ∆∆G when bonds are predicted to be intact. Variance is especially high
for Rap1a-raf (pdb: 1C1Y), as seen in Figures 4 and 5, likely due to smaller sample sizes
of n = 16, n = 9, and n = 9 for ionic bond, hydrogen bond, and salt bridge predictions
respectively. Rap1a-raf had only one prediction made where hydrogen bonds are broken
and none for hydrogen bonds forming due to mutation. As a result, no variance can
be calculated, but normalized average ∆∆G is provided for predictions where hydrogen
bonds stay intact. In general, DiffBond had low variance in normalized average ∆∆G when
predicting ionic and salt bridges breaking (avg CV=0.323) compared to ionic and salt bridge
bonds intact (avg CV=0.705).
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Figure 5. Comparison of interface intersection volume changes when a bond is broken and when a
bond remains intact for (a) Ionic bonds and (b) Salt Bridges. Each bond compared using volumes
calculated from VASP-E for Barnase-Barstar (1BRS) and Rap1a-raf (1C1Y).

DiffBond predictions on hydrogen bond breaking, staying intact, or forming are much
less correlated to normalized average ∆∆G than those of ionic bonds and salt bridges
(Figure 4c). First, confidence intervals across almost all groups overlapped, except Rap1a-
raf (1C1Y) “Bond Broken” which contained one data point and “Bond Formed” which
contained no points, which is insufficient data to calculate an interval. We found that
normalized average ∆∆G was also lower for when breaking a hydrogen bond compared
to the other groups, which had similar normalized average ∆∆G to each other. Hydrogen
bonds are involved in salt bridges; we did not separately evaluate hydrogen bonds not
involved in salt bridges so that methods for identifying hydrogen bonds and salt bridges
are independent. Statistics of normalized average ∆∆G for all groups are included in
Supplemental Table S2.

In addition to measuring normalized average ∆∆G, we also use volumetric change
in interface fields from VASP-E as a metric for change in electrostatic complementarity
as shown in Figure 5. By comparing to VASP-E, we demonstrate DiffBond capability to
predict electrostatic complementarity rather than protein complex stability based on ∆∆G.
For a protein complex, we compute the intersection of the oppositely charged fields at the
interface such that we get two intersection volumes at k = +1/−1 and k = +5/−5 for the
wildtype complex and mutant complex. This results in four intersection volumes of the
interface: +1/−1 for wildtype and mutant, and +5/−5 for wildtype and mutant. Each
intersection volume indicates the amount of electrostatic complementarity between the two
proteins in the protein complex. As a result, a large value means greater complementarity
and vice versa. By computing the difference in volumes, v(WTk − v(Mutk), we can assess
the change in complementarity due to mutation; a larger wildtype intersection volume
compared to mutant would result in a positive volume, indicating lowered complementarity
due to mutation, while a negative volume indicates increased complementarity. Finally,
we compute the sum of the differences for k = +1 and −1 at the interface and normalize
by group to summarize total complementarity change for positive and negative charge.
By interpreting volume changes as changes in electrostatic field at the protein-protein
interface, the resulting sum of interface intersection illustrates changes in electrostatic
complementarity due to mutation.

We compared electrostatic intersection volume differences computed by VASP-E
for the two groups, “Bond Broken” and “Bond Intact”, to assess DiffBond predictions
(Figure 5). We found that the intersection difference was larger for when a bond is broken
than when a bond is intact, especially for Barnase-Barstar. A large change in intersection
difference suggests that electrostatic complementarity is lower since wildtype electrostatic
complementarity is much larger than mutation electrostatic complementarity. Rap1a-raf
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(1C1Y) showed slight overlap between intersection difference at k = +5/−5 of “Bond Broken”
and “Bond Intact” for both ionic bonds and salt bridges. However, for predicting volume
difference of ionic bond for the same Rap1a-raf groups there is a significant difference,
contrasting with ∆∆G results. For all other groups, DiffBond prediction shows significant
differences in volume change for broken bonds compared to intact bonds. Although
hydrogen bonds are important bonds in protein stability, nullification does not remove
pre-existing hydrogen atoms from the side chain, only ignores the charges that exist. Since
hydrogen bonds are unchanged before and after nullification, we exclude hydrogen bond
comparisons when examining electrostatic complementarity with VASP-E. Statistics of
interface intersection volume changes for all groups are included in Supplemental Table S3.

4. Discussion

We present DiffBond, a novel method for identifying and classifying intermolecular
bonds in protein-protein interactions. DiffBond was designed to gather structural and
electrostatic information about bond formation in a biological environment through ex-
haustive computational analysis of a protein complex to predict influential amino acids for
binding. The prediction of influential amino acids towards guiding mutational experiments
is relevant in fields like protein engineering and drug design. By identifying key residues
for binding, we can form hypotheses about the mechanism by which proteins interact,
whether through key electrostatic bonds like ionic bonds, salt bridges, and hydrogen bonds
or through other processes involving steric hindrance, electrostatic fields, hydrophobic
interactions. This knowledge is key to deciding mutations that modify protein binding
specificity towards a desired effect, whether towards increasing the medicinal effects or
reducing harmful effects of target proteins.

Identification and classification of salt bridges, ionic bonds, and hydrogen bonds using
DiffBond is a novel approach that demonstrated promising capabilities through validation
on a small curated data set. DiffBond predicted ionic bond and hydrogen bond formation
with 87.5% precision for both ionic bond and hydrogen bond predictions and 82.4% and
74.5% recall for ionic bond and hydrogen bond predictions respectively. Similarly, salt
bridge prediction maintained 85.7% precision, and a lower recall than ionic and hydrogen
bonds at 50%. Although 50% recall of intermolecular salt bridges indicates that half of the
verified salt bridges in literature were not predicted by DiffBond, precision for all three
bonds, which was a conservative estimate of true precision, shows that DiffBond rarely
predicts a bond to exist when it does not. Overall, DiffBond was effective in correctly
predicting the presence of 55 bonds and only incorrectly predicting 8. As a bond prediction
tool that can be incorporated into an Analytic Ensemble, strong performance in precision
is preferable over performance in recall, so that incorrect predictions infrequently waste
analytical effort. Incorporation of DiffBond into an Analytic Ensemble will allow other
related methods to add interaction information towards improving recall.

On validation with experimentally determined binding affinities from SKEMPI, Diff-
Bond predicted whether a bond breaks or stays intact due to mutation. We found that
this prediction was significantly associated with changes in binding affinity using ∆∆G
(Figure 4) and with changes in electrostatic complementarity (Figure 5) at the interface
of protein-protein interaction. This is especially true for ionic bonds, which clearly dif-
ferentiated protein stability and electrostatic complementarity based on predictions for
almost all groups examined. Salt bridges had lower significance when differentiating ∆∆G
values by prediction, but still had weak correlations for higher ∆∆G and lower electro-
static complementarity when bonds are broken, indicating decreased binding affinity and
decreased stability of the protein complex. Hydrogen bonds are very weakly correlated
to ∆∆G, but our concern with hydrogen bonds is more so its influence as part of a salt
bridge in affecting protein-protein interactions rather than as an independent bond, and we
found that salt bridges correspond much more with ∆∆G and electrostatic complementarity
changes. Overall, DiffBond predicted higher ∆∆G for a broken bond compared to a bond
that remained intact for Barnase-Barstar and Rap1a-raf across all ionic bond and salt bridge
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mutations, demonstrating the ability of DiffBond to associate intermolecular bonds to
increased binding specificity.

DiffBond, as a bond prediction method, is most applicable as a preliminary search
for significant residues in a protein structural model or as part of an Analytic Ensemble
approach. Mutational experiments rely on precise algorithms for identifying significant
residues to guide mutation testing; experiments are often limited in number of mutations
that can be tested and so precise prediction methods can help reduce unproductive testing.
In addition, structural biologists can benefit greatly from transparent implementation and
explainable results. DiffBond was implemented based on the chemical definition of bonds
formed between the 20 canonical amino acids at biological pH, and predictions are defined
simply as whether the software identified intermolecular bonds in the crystal structure
based on the bond definition. As a result, DiffBond produces explainable results which
allow us to make specific inferences about the biochemical mechanism for protein binding
and specificity. This design also synergizes with other approaches to analyzing protein
binding. DiffBond used in conjunction with other methods in an Analytic Ensemble that
identify influential electrostatic interactions may provide a more comprehensive summary
of the common electrostatic interactions across the binding interface in protein-protein
interactions. Further extension of DiffBond in the direction of Analytic Ensemble work and
generalizability to molecules other than proteins at biological pH is a topic of interest.

The capability to computationally generate biochemical explanations for the role that
a specific mechanism plays in binding is novel to the analytic ensemble strategy. In contrast
to the analytic ensemble approach, conventional methods like molecular docking predict
structure of proteins and complexes, but do not make inferences on mechanisms involved
in binding. In such cases, inferences about influential mechanisms require human experts
to interpret results. These capabilities point to new applications in the analysis of protein
structure and in interpreting the biochemical mechanisms in predicted structures, thereby
enhancing the design of mutational experiments aimed to elucidate protein structure and
the comprehensibility of computational software outputs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196178/s1, Table S1: Bond predictions and validation
by literature. [20–22,24,26,27,30,33–36]; Table S2: Free energy change from DiffBond prediction of
bond removal compared to DiffBond prediction of no bond removal; Table S3: Change in interface
intersection volume calculated by VASP-E for each group of DiffBond prediction.
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