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Alcohol dependence (AD) is a condition of alcohol use disorder in which the drinkers
frequently develop emotional symptoms associated with a continuous alcohol intake. AD
characterized by metabolic disturbances can be quantitatively analyzed by metabolomics
to identify the alterations in metabolic pathways. This study aimed to: i) compare the
plasma metabolic profiling between healthy and AD-diagnosed individuals to reveal the
altered metabolic profiles in AD, and ii) identify potential biological correlates of alcohol-
dependent inpatients based on metabolomics and interpretable machine learning. Plasma
samples were obtained from healthy (n � 42) and AD-diagnosed individuals (n � 43). The
plasma metabolic differences between them were investigated using liquid
chromatography-tandem mass spectrometry (AB SCIEX

®
QTRAP 4500 system) in

different electrospray ionization modes with scheduled multiple reaction monitoring
scans. In total, 59 and 52 compounds were semi-quantitatively measured in positive
and negative ionization modes, respectively. In addition, 39 metabolites were identified as
important variables to contribute to the classifications using an orthogonal partial least
squares-discriminant analysis (OPLS-DA) (VIP > 1) and also significantly different between
healthy and AD-diagnosed individuals using univariate analysis (p-value < 0.05 and false
discovery rate < 0.05). Among the identified metabolites, indole-3-carboxylic acid,
quinolinic acid, hydroxy-tryptophan, and serotonin were involved in the tryptophan
metabolism along the indole, kynurenine, and serotonin pathways. Metabolic pathway
analysis revealed significant changes or imbalances in alanine, aspartate, glutamate
metabolism, which was possibly the main altered pathway related to AD. Tryptophan
metabolism interactively influenced other metabolic pathways, such as nicotinate and
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nicotinamide metabolism. Furthermore, among the OPLS-DA-identified metabolites,
normetanephrine and ascorbic acid were demonstrated as suitable biological
correlates of AD inpatients from our model using an interpretable, supervised decision
tree classifier algorithm. These findings indicate that the discriminatory metabolic profiles
between healthy and AD-diagnosed individuals may benefit researchers in illustrating the
underlying molecular mechanisms of AD. This study also highlights the approach of
combining metabolomics and interpretable machine learning as a valuable tool to uncover
potential biological correlates. Future studies should focus on the global analysis of the
possible roles of these differential metabolites and disordered metabolic pathways in the
pathophysiology of AD.

Keywords: alcohol dependence, metabolic profiling, biological correlate, metabolomics, machine learning,
tryptophan metabolism, orthogonal partial least squares-discriminant analysis, metabolic pathway

INTRODUCTION

Alcohol use disorder (AUD), as described in the fifth edition of
the Diagnostic and Statistical Manual of Mental Disorders
(DSM–5), is a chronic, relapsing brain disorder including
alcohol abuse and alcohol dependence (AD) (Takahashi et al.,
2017). AUD presents a potential public health crisis worldwide.
According to the global status report on alcohol and health 2018
(World Health Organization, 2018), about three million deaths
worldwide and 132.6 million disability-adjusted life years
(DALYs) were attributable to the harmful use of alcohol in
2016. AD, defined in the International Classification of
Diseases (ICD–11), is “a disorder of regulation of alcohol use
arising from repeated or continuous use of alcohol” (Saunders
et al., 2019). Additionally, there is good concordance in the
diagnosis of AD between ICD-10, ICD-11, and DSM-IV (Lago
et al., 2016). AD—also known as alcoholism or alcohol
addiction—is characterized by compulsive alcohol seeking and
taking behaviors, a loss of self-control in limiting intake, and the
emergence of an alcohol withdrawal syndrome (including
anxiety, agitation, delirium, nightmares, and insomnia) in the
absence of the drug (Hall and Zador, 1997; Koob and Le Moal,
1997; Roberto et al., 2021). AD can also induce psychiatric
comorbidity, including depressive and anxiety disorders, and,
conversely, the comorbid psychiatric disorders can aggravate the
severity of alcohol use patterns (Fein, 2015).

The pathophysiological mechanisms of AD have not been fully
elucidated. Considerable evidence has suggested the disruption in
the mesolimbic dopamine system (an essential part of the reward
systems) or the alcohol-associated changes in the hypothalamic-
pituitary-adrenal (HPA)-axis in AD (Dai et al., 2007;
Hillemacher, 2011; Engel and Jerlhag, 2014). Other central
nervous systems (e.g., endogenous opioid, the GABAergic,
glutamatergic, and serotonergic) have also been described
(Hillemacher, 2011). Novel evidence, such as genetic and
epigenetic alterations and the gut-to-brain interactions in AD,
has recently emerged (D’Addario et al., 2017; Leclercq et al., 2014;
Meng et al., 2019). Alcohol could affect many neurotransmitters
and modulators within the brain. For example, tryptophan, an
extensively studied amino acid related to alcohol and alcoholism,
plays an important role in regulating neuropsychiatric disorders

and commonly serves as a precursor for the biosynthesis of
multiple biologically or neurologically active substances.
Fortunately, the metabolomics approach gives us a chance to
study the metabolic alterations of AD. Therefore, this approach
provides new insights into the physiological alterations in AD.

Metabolomics is a high-throughput tool for quantitatively
analyzing the small-molecule metabolites in biospecimens such
as blood, tissue, urine, or saliva (Cheng et al., 2018). It has been
increasingly applied to discovering potential biomarkers and
related metabolic pathways (Johnson et al., 2016), the
investigations of polypharmacological mechanisms of drug
combination therapy (Li et al., 2021a), and the host response
to the drug therapy (Wang et al., 2018; Li et al., 2020), and
explorations of complicated pathophysiologic mechanisms of
diseases (Johnson et al., 2016; Wu et al., 2020). Generally, the
widely targeted metabolomics method can achieve accurate
quantification of targeted metabolites by defining ion-pairs
information derived from untargeted metabolomics or
obtained from relevant references and existing mass spectrum
public databases (Heikkinen et al., 2019; Zhou et al., 2021).
Recently, several human metabolomics studies have been
reported to investigate the metabolic profiles associated with
unhealthy alcohol consumption (such as AUD and AD) based
on untargeted/targeted mass spectrometry (MS) and proton
nuclear magnetic resonance (1H-NMR) spectroscopy
approaches (Obianyo et al., 2015; Mostafa et al., 2016; Hinton
et al., 2017; Mostafa et al., 2017; Irwin et al., 2018). Particularly,
Mittal and Dabur (Mittal and Dabur, 2015) reported the urine
metabolic signature of chronic AD before and after treatment
with Tinospora cordifolia aqueous extract through the targeted
and untargeted liquid chromatography-tandem mass
spectrometry (LC-MS/MS) method. However, few studies
about the alcohol-associated metabolism changes in the blood
plasma in AD patients referring to the use of MS-based
metabolomics tools have been reported. Our study, therefore,
fills this gap.

Machine learning, as a field of artificial intelligence (AI), has
achieved rapid progress in recent years and is gradually emerging
in the field of metabolomics due to a diverse spectrum of
algorithms, such as the artificial neural network (ANN),
random forest (RF), support vector machine (SVM), and
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genetic algorithms (Liebal et al., 2020). However, as an early
developed machine learning method, ANN and other
subsequently developed deep learning algorithms are quite
uninterpretable and criticized as “black boxes” (Krittanawong
et al., 2019), which limited the applicability of many AI-based
approaches to medicine. The interpretable “glass-box” machine
learning approaches (e.g., linear regression, logistic regression,
and decision trees) make AI trustworthy through human-friendly
explanations (Rai, 2020). For example, the tree-based decision
tree algorithm is interpretable by splitting each feature based on
certain cut-off values, thus telling us how the decision is taken
starting from the tree’s root node to its leaf nodes at the bottom.
Notably, the RF algorithm, an ensemble learning method using
the bagging technique, combines multiple decision tree models,
thus reducing the variance and greatly boosting the performance
(Yaman and Subasi, 2019). However, random forests are typically
treated as “black-box”models losing a degree of interpretability as
their decisions may be opaque (Borstelmann, 2020). Decision
tree-based machine learning has been an emerging approach in
metabolomics for disease discrimination and biomarker
detection (Allalou et al., 2016; Shao et al., 2017; Murata et al.,
2019). In addition, comparing with linear regression and logistic
regression models, decision trees are more successful in
processing nonlinear relationships between input features and
outcomes, particularly suitable for these situations existing in
metabolomics due to the nonlinear and dynamic disease states
(Zhu et al., 2021c).

This study aimed to reveal the plasmametabolic profiles of AD
patients and identified the significantly distinctive metabolites for
AD discrimination using a widely targeted metabolomics method
based on LC-MS/MS. We also investigated the significantly
enriched metabolic pathways involved in AD, together with
the distinctive metabolites detected in those pathways. Further,
as an interpretable supervised machine learning algorithm, a
decision tree classifier was built for AD discrimination and
identifying the most important distinctive metabolites, being
regarded as potential biological correlates. Notably, we mainly
focused on the tryptophan metabolism regulation or abnormality
in AD. All the findings of our study in this field may benefit
researchers by illustrating the underlying molecular mechanisms
of AD.

MATERIALS AND METHODS

Subjects
A total of 85 individuals, between 18 and 65 years of age, were
recruited. The participants comprised 43 AD patients (AD group)
and 42 healthy controls (HC group). AD patients were recruited
from the Affiliated Brain Hospital of Guangzhou Medical
University and healthy controls were enrolled through
advertisements. The patients were enrolled in the AD group if
they were clinically diagnosed as AD according to the DSM–IV
diagnostic criteria and had the Clinical Institute Withdrawal
Assessment for Alcohol, Revised (CIWA-Ar) scores less than
ten. The exclusion criteria used for the AD group included: 1)
other mental disorders which met DSM-IV-TR criteria

(excluding nicotine dependence and AD); 2) a history of
psychoactive substances (excluding alcohol and nicotine) use;
3) serious comorbid somatic diseases (e.g., heart failure and
severe liver and kidney diseases); 4) a history of neurological
disorders (e.g., epilepsy, neurosurgery, and severe head trauma
with or without loss of consciousness); 5) pregnancy. Healthy
controls had no current or history of mental disorders, no familial
history of mental disorders, and no severe physical disease.
Exclusion criteria for healthy controls were: 1) any known
brain organic diseases; 2) a history of head trauma with loss
of consciousness; 3) any unstable physical disease. All subjects
recruited had not drunk alcohol since they were admitted to the
hospital, and were screened for substance use other than alcohol
and tobacco through urine drug testing. The study was conducted
in compliance with the guidelines of the Helsinki Declaration and
was approved by the independent Ethics Committee of the
Affiliated Brain Hospital of Guangzhou Medical University
(ethics number: 2019003); all participants provided informed
consent.

Chemicals, Reagents, and Equipment
Methanol, acetonitrile, ammonium acetate (NH4Ac), and
aqueous ammonia (NH4OH) were all high-performance liquid
chromatography (HPLC)-grade and were purchased from
Thermo Fisher Scientific (Waltham, MA, United States). All
the experiments were conducted on an ultra-high performance
liquid chromatography (UHPLC) system including two
Shimadzu LC-30AD pumps, a SIL-30AC auto-sampler, and a
CTO-20AC column oven (Shimadzu Corporation, Kyoto, Japan),
and coupled with QTRAP 4500 mass spectrometer (AB SCIEX,
CA, United States). The PLRP-S column (3.0 µm, 150 mm ×
2.1 mm) was purchased from Agilent Technologies (Santa Clara,
CA, United States).

Plasma Sample Collection and Sample
Preparation
Metabolomic analysis was conducted in plasma samples,
which were collected from all the participants. The plasma
was separated from the peripheral blood samples in EDTA
tubes by centrifuging at 3,000 rpm for 10 min at 4°C and was
immediately stored at −80°C until future metabolomics
analysis to minimize the metabolic degradation process.
The plasma samples (150 μl) were treated with a certain
amount of ice-cold methanol (stored at −80°C for
approximately 5 h). After vortexing for 2 min, the pooled
samples were stored at −80°C for 1 h and centrifuged future at
14,000 × g for 10 min at 4°C. The supernatant was transferred
and then concentrated to dryness under a vacuum. Before the
metabolomics analysis, a 150 μl mixed solution of
acetonitrile/H2O (1:1, v/v) taken as the reconstitution
solution was added to the dry extract samples. The pooled
quality control (QC) sample was prepared by mixing an equal
aliquot (40 μl) of each plasma sample to verify the
methodology of the metabolomics analysis. One QC
sample was inserted at every ten samples in an analysis
batch consisting of 11 QC samples in total.
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LC-MS/MS-Based Metabolomics Method
Chromatographic separation was performed on an Agilent
PLRP-S column using a flow rate of 0.35 ml/min. The
temperatures of the autosampler and column were kept at 4
and 40°C, respectively. The mobile phase A consisted of H2O/
acetonitrile (95:5, v/v) with 20 mmol/l NH4AC and 20 mmol/l
NH4OH (pH � 9.0), and the mobile phase B was acetonitrile.
The total elution time was 15 min for the gradient program, of
which the details were as follows: 2% B was held at the initial
0.2 min, then linearly increased to 90% B from 0.2 to 9 min,
next held 90% B for 2 min, and finally returned to 2% B in
0.1 min, following by equilibration at 2% B for 3.9 min.

In this study, we acquired data of metabolites based on the
defined multiple reaction monitoring (MRM) ion-pairs of
interest collected from related references published elsewhere
(Moriarty et al., 2011; Zhu et al., 2011; Yuan et al., 2012; Fuertig
et al., 2016; Tudela et al., 2016; Takada et al., 2018; Wang et al.,
2019), the Human Metabolome Database (HMDB, https://www.
hmdb.ca), and AB SCIEX™ (refer to: https://sciex.com/content/
dam/SCIEX/pdf/tech-notes/life-science-research/metabolomics/
Targeted-Mx-method_RUO-MKT-02-13259-A.pdf). The
electrospray ionization (ESI) source was operated in the
positive ion (ESI+) and negative ion (ESI−) modes,
respectively, with the following main mass spectrometric
parameters: capillary temperature, 475°C (ESI+ and ESI−
modes); ion spray voltage, 5500 V (ESI+ mode) and −4,500 V
(ESI− mode); collision gas, “medium” (ESI+ and ESI− modes);
curtain gas, 25 psi (ESI+ and ESI− modes); ion source gas1 and
gas2, 45 psi (ESI+ and ESI− modes). The reconstituted
supernatants were injected twice for both ESI+ and ESI−
mode analyses, and the injection volume was 5 μl for all samples.

LC-MS/MS Data Processing and
Bioinformatic Analysis
Data processing, such as integrating the peaks’ areas, was
performed using the MS quantitation software—MultiQuant™
Software (version 3.0.3, AB SCIEX, CA, United States). The
metabolomic data analysis included heatmap clustering and
multivariate statistical analysis methods such as principal
component analysis (PCA) and orthogonal partial least
squares discriminant analysis (OPLS-DA). The data analysis
and interpretation, such as metabolic pathway analysis, were
conducted based on the MetaboAnalyst (V5.0) platform
(https://www.metaboanalyst.ca) (Xia et al., 2009; Pang et al.,
2021). The comparison of relative levels of metabolites
between the two groups was displayed in a heatmap with
hierarchical clustering. The variable influence on projection
(VIP) values presents the overall influence of each x-variable
in the OPLS-DA model on y-variables. The two groups’
differential metabolites were identified using a statistically
significant threshold value of VIP > 1 (Q-value < 0.05)
obtained from the OPLS-DA model and univariate analysis
(Lee et al., 2020; Li et al., 2021b). The information of the
identified distinctive metabolites was then input to the
MetaboAnalyst platform to obtain the significantly perturbed
metabolic pathways related to AD.

Discrimination of Alcohol-Dependent
Inpatients Using Decision Tree Classifier
The machine learning dataset consisted of the entire samples
from AD and HC groups (i.e., labels). The distinctive
metabolites obtained from the OPLS-DA model were
treated as features for decision tree construction to obtain
credible results. Before analysis, the peak areas of those
metabolites were rescaled into the range of 0–1 using min-
max normalization to minimize the influence of changes in the
response of LC-MS/MS. The formula for a min-max
normalization is: xnew � (x–xmin)/(xmax–xmin). Subsequently,
80% of the data (i.e., 68 samples) were randomly selected as the
“training set” to develop the decision tree classifier model; the
remaining 20% (i.e., 17 samples) went into the “test set” for
model validation. Based on the training set, the feature
importance scores provided by the “feature_importance_”
attribute of the decision tree were used for feature selection;
thereafter, the optimal parameters of our model were filtered
by hyperparameter optimization using the tool of ten-fold
cross-validation in GridSearchCV. The evaluation metrics for
the developed model included confusion matrix, accuracy,
precision, sensitivity (also known as recall), f1 score, the
receiver operating characteristic (ROC) curve plot, and the
area under the curve (AUC). Finally, an interpretable decision
tree diagram and a decision boundary were created to visualize
the fitted model.

All the data analyses, model construction, model evaluation,
and visualizations were performed using Python (version 3.8.5,
https://www.python.org) and related packages, including the
scikit-learn package (version 0.23.2, https://scikit-learn.org/
stable/index.html), seaborn package (version 0.11.0, https://
seaborn.pydata.org), pandas package (version 1.1.3, https://
pandas.pydata.org), NumPy package (version 1.19.2, https://
numpy.org), matplotlib package (version 3.3.2, https://
matplotlib.org), and scipy package (version 1.5.2, https://www.
scipy.org). This was based on the Jupyter Notebook (version 6.1.4,
https://jupyter.org), launching from the Anaconda Navigator
(version 4.9.2, https://www.anaconda.com, Anaconda Inc.,
Austin, TX, United States).

RESULTS

Clinical Characteristics of Subjects
The basic characteristics of the participants are listed in
Table 1. There was no statistically significant difference in
age among the two groups (p � 0.604). Though only male
subjects were enrolled in this study, the two groups were
gender- and age-matched. Nevertheless, the smoking and
alcohol intake frequencies between the two groups were
significantly different (χ2 � 9.027, p � 0.011 and χ2 �
60.262, p < 0.001, respectively). As for the AD group, the
interval between last alcohol intake and blood draw was
(7.51 ± 5.68) days, and 25 AD patients had low alcohol
withdrawal symptoms with the CIWA-Ar scores of one to
seven. The most prescribed drugs among the patients before
their blood sampling were ranked as follows: fat- and water-
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soluble vitamins (86.05%), KCl (76.74%), oxazepam
(62.79%), vitamin B1 (55.81%), diazepam (53.49%),
trivitamins B (44.19%), and omeprazole (37.21%),
according to the number of patients taking medications.

Method Validation Using QC Samples
The stability of the analytical method has been investigated
by using the pooled QC samples before analysis. To develop
the metabolomics method, 163 ion-pairs corresponding to
160 compounds of interest were selected. Out of these, 59 ion-
pairs (i.e., 59 compounds) were included in the ESI+ mode
and 52 ion-pairs (i.e., 52 compounds) in the ESI− mode for
semi-quantitative detection, respectively, after manually
retaining the only metabolite ion-pair with the best peak

performance and removing the compounds with poor peak
shape or low response in the peak area (Supplementary
Table S1). As a measure of variability, the coefficients of
variance (CV) (also known as relative standard deviations) of
all these 111 semi-quantitatively measured metabolites’ peak
areas in the QC samples were calculated with values of less
than 25% (median value, 14.14%), indicating that the
metabolomics method was stable and repeatable, and
fulfilled the requirements of subsequent metabolomic
detection (Solanki et al., 2020). The distribution of CV
values is shown in Figure 1A. Figure 1B presents that all
the 11 QC samples were tightly located in the PCA score plot,
further verifying the excellent repeatability of our analytical
method.

TABLE 1 | The demographic and clinical information of subjects.

Items AD group (n = 43) HC group (n = 42)

Gender 43 male subjects; no female subject 42 male subjects; no female subject
Age (years)a

Median 44 47
Minimum–Maximum 24–58 31–65

CIWA-Ar score
Median 1 NA
Minimum–Maximum 0–7 NA

Alcohol intake (n, %)b

Almost everyday 36 (83.72) 2 (4.76)
One to three times per week 4 (9.30) 6 (14.29)
Two to four times per month 1 (2.33) 0 (0)
One time or less per month 2 (4.65) 34 (80.95)

Smoking (n, %)b

Smokers 41 (95.35) 30 (71.43)
Non-smokers 2 (4.65) 10 (23.81)
Ex-smokers 0 (0) 2 (4.76)

aMann-Whitney U test, p > 0.05.
bChi-square test, p < 0.05.
AD, alcohol dependence patients; HC, healthy controls; CIWA-Ar, the Clinical Institute Withdrawal Assessment for Alcohol, Revised; NA, not available.

FIGURE 1 | (A) The distribution of coefficient of variance (CV) in different electrospray ionization modes; (B) The principal component analysis (PCA) score plot with
semi-transparent confidence intervals of the healthy controls (HC group) and alcohol dependence patients (AD group). Note. QC, quality control.
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Identification of Differential Metabolites
The OPLS-DA model was used to compare the metabolic
profiling differences between the AD group and the HC
group. As shown in Figure 2A, the horizontal component
of the score plot of the OPLS-DA model displayed obvious
discrimination among the HC and AD groups. In contrast,
there existed a certain variation within the AD group as
captured by the vertical dimension. A 100-iteration
permutation test was conducted for validation of the
classification performance of the OPLS-DA model with the
fit metrics values of R2Y � 0.887 (p < 0.01) and Q2 � 0.811 (p <
0.01), indicating that the computed OPLS-DA model was
reliable and robust due to avoiding overfitting (Figure 2B)
(Westerhuis et al., 2008; Triba et al., 2015; Mo et al., 2021).

After screening with VIP > 1 and Q-value < 0.05
[i.e., p-value < 0.05 of Student’s t-test after false discovery
rate (FDR) adjusting, see Supplementary Table S2], 39
potential differential metabolites were identified,
containing 19 metabolites in ESI+ mode and 20
metabolites in ESI− mode. The rank of VIP score of each
abovementioned metabolite is presented in Figure 3A.
Among the differential metabolites related to AD, indole-
3-carboxylic acid, quinolinic acid, hydroxy-tryptophan, and
serotonin were of our interest, involving in the tryptophan
metabolism along the indole, kynurenine, and serotonin
pathways. Nine differential metabolites were significantly
downregulated in AD, including normetanephrine, taurine,
quinolinic acid, leucine, pipecolic acid, D-glucose,
sedoheptulose 1,7-bisphosphate, udP, and fructose-1,6-
bisphosphate; whereas the remaining were significantly
upregulated. There was a noticeable metabolite difference
between the two groups, visualizing in the hierarchical
clustering heatmap of these identified significantly
differential metabolites (Figure 3B). Notably, volcano plot
analysis revealed that a total of 30 differential metabolites
obtained fold change (FC) values above two (e.g., 4-pyridoxic

acid, dihydroorotate, formiminoglutamic acid,
N-acetylornithine, and ascorbic acid), highlighting the
levels of which were significantly upregulated in the AD
group compared with those in the HC group (Figure 3C).
A hierarchical clustering heatmap analyzed by Pearson’s
correlation coefficient was also drawn to display the
correlations among these differential metabolites in the
AD group (Figure 3D).

Metabolic Pathway Analysis
Based on the 39 identified metabolites, pathway enrichment
analysis was conducted using the online analysis
platform—MetaboAnalyst. As shown in Figure 4 and
Table 2, five metabolic pathways were significantly enriched
(p-value < 0.05). However, only the alanine, aspartate and
glutamate metabolism was possibly the main disturbed
metabolic pathway related to AD with an impact value >0.1
(Arima et al., 2020; Zhao et al., 2020; Sangpong et al., 2021).
Notably, tryptophan metabolism had also been detected, but
did not reach statistical significance (p � 0.56799, impact value
� 0.10493).

Classifier Model Construction and
Evaluation for Discrimination of
Alcohol-Dependent Inpatients
Figure 5A shows the schematic workflow for the decision tree
classifier model construction and evaluation. The relative
feature importance of the 39 differential metabolites was
ranked as follows: normetanephrine (1.0000), ascorbic acid
(0.3427), and the remaining metabolites (0.0000). Thus, two
significantly distinctive metabolites (i.e., normetanephrine and
ascorbic acid), were added as features in the model. The
normalized peak areas of these metabolites appeared to be
approximately a normal distribution of values ranging from 0
to 1 (Figure 5B). The maximum peak areas of

FIGURE 2 | (A) The orthogonal partial least squares discriminant analysis (OPLS-DA) score plot with semi-transparent confidence intervals of the healthy controls
(HC group) and alcohol dependence patients (AD group); (B) The permutation test with permutation number of 100 for the OPLS-DA model.
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normetanephrine and ascorbic acid were 8.594080 × 106 and
6.695045 × 106, respectively, and the minimum peak areas
were 7.652522 × 103 and 1.307590 × 106, respectively.
Alternatively, as depicted in Figure 5C, a correlation
coefficient of −0.019 indicated no obvious multicollinearity
between normetanephrine and ascorbic acid. Figure 5D
presents the process and script of ten-fold cross-validated
grid search, yielding the main optimal parameters, as
follows: 1) “criterion”: “gini”; 2) “max_depth”: 2; 3)

“min_samples_leaf”: 1; and 4) “min_samples_split”: 2. The
discriminant performance of our model in the test set was
evaluated by a critical metric, called the confusion matrix
(Figure 5E), deriving from where the following
classification evaluation metrics were as follows: accuracy
(0.941), precision (1.000), sensitivity/recall (0.857), and f1
score (0.923) (Figure 5F). Another evaluation metric—the
ROC curve—is presented in Figure 5G and yielded an AUC
value of 0.929. The high f1 score and AUC values in the test set

FIGURE 3 | (A) The variable influence on projection (VIP) score plot of each distinctive metabolite (VIP > 1 and Q-value < 0.05) between the healthy controls (HC
group) and alcohol dependence patients (AD group). The color in the block represents the up-regulation (red) or down-regulation (blue) of metabolites. (B) A hierarchical
clustering heatmap of the 39 identified significantly differential metabolites (represented by rows) among the HC and AD samples (represented by columns). The color in
the map displays the relative abundance of metabolites using normalized intensity data. (C) The volcano plot is based on fold change (FC) (AD group vs.HC group)
and −log10(p) values, highlighting 30 differential metabolites with FC values above two. (D) A hierarchical clustering heatmap of the correlations among the differential
metabolites in the AD group based on Pearson’s correlation coefficient.
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suggested that the developed model obtained a good classifier
performance in terms of relying only on two metabolites that
can also be called biological correlates. The decision tree
structure fitted on the training set is visualized in
Figure 6A. Using the Gini impurity of the features as the
splitting criteria, normetanephrine was taken as the root node,
from where the tree of depth two started. A decision boundary
of the fitted decision tree model was also visualized to identify
the decision region signifying the two classes in the two-
dimensional feature space (Figure 6B).

DISCUSSION

This is the first study to explore the plasma metabolic profiling
and potential biological correlates of AD through the approach of
combining metabolomics and interpretable machine learning.
Herein, we have applied a high-throughput LC-MS/MS-based
metabolomics method to discover 39 differential metabolites
between AD and HC individuals and a significantly altered
metabolic pathway most closely related to AD (i.e., alanine,
aspartate and glutamate metabolism). In addition,

FIGURE 4 | Metabolic pathway enrichment analysis based on the identified distinctive metabolites. Each bubble in the plot represents a metabolic pathway. The
size of the bubble indicates the influence of this pathway; the larger the size, the greater the impact values. The color of the bubble indicates the different levels of −log10(p)
values; the darker the color, the more significant the metabolic pathway. The Cxxxxx symbols in the nodes are Kyoto Encyclopedia of Genes and Genomes (KEGG,
available at: https://www.kegg.jp/kegg/) database C numbers, serving as identifiers for metabolites in the above pathways (red blocks represent the detected
metabolites; blue blocks represent the undetected metabolites). Note. a, alanine, aspartate and glutamate metabolism; b, histidine metabolism; c, arginine biosynthesis;
d, aminoacyl-tRNA biosynthesis; e, nicotinate and nicotinamide metabolism.

TABLE 2 | Significantly enriched pathways related to alcohol dependence (AD) based on 39 screened metabolites.

Pathway name Hits/Total The detected metabolite (KEGG identifier) p-value –log10(p) value FDR Impact

Alanine, aspartate and glutamate metabolism 3/28 L-Aspartic acid (C00049) 0.016922 1.7715 0.35537 0.27164
Asparagine (C00152)
Oxoglutarate (C00026)

Histidine metabolism 3/16 L-Aspartic acid (C00049) 0.0034037 2.4681 0.14295 0.04918
Formiminoglutamic acid (C00439)
Imidazoleacetic acid (C02835)

Arginine biosynthesis 3/14 L-Aspartic acid (C00049); Oxoglutarate (C00026) 0.0022734 2.6433 0.14295 0
N-Acetylornithine (C00437)

Aminoacyl-tRNA biosynthesis 4/48 Asparagine (C00152) 0.013778 1.8608 0.35537 0
Glycine (C00037); L-Aspartic acid (C00049)
Leucine (C00123)

Nicotinate and nicotinamide metabolism 2/15 L-Aspartic acid (C00049); Quinolinic acid (C03722) 0.034579 1.4612 0.58093 0

Hits, the number of the differential metabolites detected in a given metabolic pathway; Total, the number of all metabolites in a given metabolic pathway; KEGG, Kyoto Encyclopedia of
Genes and Genomes; FDR, false discovery rate.
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normetanephrine and ascorbic acid were demonstrated as
suitable biological correlates of AD patients based on an
interpretable decision tree classifier model.

Ascorbic acid (i.e., vitamin C) was among the differential
metabolites related to AD, identified with the highest VIP value in
our study. Generally, vitamin C deficiency is common in patients
with unhealthy alcohol consumption such as AUD (Lim et al.,
2018; Marik and Liggett, 2019), possibly in the light of the

intestinal malabsorption and insufficient hepatic
transformation of vitamins caused by ethanol-induced
enterocyte toxicity and hepatotoxicity (Majumdar et al., 1981;
Lim et al., 2018). Interestingly, we obtained the opposite result;
that is, ascorbic acid was upregulated in AD patients. A possible
explanation is that some AD patients may have received dietary
or short-term intravenous supplementation with vitamin C.
Vitamin C can afford protection against toxic accumulation of

FIGURE 5 | (A) The flowchart of the construction of decision tree classifier model; (B) The scatter plot of normetanephrine versus ascorbic acid, along with a layered
kernel density estimate for the marginal plots along the diagonal; (C) A heatmap visualization of the overall correlations between the groups and the two features based
on the Spearman’s correlation coefficient; (D) Implementation of grid search with ten-fold cross-validation on the training set; (E) The confusion matrix visualization (a 2 ×
2 table) summarizing the prediction results of our classificationmodel. The lower right, upper left, upper right, and lower left tables refer to the True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN), respectively. The other metrics derived from the confusionmatrix are as follows: accuracy (calculated as [TP +
TN]/[TP + TN + FP + FN]), precision (calculated as TP/[TP + FP]), sensitivity/recall (calculated as TP/[TP + FN]), and f1 score (calculated as 2 × precision × recall/[precision
+ recall]). (F) The radar chart displaying evaluation metrics, including accuracy, precision, recall, f1 score, and the area under the curve (AUC); (G) The receiver operating
characteristic (ROC) curve of the decision tree classifier model for the test set with the AUC value of 0.929.
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acetaldehyde, thereby reducing endothelial dysfunction,
hepatotoxicity, and the possible biochemical basis for
addiction (Hipólito et al., 2015; Lim et al., 2018). 4-Pyridoxic
acid, the catabolic product of vitamin B6, was another differential
metabolite related to AD, identified with the highest FC value in
this study. A previous study has demonstrated the significant
correlation between inadequate vitamin B6 intake and the 24-h 4-
pyridoxic acid excretions of 0.15 mg or less (Lewis and Nunn,
1977). Additionally, acetaldehyde can act as a responsible agent
accelerating the pyridoxal 5′-phosphate (a metabolically active
form of vitamin B6) degradation into 4-pyridoxic acid (Vech
et al., 1975). This partly explained the upregulated level of 4-
pyridoxic acid in AD in our study, thus indicating a possible
vitamin B6 deficiency status, which may be a key reason for AD
(Hoyumpa, 1986). Moreover, considerable evidence implicates
alcohol-induced gut microbiome dysbiosis and mucosal immune
system disturbances (Bode and Bode, 2003; Qamar et al., 2019).
Gut microbiota also participates in synthesizing constituents of
vitamin B (e.g., vitamin B6 and B12), which are essential to many
enzymatic reactions such as those in the tryptophan/kynurenine
pathway (Ramakrishna, 2013; Więdłocha et al., 2021). These
findings indicated that gut microbiota affected by alcohol
might influence vitamin B levels, thus affecting tryptophan
metabolism regulation.

As a sole precursor of serotonin, tryptophan—an essential
amino acid—participates the serotonin biosynthesis, which plays
a crucial role in modulating the central neurotransmission.
Tryptophan metabolism involves the indole pathway in
bacteria and the serotonin and kynurenine pathways in
humans and other mammals (Modoux et al., 2021). The
kynurenine pathway accounts for above 95% of the host
tryptophan metabolism, mediated by the indolamine 2,3-
dioxygenase expressed in most tissues and the tryptophan 2,3-

dioxygenase that is found mainly in the liver (Yamazaki et al.,
1985). This leads to producing an array of downstream
metabolites called “kynurenines,” including kynurenic acid, 3-
hydroxykynurenine, 3-hydroxyanthranilic acid, and quinolinic
acid (Zhu et al., 2021a). Studies have been conducted on the links
between alcohol exposure and tryptophan metabolism, though
they mainly focused on the tryptophan/serotonin pathway
(LeMarquand et al., 1994; Morales-Puerto et al., 2021). Our
study revealed the up-regulation of hydroxy-tryptophan and
serotonin. In contrast, a down-regulation of quinolinic acid in
AD patients indicates that the host tryptophan metabolism was
probably more inclined to the tryptophan/serotonin pathway in
AD patients than in healthy individuals. Indole-3-carboxylic acid,
an indolic compound derived from the bacterial metabolites of
tryptophan (Konopelski et al., 2019), was also found to be
elevated in the plasma samples of AD patients. A branch of
the tryptophan metabolic fate through the bacterial pathway is to
be transaminated to indole-3-pyruvate, transformed to series
downstream indole derivatives such as indole-3-acetaldehyde,
indole-3-acetic acid, indole-3-carboxaldehyde, and indole-3-
carboxylic acid, followed by spontaneous decarboxylation of
indole-3-carboxylic acid to indole (Lübbe et al., 1983; Agus
et al., 2018). Our findings suggested a potential regulatory role
of gut microbiota in dietary tryptophan metabolism in AD,
possibly referring to the changes in gut permeability (Leclercq
et al., 2014; Zhu et al., 2021b). A visual summary of the changes of
these detected significantly differential metabolites related to
tryptophan metabolism is shown in Figure 7.

Despite having other undetected kynurenine pathway
metabolites, such as kynurenic acid, the neuromodulatory
roles of the kynurenine pathway metabolites (particularly the
kynurenic acid) in the brain circuits related to addiction have
been receiving more attention recently (Morales-Puerto et al.,

FIGURE 6 | (A) Decision tree structure fitted on the training set. This tree-structured classifier consists of decision nodes (representing the features), branches
(representing the decision rules), and leaf nodes (representing the outcome). The “Gini index” is used as an attribute selectionmeasure for the nodes to create split points,
thus implementing a decision tree. It is calculated as (1 −∑m

i�1 P2
i ), where Pi denotes the probability that a tuple belongs to class Ci; the value of zero indicates that the

predictive results can be determined. The “samples” represent the number of samples contained in a parent node, whereas the “value” represents the number of
samples of its left and right child nodes. (B) The decision boundary along with the colored data points that describe the respective class labels. The line of demarcation,
also called a decision surface, helps understand how the decisions are made by a decision tree classifier.
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2021). For example, kynurenic acid could counteract the drug
abuse-associated addictive effects by regulating glutamatergic
transmission via acting at several potential receptors on the
brain, such as the N-Methyl-D-Aspartate (NMDA) receptor
(Morales-Puerto et al., 2021). Moreover, given that the
imbalance of neuroprotective and neurotoxic kynurenine
pathway metabolites is associated with the pathogenesis of
neuropsychiatric disorders (Myint et al., 2007; Muneer, 2020;
Zhu et al., 2021a), the disturbances of tryptophan metabolism
along the kynurenine pathway may contribute to the co-
occurrence of alcohol exposure and mental disorders in the
context of addiction (Neupane et al., 2015; Jiang et al., 2020;
Vidal et al., 2020).

To our surprise, tryptophan metabolism was not significantly
enriched; conversely, alanine, aspartate, and glutamate
metabolism was identified as the main abnormal, enriched
metabolic pathway related to AD. These results were partly in
accordance with a previous metabolic study that reported
significantly altered metabolic pathways in AUD subjects,
including aspartate/asparagine metabolism, glutamate
metabolism, tryptophan metabolism, and histidine metabolism
(Obianyo et al., 2015). Alcohol consumption is commonly

associated with the metabolite profile changes in lipids and
weak organic acids, many of which are important for energy
metabolism (Voutilainen and Kärkkäinen, 2019). The citric acid
cycle (TCA cycle) allows the release of stored energy through the
oxidation of acetyl-CoA to CO2, a precursor for several amino
acids (e.g., alanine, glutamate, aspartate, and asparagine)
(Figure 7). An imbalance in energy metabolism may result in
the generation of intracellular reactive oxygen species and the
accumulation of toxic metabolites and ultimately lead to
metabolic diseases. The polymorphisms of alcohol
dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH2)
are the most well-established genetic factors related to AD (Wang
et al., 2012). For example, the ALDH2*2 allele, found almost
exclusively among Asians, has been shown to reduce the risk for
AD (Wall, 2005). ADH is mostly located in the cytosol of the
hepatocyte and involves metabolizing alcohol to acetaldehyde,
which is further metabolized by ALDH2 to produce acetate in the
mitochondria (Cederbaum, 2012). Alcohol metabolism exerts
epigenetic effects via several mechanisms, including the
formation of acetate. In cells with mitochondria such as the
brain, the acetate can be transformed by enzymes to acetyl-CoA,
which is used in histone acetylation, thus resulting in gene

FIGURE 7 | The tryptophan metabolism regulation associated with alcohol dependence (AD). The detected significant metabolite changes were represented by
green up/down arrows. The tryptophan/indole, tryptophan/kynurenine, and tryptophan/serotonin metabolic pathways were donated by purple, brown, and orange
arrows. The interactive influences between tryptophan metabolism and other metabolic pathways were also visualized. Note. TRP, tryptophan; I-3-P, indole-3-pyruvate;
I-3-A, indole-3-acetaldehyde; I-3-AA, indole-3-acetic acid; I-3-C, indole-3-carboxaldehyde; I-3-CA, indole-3-carboxylic acid; 5-HT, serotonin; KYN, kynurenine;
KYNA, kynurenic acid; 3-HK, 3-hydroxykynurenine; 3-HAA, 3-hydroxyanthranilic acid; QUIN, quinolinic acid; TCA cycle, citric acid cycle.
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activation (Zakhari, 2013). The acetate is eventually metabolized
to CO2 via the TCA cycle, thus generating energy and providing
precursors essential for amino acid biosynthesis (Figure 7).
Mounting evidence suggests that heavy alcohol exposures
decrease brain glucose metabolism but facilitate the use of
acetate as an alternative brain energy source in the human
brain (Volkow et al., 2013), indicating that a ketogenic diet
may be an effective treatment for easing alcohol withdrawal
symptoms in humans (Dencker et al., 2018).

In this study, we particularly focused on the distinctive
metabolites and significantly enriched metabolic pathways
related to tryptophan metabolism regulation. L-aspartic acid
was the most involved regarding the nine detected distinctive
metabolites included in the significantly enriched metabolic
pathways. As one example, L-aspartic acid is a non-essential
amino acid, which plays an important role in synthesizing
other amino acids such as asparagine, methionine, arginine,
isoleucine, and lysine, and also serves as a neurotransmitter
acting at the glutamate receptor (Downing et al., 1996).
Besides, Hinton et al. Hinton et al. (2017) found L-aspartic
acid as a metabolomics biomarker for predicting acamprosate
treatment response in AD patients, suggesting L-aspartic acid as a
potential biomarker for pharmaceutical response and disease
discrimination in AD. Gamma-amino butyric acid (GABA)
and NMDA receptors are two major receptors involved in
AD, which are also believed to be important targets of alcohol
(Peoples and Weight, 1999; Banerjee, 2014). Besides L-aspartic
acid, glycine, glutamate, and D-serine can act as cofactors
regulating the activity of the NMDA receptor (Zorumski and
Izumi, 2012). The exact contributions of these amino acid
cofactors to the activity of the NMDA receptor modulated by
alcohol remain unclear (Ron and Wang, 2009). Nonetheless, we
can speculate that this might be associated with the NMDA
receptor regulation of these cofactors, and L-aspartic acid might
also take part in the NMDA receptor regulation of
neuroprotective and neurotoxic kynurenine pathway
metabolites. Specifically, nicotinate and nicotinamide
metabolism was another significantly enriched pathway
involving the detected distinctive metabolites of L-aspartic acid
and quinolinic acid, both implicated in the nicotinamide adenine
dinucleotide (NAD+) (a metabolically active form of vitamin B3)
biosynthetic pathway. NAD+ can reduce the acetaldehyde
production and the formation of reactive oxygen species,
thereby ameliorating alcohol-related organ damage (Zakhari,
2013; Xu et al., 2019b). It also serves as an essential cofactor
for hundreds of enzymes (e.g., dehydrogenases) and a coenzyme
in various energy metabolism pathways linked with the immune
regulation of kynurenines (Savitz, 2020; Covarrubias et al., 2021);
in turn, the sole de novo pathway for NAD+ biosynthesis is the
kynurenine pathway, as quinolinic acid is the endogenous source
of NAD+ (Castro-Portuguez and Sutphin, 2020). As another
significantly enriched pathway, aminoacyl-tRNA biosynthesis
also involves in the tryptophanyl-tRNA biogenesis via
tryptophanyl-tRNA synthetase; tryptophan depletion, on the
other hand, modulates the extracellular tryptophanyl-tRNA
synthetase-mediated high-affinity tryptophan uptake into cells
(Yokosawa et al., 2020). The interactive influences between

tryptophan metabolism and different significantly enriched
metabolic pathways are shown in Figure 7.

Normetanephrine was also defined as the root node, the most
important splitting feature, based on the generated decision tree
structure. Previous studies have demonstrated that
normetanephrine, a critical neurotransmitter mediator of drug
reward and the addiction process, plays a potential role in
ethanol-induced self-administration and locomotion
(Weinshenker and Schroeder, 2007). Patker et al. (2004) found
that alcohol-dependent individuals who were actively drinking
showed significantly higher normetanephrine concentrations than
those in remission and healthy controls. However, alterations in
normetanephrine activity appear to normalize by late alcohol
withdrawal (Patkar et al., 2003). Similarly, our study showed
downregulated levels of normetanephrine in AD patients
compared to those in controls. A possible explanation for this
finding was that the AD patients had a longer period of
abstinence compared with controls. Understanding the
mathematics behind the generated decision tree is
straightforward. The decision nodes are tests on a feature. For
example, normetanephrine has a control statement (normalized
peak area of 0.165 or less); the samples satisfying this condition
are on one side, while the remaining samples are on the other. They
continue splitting until the leaf nodes represent the classes.
Therefore, the decision tree visualization is simple to illustrate
how classification is predicted by the underlying data, thus
highlighting our key insights.

Our study should be considered in light of several limitations.
First, our OPLS-DA model indicated a certain variation in the
measured data within the AD group. A reasonable explanation
invokes the difference of other factors in this group, including the
period of alcohol abstinence, the frequency of smoking, and
concomitant medications. For example, although the patients had
not drunk alcohol since they were hospitalized, the alterations in the
kinetics of the metabolites influenced by recent alcohol use might
have affected the detected levels (Voutilainen and Kärkkäinen,
2019). As presented in Figure 7, ethanol intake may influence
the metabolism of many amino acids (e.g., L-aspartic acid and
glutamate) and the metabolic pathway—alanine, aspartate, and
glutamate metabolism. Smoking, which is common among
drinkers, is another confounding factor. Nicotine exposure can
induce metabonomic alterations (e.g., increase of the brain levels
of both excitatory and inhibitory amino acids, including aspartate,
glutamate, arginine, taurine, and alanine) (Kashkin and De Witte,
2005). Concomitant medications, such as fat- and water-soluble
vitamins, may also confound our findings. Future studies may focus
on the subgroup analysis of AD to minimize the confounding effects
of these factors. Second, although absolute quantification was not
involved in our study and the widely targeted metabolomics can act
as an alternative method to achieve accurate quantification of
metabolite levels using semi-quantitative analysis, the optimal MS
parameters may need to be validated by using the available chemical
standards. Despite the possible changes of metabolite concentrations
in different analysis batches or institutions, peak area normalization
may minimize the influence on the classifier model. Finally, more
samples may be needed for further metabolomics analysis and the
development and evaluation of our machine learning model.
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Moreover, the samples collected fromplasmamay not directly reflect
the brain metabolite levels, thus further research is needed to
establish the relationship between blood and brain metabolites
(Hinton et al., 2017).

CONCLUSION

This study comprehensively analyzed plasma metabolic profiling
and potential biological correlates via the integration of
metabolomics and interpretable machine learning. Our
findings suggested that vitamin deficiency status may be
common in AD, particularly the vitamins B, affecting
tryptophan metabolism regulation. Indole-3-carboxylic acid,
quinolinic acid, hydroxy-tryptophan, and serotonin were
identified as significantly distinctive metabolites related to AD,
involving the tryptophan metabolism along the indole,
kynurenine, and serotonin pathways. Alanine, aspartate and
glutamate metabolism was identified as the main abnormal,
enriched metabolic pathways associated with AD. We found
that tryptophan metabolism interactively influenced other
metabolic pathways, such as nicotinate and nicotinamide
metabolism. Using a decision tree classifier model,
normetanephrine and ascorbic acid were demonstrated as
suitable biological correlates of AD. Nevertheless,
normetanephrine was identified as the most important feature.
L-aspartic acid involved multiple significantly enriched pathways
and the possible NMDA receptor regulation of kynurenines.
Future studies should focus on the global analysis of the
possible roles of these differential metabolites and disordered
metabolic pathways in the pathophysiology of AD.
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