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Abstract

Background: Co-occurrence analysis is a technique often applied in text mining, comparative genomics, and promoter
analysis. The methodologies and statistical models used to evaluate the significance of association between co-occurring
entities are quite diverse, however.

Methodology/Principal Findings: We present a general framework for co-occurrence analysis based on a bipartite graph
representation of the data, a novel co-occurrence statistic, and software performing co-occurrence analysis as well as
generation and analysis of co-occurrence networks. We show that the overall stringency of co-occurrence analysis depends
critically on the choice of the null-model used to evaluate the significance of co-occurrence and find that random sampling
from a complete permutation set of the bipartite graph permits co-occurrence analysis with optimal stringency. We show
that the Poisson-binomial distribution is the most natural co-occurrence probability distribution when vertex degrees of the
bipartite graph are variable, which is usually the case. Calculation of Poisson-binomial P-values is difficult, however.
Therefore, we propose a fast bi-binomial approximation for calculation of P-values and show that this statistic is superior to
other measures of association such as the Jaccard coefficient and the uncertainty coefficient. Furthermore, co-occurrence
analysis of more than two entities can be performed using the same statistical model, which leads to increased signal-to-
noise ratios, robustness towards noise, and the identification of implicit relationships between co-occurring entities. Using
NetCutter, we identify a novel protein biosynthesis related set of genes that are frequently coordinately deregulated in
human cancer related gene expression studies. NetCutter is available at http://bio.ifom-ieo-campus.it/NetCutter/).

Conclusion: Our approach can be applied to any set of categorical data where co-occurrence analysis might reveal
functional relationships such as clinical parameters associated with cancer subtypes or SNPs associated with disease
phenotypes. The stringency of our approach is expected to offer an advantage in a variety of applications.
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Introduction

Biological research has experienced a paradigm shift in the last

decade catalyzed by the availability of genome sequences and the

resulting development of high-throughput technologies. The large

data volumes produced by these novel technologies are often

published as supplementary material and/or stored in extensive

data repositories [1]. Functional interpretation of these data is an

ongoing challenge. Co-occurrence analysis, based on the hypoth-

esis that co-occurring entities are functionally linked, is a technique

that has been used in three main areas of biological research:

1. Co-occurrence of genes in fully sequenced genomes.

2. Co-occurrence of words such as gene names, drug names, and

keywords in titles, abstracts, or entire publications.

3. Co-occurrence of transcription factor binding motifs in sets of

co-regulated genes.

Co-occurrence of genes in sequenced genomes relies on the fact

that proteins do not function in isolation and are dependent on

other proteins, either as direct binding partners, or as catalysts of

substrates. Thus, when two proteins significantly co-occur in a

large number of genomes or can be observed as fusion proteins in

a subset of genomes, they are likely to be binding partners or

enzymes needed for a specific metabolic pathway. Examples of

those studies have been reported by [2–7].

Text mining is a quickly evolving field that aims at developing

technologies helping to cope with the functional interpretation of

large volumes of publications. Co-occurrence of gene names in

publication abstracts, entire publications, or other gene-related

databases has been used to derive co-occurrence networks with clear

evidence that edges in those networks are reflecting functionally

relevant relationships [8–11]. Gene names have also been analyzed

for co-occurrence with other entities such as mutations [12],

chemical compounds [13], and disease related keywords [14]. From

the resulting networks, hypotheses about candidate genes involved

in inherited diseases and drug targets can be derived. Clustering of

gene related publications using keywords has been applied to

enhance the quality of gene expression clusters [15,16]. More

general (non gene-centric) approaches try to organize the literature
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into functional areas based on co-occurrence of MeSH terms,

keywords, diseases, phenotypes, chemicals, and similar objects of

biomedical research interest [17–21].

Co-occurrence analysis of transcription factor binding motifs

has been carried out in a variety of slightly differing ways in a wide

range of organisms, including humans. [22–33]. The underlying

hypothesis is that co-regulated genes, identified usually by gene

expression studies, should contain specific combinations of

transcription factor binding motifs in their upstream regulatory

regions, the identification of which would allow the reverse-

engineering of transcription regulatory networks [34].

We have recently applied co-occurrence analysis to studying

published gene expression signatures and showed that co-occur-

rence patterns of genes reflect cancer signaling pathways [35].

Although co-occurrence analysis has a respectable history, the

methodologies used in the studies mentioned above could not be

easily applied to studying gene expression signatures. There are

three main reasons that dictated the use of a different approach.

First, gene expression signatures can vary in size by orders of

magnitude. Obviously, the larger a signature the more likely it is to

find two or more genes co-occurring in that signature. Thus, the

significance of co-occurrences must be evaluated in the presence of

considerable heterogeneity of co-occurrence probabilities among

gene lists. As a consequence, the statistics used to evaluate the

significance of co-occurrence events must reflect this heterogeneity.

In particular, it must be based on list-specific co-occurrence

probabilities. Second, in the vast majority of previous studies, co-

occurrence is analyzed for pair-wise combinations of co-occurring

entities. We found that the resulting stringency of this approach is

not adequate for the analysis of published gene expression

signatures [35]. Third, the null-model against which the significance

of co-occurrences is tested does not work well for gene expression

signatures. A common procedure is to use generic randomization of

the entire data set under analysis or to select subsets of data entries

randomly for comparison purposes. However, gene expression

signatures are composed of distinct gene sets and the null-model

must maintain this property, which is not guaranteed using these

approaches. Furthermore, the list-specific nature of co-occurrence

probabilities cannot be dealt with properly.

NetCutter was developed to address these challenges and to

provide a generic tool for generating and analyzing co-occurrence

networks. Although NetCutter has been developed for the analysis

of gene expression signatures, it is based on abstract concepts that

make it applicable to a wide variety of problems. The input is

represented by a bipartite graph that is composed of list-entry pairs,

which are stored in tab-separated text format. Co-occurrence of

entries in lists is analyzed using pair-wise or higher order

combinations of entries. The significance of co-occurrence is tested

using a novel bi-binomial approximation of Poisson-binomial

statistics (which is a binomial distribution with trial specific

probabilities) that handles list-length-heterogeneity properly and

provides a novel measure of association that is found to be superior

to the Jaccard and the uncertainty coefficients. Occurrence

probabilities are obtained from an edge-swapping procedure that

maintains vertex degrees in the underlying bipartite graph and

distinct sets of entries per list. As we shall see below, this procedure

has a number of advantages over other possible null-models and

permits co-occurrence analysis with near maximum stringency. Last

but not least, NetCutter is equipped with a number of algorithms for

the identification of network communities, vertex ranking, and

convenience tools needed in the analysis of co-occurrence networks,

or any undirected graph. We illustrate the utility of NetCutter in the

identification of corresponding clusters of genes and publications

from the PubLiME data set. PubLiME (Published Lists of

Microarray Experiments) is a repository of published cancer related

gene expression signatures (http://bio.ifom-ieo-campus.it/Publime).

The concept of cluster correspondence follows from the bipartite

graph representation of the data. Reversing the list-entry order in the

bipartite graph permits identifying communities of entries as well as

communities of lists. We show that communities of publications

corresponding to communities of genes in the PubLiME data set can

be used to generate hypotheses about the putative function of gene

communities.

Results

The bipartite graph model of co-occurrence analysis
Co-occurrence analysis using NetCutter is based on the

abstraction of list-entry pairs. Any entity that co-occurs with some

other entity must be confined to some sort of container where co-

occurrence is observed. For example, in the case of gene name co-

occurrence in PubMed abstracts, the abstract is the container and

the gene names are the co-occurring entities. Similarly, co-

occurrence of transcription factor binding motifs is observed in

gene promoters. The promoters are the containers where motif

entities co-occur. The containers generally host more than one

entity (otherwise co-occurrence would be impossible) and can be

conveniently interpreted as lists. The co-occurring entities are the

list entries. Lists and entries form a bipartite graph with one part of

the graph representing lists and the other part representing entries.

The presence of a given entry in a given list is indicated by an edge

between the corresponding list and entry vertices. It is required that

each entry can be linked to the same list only once. Without loss of

generality, let’s consider genes as entries and PubMedID_listIDs as

lists in the following, unless otherwise specified (Fig. 1A). This

interpretation of lists and entries has been applied in the co-

occurrence analysis of published gene expression signatures [35].

Occurrence probabilities and null-models
A prerequisite for co-occurrence analysis is the availability of

occurrence probabilities of genes per list. The occurrence

probabilities can be derived from randomizing the bipartite graph

and are dependent on the choice of the null-model. A null-model

creates an occurrence probability matrix where the occurrence

probability for each list–gene pair is listed. As a general property of

this matrix, the sum of all matrix elements must equal the number

of edges in the bipartite graph. This is because each edge is linked

to either side of the bipartite graph with certainty and therefore

the sum of occurrence probabilities over all lists (which can be

calculated as the row sum if genes are listed vertically or as the

column sum if genes are listed horizontally) followed by summing

the results over all genes must be 1 for every edge. The number of

matrix elements is given by #genes*#lists and therefore the

average occurrence probability for any null-model must be

#edges/(#genes*#lists). As a consequence, different null-models

will only be distinguished by the way they attribute occurrence

probabilities to vertices with different vertex degrees but not by the

average occurrence probability.

We consider six different strategies to randomize the bipartite

graph. First, we could reconnect all edges of the graph randomly.

The probability of being connected by an edge for a given list-gene

pair is given by (1/#genes)*(1/#lists). Since there are #edges

edges to be reconnected, the occurrence probability for a single

list-gene pair is #edges/(#genes*#lists), i.e. equal to the average

occurrence probability. Thus, this model provides equal occur-

rence probabilities for all gene-list pairs and does not consider

vertex degrees. We call this model the generic randomization (GR)

model in the following.

Analysis with NetCutter
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Second, we could disconnect the edges on only the list side of

the bipartite graph and reconnect them randomly. The occurrence

probability of a gene vertex would be given by (gene vertex

degree)/#lists. The sum of these probabilities over all lists is equal

to the gene vertex degree and the sum of all gene vertex degrees is

equal to the total number of edges. Thus, the sum of all matrix

elements is equal to the number of edges, as required. Since this

model considers gene vertex degrees, we call it the gene vertex

degree (GVD) model.

Third, we disconnect the edges on the gene side of the bipartite

graph and reconnect them randomly. The probability of a list

vertex being connected to a gene would be given by (list vertex

degree)/#genes. The sum of these probabilities over all genes is

equal to the list vertex degree and the sum of all list vertex degrees

is equal to the total number of edges. Again, the sum of all matrix

elements is equal to the total number of edges. Since this model

considers list vertex degrees, we call it the list vertex degree (LVD)

model.

In model four and five, we reconnect edges considering both

gene and list vertex degrees and allow multiple edges between list-

gene pairs. The occurrence probabilities in model four are

calculated according to the binomial distribution. We calculate

the probability of a list-gene pair for being connected as the

cumulative binomial probability of the list-gene pair being chosen

at least once in the process of randomly reconnecting the edges.

This can be achieved by setting the number of trials equal to the

gene vertex degree, the probability of success equal to the list

vertex degree divided by the total number of edges, and the

number of successes equal to 0. The occurrence probability of a

list-gene pair is then given by the complement of this probability.

This model is called the binomial (BN) model. In model five, we

calculate occurrence probabilities according to the hypergeometric

distribution. The number of successes in the sample is equal to 0,

the sample size is equal to the gene vertex degree, the number of

successes in the population is set to the list vertex degree, and the

population size is the total number of edges. Again, the occurrence

probability of a list-gene pair is obtained as the complement of this

probability. We call this model the hypergeometric (HG) model.

Calculating occurrence probabilities in this manner does not

guarantee that the matrix elements add up to the total number of

edges. Therefore, the matrices are normalized such that this

condition is satisfied by multiplying each matrix element with the

factor #edges/(observed matrix sum), which is generally quite

close to 1, however.

In model six, we again consider vertex degrees, but we require

that each list is composed of distinct sets of genes. Thus, multiple

edges are forbidden. This condition is satisfied by applying an

edge-swapping procedure during graph randomization. Edge-

swapping works by randomly choosing two list-gene pairs from the

bipartite graph and prior to performing the edge-swap, a test is

performed to ensure that the two genes are not already linked to

the respective target lists. This procedure is performed a large

number of times. To ensure complete randomization of the graph,

the number of swaps performed should be significantly larger than

the number of edges. After performing R randomizations of the

graph and counting the number of times a gene has been linked to

a particular list, division of this number by R gives the occurrence

probability of a gene in a given list. As will be shown below, edge-

swapping produces occurrence probabilities that closely approx-

imate occurrence probabilities obtained by generating a complete

permutation set of the bipartite graph, counting the number of

times a gene is found part of a list, and dividing this number by the

total number of permutations. In the permutation model, the sum

of occurrence probabilities of a gene over all lists equals the gene

vertex degree (see below) and thus the sum of all matrix elements is

the number of edges. Since permutation sets of bipartite graphs

Figure 1. Bipartite graph data representation and null-models. A) PubMed IDs (PMIDx) and genes (gx) are represented by vertices of a
bipartite graph. An edge indicates that a gene has been reported as differentially regulated in a specific publication. B–D) Occurrence probabilities of
the bipartite graph shown in panel A as determined by six different null-models for PMID1 (B), PMID2 (C) and PMID3 (D): GR - generic randomization,
GVD - gene vertex degree, LVD - list vertex degree, BN - binomial, HG - hypergeometric, ES - edge-swapping. See text for details of different null-
models.
doi:10.1371/journal.pone.0003178.g001

Analysis with NetCutter
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are difficult to calculate, we use the edge-swapping procedure as a

close approximation and call this model the edge-swapping (ES)

model.

Fig. 1 shows the occurrence probabilities of the different null-

models for the bipartite graph shown in Fig. 1A. The GR model

yields identical occurrence probabilities for all list-gene pairs, which

is equal to the average occurrence probability in all models. In the

other models, the occurrence probabilities deviate to varying extent

from the average occurrence probability as a function of vertex

degrees. In the GVD model, the deviations are a function of gene

vertex degree and in the LVD model the deviations are dependent

on list vertex degrees. In the remaining models, the deviations are

functions of both the gene and the list vertex degrees. In all cases,

larger than average occurrence probabilities are obtained for larger

vertex degrees at the expense of smaller than average occurrence

probabilities for smaller vertex degrees. From these data, it is

difficult to choose the most effective null-model. A hint can be

gleaned from gene1, however. Gene1 is present in all lists.

Therefore, the co-occurrence probability of gene1 with other genes,

which is calculated by multiplying the occurrence probabilities of

gene1 and geneX for every list under study, should depend only on

the occurrence probability of this other gene. In other words, the

occurrence probability of gene1 in all lists should be 1.0. Only two

models satisfy this constraint: The GVD and the ES models. Since

the GVD model does not consider list vertex degrees, it seems that

the ES model is the preferred null-model.

Expected number of co-occurrences
As a general criterion for comparing the effectiveness of

different null-models, we have to compare them for the number

of expected co-occurrences. The most effective null-model will be

the one that maximizes the expected number of co-occurrences. If

the expected number of co-occurrences is larger, an observed

number of co-occurrences in a real bipartite graph will be less

significant and thus such a null-model permits co-occurrence

analysis with higher stringency. The expected number of co-

occurrences depends in an obvious fashion on the list vertex

degree. If pair-wise co-occurrences are considered, the number of

co-occurrences in a list of vertex degree N is given by the binomial

coefficient N over 2. Larger lists will give rise to more co-

occurrences and the number increases quickly with list vertex

degree. The dependency of the expected number of co-

occurrences on the gene vertex degree is less obvious and depends

strongly on the null-model. A gene that is part of a list with vertex

degree N will give rise to N-1 co-occurrences in that list. The null-

model permits calculating the probability to find this gene in a

given list. Thus, the expected number of co-occurrences of a gene

is given by the sum of expected co-occurrences in all lists where for

a single list the expected co-occurrences are given by (Nl21)*pl. Nl

is the list vertex degree and pl is the occurrence probability of the

gene in that list as determined by the null-model.

We used the PubLiME data set [35] to calculate the expected

number of co-occurrences with different null-models. The results are

shown in Fig 2A. The expected number of co-occurrences was

calculated for all genes in all lists using all null-models and the sum of

expected co-occurrences per gene is shown as a scatter plot with the

gene vertex degree on the x-axis and the expected number of co-

occurrences on the y-axis. The results in Fig. 2A suggest the following

ranking of null-models: GR,GVD,LVD,BN = HG,ES. The BN

and the HG models perform in an essentially identical way. However,

the ES model is the model that yields the largest estimates of expected

co-occurrences. The results are also in line with the intuitive

expectation that genes with higher vertex degree give rise to more co-

occurrences. However, it can be seen that this is not true for all null-

Figure 2. Properties of different null-models. GR - generic randomization, GVD - gene vertex degree, LVD - list vertex degree, BN - binomial, HG
- hypergeometric, ES - edge-swapping. A) Expected number of co-occurrences in PubLiME data set: scatter plot of gene vertex degree against
expected number of co-occurrences is shown. The expected number of co-occurrences of a gene is calculated as the sum of expected co-occurrences
per list over all lists. The expected number of co-occurrences per list is given by list-vertex degree minus 1 times the occurrence probability of the
gene in that list. B) Number of co-occurrence modules of size 3 present in at least 5 publications as a function of Poisson-binomial Z-score in the
PubLiME data set. C) Signal-to-noise ratio (SNR) calculated as the number of modules in the real bipartite graph divided by the mean number of
modules in 5 randomized bipartite graphs. D) Average occurrence probability of genes with the same vertex degree as a function of gene vertex
degree. E) Average occurrence probability in lists with the same vertex degree as a function of list vertex degree.
doi:10.1371/journal.pone.0003178.g002

Analysis with NetCutter

PLoS ONE | www.plosone.org 4 September 2008 | Volume 3 | Issue 9 | e3178



models. In particular, it is not true for the GR and the LVD models,

which do not consider gene vertex degrees.

As outlined above, it is expected that the null-model that yields

the highest estimates of expected co-occurrences should permit co-

occurrence analysis with the highest stringency. In Fig. 2B, this

hypothesis is tested directly again using the PubLiME data set

[35]. For all null-models, co-occurrence analysis was carried out

using module size 3 and support 5 (co-occurrence modules must be

present in at least five publications). The choice of these

parameters has been discussed in [35]. The number of co-

occurrence modules was then determined that have a Z-score

higher or equal than the cut-off shown in Fig. 2B. The Z-score is

calculated from the mean and variance of the Poisson-binomial

distribution as shown in the Materials and Methods section and

published in [35]. More details on the probability distribution will

be provided below. The GR and GVD models perform very

poorly and identify large numbers of modules with high Z-scores.

The LVD model performs a little better and approximates the BN

and HG models at higher Z-score cut-offs. The BN and HG

models give essentially identical results. However, the ES model is

the model that yields the fewest number of significant co-

occurrence modules and is thus the most stringent. The increased

stringency of the ES model over the BN and HG models is also

reflected in a higher signal-to-noise ratio calculated as the number

of significant co-occurrence modules in the real bipartite graph

divided by the number of modules found in a randomized bipartite

graph (Fig. 2C).

The reason for the superior stringency of the ES model over all

other models can be explained by examining the average

occurrence probability per gene and list vertex degree. Fig. 2D

and E show the average occurrence probability of genes with the

same gene vertex degree as a function of the gene vertex degree. It

can be seen that the ES model yields higher occurrence probability

estimates for genes with higher vertex degrees as compared to the

BN and HG models. In GR and LVD models, gene vertex degrees

are ignored and occurrence probabilities for genes with large

vertex degree are very small, which is compensated by larger

occurrence probabilities for genes with small vertex degree. The

GVD model is identical to the ES model in this setting. Fig. 2E

shows the average occurrence probability of all lists with the same

vertex degree as a function of list vertex degree. It can be seen that

the ES model provides higher occurrence probability estimates for

large lists as compared to the BN and HG models. In this setting,

the LVD model performs like the ES model while the GR and

GVD models yield small occurrence probabilities for large lists.

Since it has been shown above that long lists and genes with high

vertex degree are responsible for a large part of the total number

of co-occurrences for the most stringent null-models, the null-

model that provides larger occurrence probability estimates for

genes and lists with high vertex degree at the expense of lower

estimates for smaller degrees will be the most stringent because

large occurrence probabilities make co-occurrence more likely and

thus less significant. By these criteria, the ES model is the most

stringent of all models tested.

The ES model as an approximation of the permutation
null-model

The data shown above have revealed that the ES model is the

best of the models tested. One may wonder, however, whether yet

more effective null-models can be found. An obvious choice would

be the permutation model. In the permutation model, a complete

permutation set of the bipartite graph is created such that each list is

composed of distinct sets of genes. The number of graphs where a

gene is present in a given list divided by the total number of

permutations then provides the occurrence probability estimate.

The permutation model is the ideal null-model because it is

exhaustive. The problem is that a complete permutation set of

bipartite graphs of some complexity is very time consuming to

calculate. For example, the simple bipartite graph from Fig. 1A is

part of a permutation set of 455 graphs. The number of

permutations is increasing quickly as the numbers of genes and

lists grow. However, since edge-swapping ensures that gene lists are

composed of distinct sets of genes, each edge-swap produces a graph

that is part of the permutation set of the bipartite graph. Edge-

swapping can thus be viewed as a random sampling procedure from

the permutation set of the bipartite graph. Therefore, occurrence

probability estimates derived by edge-swapping should approximate

those obtained from the permutation model.

We generated a complete permutation set of the graph shown in

Fig. 1A to verify this hypothesis. The results are shown in Fig. 3.

Fig. 3A shows how the number of possible permutations can be

calculated. Gene1 is present in all lists and does not have an

impact on the total number of permutations. Gene2, having vertex

degree two, is present in two out of three lists in one out of three

possible ways. The remaining genes have vertex degree 1 and can

be freely chosen to fill the empty slots. We can now count exactly

how many times a gene is linked to a list and divide these counts by

455, the size of the permutation set, to obtain exact occurrence

probabilities. These numbers are shown in graphical form in

Fig. 3B and in numerical form in Fig. 3C. Fig. 3B also shows the

occurrence probability estimates obtained by edge-swapping side-

by-side to the exact occurrence probabilities. The graph in Fig. 1A

was subjected to edge-swapping 1000 times and the number of

times a gene was found present in a list was divided by 1000 to

obtain the occurrence probability. At each run, 100 random edge

swaps were performed to ensure complete randomization of the

graph. This procedure was repeated 10 times and the mean and

standard deviation of occurrence probability estimates for each

gene in each list are shown. In all cases, the mean differs from the

real probability by less than two standard deviations, in most cases

by less than one standard deviation. Thus, edge-swapping provides

reliable estimates of exact occurrence probabilities as determined

from a complete permutation set.

As an interesting observation, we provide evidence that

occurrence probabilities are non-linear functions of vertex degrees

in the edge-swapping model. This is illustrated in Fig. 3C. Individual

and average occurrence probabilities are shown as a function of gene

and list vertex degrees. Non-linearity of individual occurrence

probabilities can be verified from the counts table underneath the

plots. However, the average occurrence probability is found to

depend on vertex degrees in a linear fashion instead. This is a

consequence of the fact that occurrence probabilities of a gene over

all lists add up to the gene vertex degree and that the occurrence

probabilities of all genes for a given list add up to the list vertex

degree. At the same time, since the most stringent permutation based

null-model predicts non-linear dependencies of individual occur-

rence probabilities on vertex degrees, assuming such linearity in

statistical models of co-occurrence will be linked to loss of stringency.

We conclude that the ES null-model is the null-model that

permits co-occurrence analysis with the highest stringency among

the models tested and that it closely approximates occurrence

probabilities derived from an ideal permutation model. The

increased stringency of the ES model over other models is a

consequence of higher occurrence probabilities for genes and list

with high vertex degrees, which are giving rise to a large part of all

co-occurrences in the bipartite graph. Since large occurrence

probabilities make co-occurrence more likely, the analysis becomes

more stringent.

Analysis with NetCutter
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Co-occurrence probabilities
Co-occurrence analysis can be thought of as a Bernoulli

experiment with a binomial outcome (a given combination of

entries is either present or not present in a given list). Thus, the

Binomial distribution (BD) is a natural choice for judging the

significance of the number of co-occurrences. However, the BD is

defined for a probability of success which is equal in all trials. The

list-specific nature of occurrence probabilities is not compatible

with this condition (analysis of each list represents one trial), which

means that co-occurrence analysis in the presence of list-length-

heterogeneity is better described as a series of Poisson trials, where

the probability of success varies from trial to trial. Therefore, the

significance of co-occurrences must be evaluated using a binomial

distribution with trial-specific probabilities, i.e. the Poisson-

binomial distribution (PBD). The probability of success in a single

Poisson trial can be calculated by multiplying the list-specific

occurrence probabilities for the combination of genes under study.

The number of occurrence probabilities that need to be multiplied

is equal to the module size, i.e. the number of genes whose

combination is studied. An observed number of co-occurrences for

a combination of genes can then be evaluated using the PBD,

which is given by the formula [36]:

PPBD X~ið Þ~
X
N

i

� �

k~1

P
i

m:m[Akf g
pm� P

N{i

n:n[Akf g
1{pnð Þ

 !
ð18Þ

The structure of this formula is very similar to the structure of the

formula used to calculate the binomial distribution, except that

multiplication with a binomial coefficient is replaced by summation

over individual terms, which makes calculation of P-values using

(18) inefficient (note that equation numbering starts in the Materials

and Methods section). Here, Ak denotes the kth set of indices of the i

lists where genes are co-occurring (‘‘success’’). There are
N

i

� �
possible sets and summation is carried out accordingly. Ak denotes

the set of indices of N2i lists where genes are not co-occurring

(‘‘failure’’). [36] have reported two fast procedures for calculating

exact PBD P-values. However, both procedures work with

probability ratios and suffer from numerical overflow/underflow

problems for large numbers of trials. NetCutter uses two work-

arounds to circumvent this problem. One is based on using Poisson-

binomial Z-scores, which can be calculated very easily instead (see

below). The other relies on a fast approximation procedure for

calculating Poisson-binomial P-values, which we call bi-binomial

approximation (BBA) or bi-binomial distribution (BBD).

Z-scores and P-values of BBD
Given the mean m (1) and variance s2 (2) of PBD (see Materials

and Methods), the Z-score associated with a given number of co-

occurrences x is obtained as:

Z~
x{m

s
: ð19Þ

Considering the structure of formulae (1) and (2) (Materials and

Methods section), PBD Z-scores can be calculated very easily and

provide a simple estimate of the significance of co-occurrence

modules. However, in contrast to normally distributed Z-scores,

binomial and Poisson-binomial Z-scores do not correspond to the

same P-value for different sets of probabilities of success. To see

this, calculate for example the probability of success in a series of

100 Bernoulli trials with success probability 0.1 and 0.9 for the

expectation of 10 and 90 successes, respectively. The Z-score will

be 0 in both cases but the corresponding cumulative P-values are

0.5832 and 0.5487. Therefore, exact levels of significance cannot

be derived from Z-scores alone. Thus, a fast and reliable

procedure for calculating Poisson-binomial P-values is needed.

The BBD approximation was developed to solve this problem.

The BBD approximation of PBD P-values follows from the

relationship between the variance of PBD and the population

variance of trial-specific probabilities of success. This relationship

is shown in Materials and Methods to be described by (4):

S2~
N � m{s2

� �
{m2

N2
ð4Þ

This equation shows that there is an inverse linear relationship

between the population variance S2 of the N trial probabilities and

Figure 3. Edge-swapping as sampling from a complete
bipartite graph permutation set. A) Calculation of the size of the
permutation set of the graph shown in Fig. 1A. B) Precision of edge-
swapping. Occurrence probability estimates are compared to their true
values. See text for details. C) Individual and average occurrence
probabilities are shown as a function of gene (left panel) and list (right
panel) vertex degrees. The exact numbers of occurrences of each gene
in each list are shown at the bottom and have been used to calculate
exact occurrence probabilities. Note that row and column sums are
adding up to vertex degrees. As a consequence, the average occurrence
probability is a linear function of both gene and list vertex degrees.
doi:10.1371/journal.pone.0003178.g003
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the variance of PBD s2, which means that PBD becomes

increasingly narrow as the variance of trial probabilities grows. It

also shows that, for constant mean m and number of trials N, the

shape of PBD depends only on the variance of trial probabilities.

Therefore, relationship (4) suggests an easy way to approximate

PBD P-values. The P-value can be obtained by constructing a set of

trial probabilities with equal variance as the original set of trial

probabilities, which, however, are not all different. In other words,

the series of Poisson trials can be replaced by two sets of Bernoulli

trials with trial probabilities p1 and p2 constructed such that the

variance is equal to the original set of trial probabilities. This

strategy is illustrated in Fig. 4 and explains why this approximation

is called bi-binomial. The details on how to obtain the values of the

two sets of Bernoulli trial probabilities and the number of trials with

p1 and p2 as probabilities of success are provided in the Materials

and Methods section. The precision of the BBD approximation is

discussed in supplementary material Simulation S1.

In order to evaluate whether BBD P-values as a significance

measure of co-occurrence offer an advantage over other measures

such as the Jaccard coefficient or the uncertainty coefficient, pair-

wise co-occurrence of two genes in 200 lists with and without list-

length-heterogeneity was studied (Fig. 5). Each gene is assumed to

occur in 100 lists. Therefore, the occurrence probabilities of both

genes over all 200 lists must add up to 100, regardless of list-

length-heterogeneity. For simplicity, occurrence probabilities of

both genes are assumed to be equal in any particular list. The co-

Figure 4. Bi-binomial approximation of Poisson-binomial distribution by replacing Poisson trials with two sets of Bernoulli trials. A)
Three sets of 20 trials each with their respective probabilities of success are shown: Poisson trials (black squares), one set of Bernoulli trials with the
average probability of success (grey diamonds), and the two sets of Bernoulli trials used to approximate the Poisson-binomial distribution (black
triangles). B) The probability density functions corresponding to the trials in panel A are shown: BD - binomial distribution calculated from the
average probability of success (grey line), PBD - Poisson-binomial distribution calculated from Poisson trials (black rectangles), BBD – bi-binomial
distribution approximation calculated from the two sets of Bernoulli trials using the formula shown in Materials and Methods (black diamonds). Note
that PBD is in general narrower than BD and that PBD and BBD are overlapping.
doi:10.1371/journal.pone.0003178.g004
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occurrence probability in a list is then given by the square of the

occurrence probability in that list. For all possible co-occurrences

from 0 to 100, the Jaccard and uncertainty coefficients were

calculated as detailed in the Materials and Methods section. In

addition, cumulative BBD P-values were calculated using the co-

occurrence probabilities as trial probabilities. To illustrate the

advantage of BBD over BD as co-occurrence probability

distribution, cumulative BD P-values of a BD with the same

mean as BBD but constant trial probabilities is shown. These trial

probabilities can be obtained by dividing the mean of BBD by the

number of lists.

Three different cases of list-length-heterogeneity are considered

in Fig. 5: No heterogeneity (standard deviation 0), heterogeneity

with standard deviation 0.283 and heterogeneity with standard

deviation 0.401 in the occurrence probabilities. The Jaccard and

uncertainty coefficients are by definition insensitive to list-length-

heterogeneity because differences in co-occurrence probabilities in

a given list cannot be considered in their calculation. This is

because both coefficients are defined by the counts of the four list

classes: both genes absent, both genes present, first gene absent

second gene present, and first gene present second gene absent, i.e.

by the corresponding contingency table, which does not change

with different list-length-heterogeneity. In the absence of list-

length-heterogeneity, the cumulative P-values of BD and BBD

(which are perfectly overlapping as expected) assume 0.5 at 50 co-

occurrences, which corresponds to the expected number of co-

occurrences calculated as (50 = 100 occurrences per gene/200

lists)^2*200 lists. The uncertainty coefficient is found to be 0 and

the Jaccard coefficient is 0.33333 at that point. When there is

modest list-length-heterogeneity (standard deviation 0.283), the

mean of BBD is shifting to the right. This is because the sum of

squares of varying occurrence probabilities (i.e. the sum of co-

occurrence probabilities used as trial probabilities, which is equal

to the mean of BBD) is always larger than the sum of squares of

constant occurrence probabilities with the same average occur-

rence probability (0.5). The corresponding BD in the presence of

list-length-heterogeneity is obtained by dividing the expected

number of co-occurrences by the total number of lists, which

means assuming equal co-occurrences in all lists. This visualization

is shown to illustrate how BBD (which is narrower than the

corresponding BD) gives rise to a steeper cumulative distribution

of P-values and as a consequence to more significant P-values for

numbers of co-occurrence that are far from the expectation. As the

level of list-length-heterogeneity grows (standard deviation of

occurrence probabilities 0.401), the mean of BBD is shifted even

further to the right and BBD P-values are distributed in a still

steeper fashion as compared to corresponding BD P-values and

the interval of non-significant co-occurrences is shrinking further.

With modest list-length-heterogeneity, the expected number of co-

occurrences is 66, which is associated with a Jaccard coefficient of

0.49 and an uncertainty coefficient of 0.075. In the case of large

list-length-heterogeneity, the expected number of co-occurrences

is 82 with J = 0.69 and UC = 0.32.

Taken together, these data show that the expected number of

co-occurrences varies strongly with the level of list-length-

heterogeneity and that the expected number of co-occurrences is

associated with different values of UC and J. To complicate

matters further, 66 co-occurrences (J = 0.49, UC = 0.075) repre-

sent significant positive association (PBBD = 0.996) with equal list

lengths, no significant association with modest differences in list

length (PBBD = 0.536) and strongly negative association (meaning

one gene excludes the other) with strong list-length-heterogeneity

(PBBD = 0.00016). Thus, the same J and UC association measure is

obtained for positive, negative, and absence of association.

Therefore, the meaning of these measures cannot be interpreted

properly in the absence of knowledge about the occurrence

probabilities of the co-occurring entities. Furthermore, the data in

Fig. 5 also show that neither J nor UC can distinguish between

positive and negative association while this is easy with cumulative

BBD P-values: Large P-values mean positive association and low

P-values mean negative association. In summary, we conclude that

BBD provides a novel association measure that offers a number of

advantages over the existing contingency table based association

measures Jaccard coefficient and uncertainty coefficient. The

results in Fig. 5 also show that significance of association depends

critically on the specific distribution of co-occurring entities over

lists of varying length (because this distribution determines the

occurrence probabilities) and that contingency table based

methods (which cannot capture this distribution) should be

avoided in the presence of significant list-length-heterogeneity.

Generation of co-occurrence networks and the
identification of communities

The procedures outlined above allow the identification of

significant co-occurrence modules in any type of bipartite graph.

Three user defined parameters have an impact on the stringency

of co-occurrence analysis: The module size, the support, and the

Z-score/P-value cutoff. The module size determines how many

entries will be tested for co-occurrence, the support sets a lower

boundary on the required number of co-occurrences, and the Z-

score/P-value cutoff sets the significance threshold. In general,

higher module size leads to more stringent co-occurrence analysis

at the cost of computational complexity. The support parameter

allows limiting this complexity by filtering out co-occurrence

modules which co-occur less frequently than required by the

support. The significance cutoff permits adjusting the signal-to-

noise ratio, which is calculated as the number of co-occurrence

modules observed in the real versus a randomized bipartite graph.

Figure 5. Comparison of measures of association. Two genes are
assumed to occur in 100 out of 200 lists with occurrence probabilities
that are constant (standard deviation 0), vary slightly (standard
deviation 0.283) or strongly (standard deviation 0.401) from list to list.
For each possible number of co-occurrences from 0 to 100, the
uncertainty coefficient (UC), the Jaccard coeffcient (J), and the bi-
binomial cumulative distribution function are calculated (BBD). For
comparison purposes, the cumulative distribution function of the
binomial distribution (BD) is calculated from the average co-occurrence
probabilities, which are obtained by multiplying the occurrence
probabilities of the two genes. Note that the expected number of co-
occurrences depends on the variability in occurrence probabilities and
that the same value of J and UC can be associated with positive,
negative, or absence of association.
doi:10.1371/journal.pone.0003178.g005
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The impact of these parameters on the stringency of co-occurrence

analysis has been reported previously for the PubLiME data set

[35] and is illustrated in a simulation study provided as

supplementary material Simulation S1. From the set of significant

co-occurrence modules, a co-occurrence network is generated by

considering each entry a vertex and drawing an edge between any

two vertices, which have been part of the same significant co-

occurrence module [35].

An important question in the analysis of co-occurrence networks

regards the presence of network communities. Communities can

be understood as groups of vertices with the property that the

number of edges running within groups is larger than expected by

chance and that the number of edges running between groups is

lower than expected by chance [37]. This problem of partitioning

a graph is often referred to as the graph-cut problem (hence the

name NetCutter). NetCutter is built on the Java Universal

Network and Graph framework (JUNG) software package

(http://jung.sourceforge.net), which provides algorithms for solv-

ing this problem. In particular, NetCutter implements the

Bicomponent clustering algorithm [38], the Edge-Betweenness

clustering algorithm [39], and the Exact Flow Community

algorithm [40]. Furthermore, there is a clustering tool that is not

part of the JUNG package, namely an algorithm identifying

communities using eigenvectors of the modularity matrix [37].

The code for this algorithm was kindly provided by Mark

Newman in C++ and ported to Java. In addition to these tools,

NetCutter provides a number of convenience functions for the

analysis of co-occurrence networks, such as testing the significance

of lists reporting a set of entries making up a network community,

ranking of vertices, random graph generators for topological

analysis of co-occurrence networks, and others. Details on all

functions are provided in the NetCutter software documentation.

One of the possible applications of NetCutter is illustrated

below. This application is tightly linked to the bipartite graph

representation of the data. Namely, NetCutter can be used to

perform co-occurrence analysis of genes or list derived from the

same bipartite graph. The network communities identified in each

both reflect the same underlying structure of the bipartite graph.

In the case of gene expression signatures stored in PubLiME,

clusters of genes correspond to clusters of publications, which can

reveal possible functions of gene clusters.

Cluster correspondence and association studies
The co-occurrence analysis of the PubLiME data set published

previously [35] identified 5 major network communities of genes

with consistent functional annotations that are deregulated in

cancer related gene expression signatures. This analysis was

performed by considering all genes mentioned in a particular

publication as a single signature, even though they might have

been part of different tables and cluster analyses. Here we present

an advanced analysis of the PubLiME data set where each table

and/or cluster identified in a given publication is considered as a

separate signature. This brings the total number of signatures to be

analyzed to 1015 comprising a total of 7358 differentially

regulated genes derived from 233 publications reporting cancer

related signatures derived from human samples. We use this

analysis to illustrate three major points: First, the set of

communities reported previously is reproduced by this more

fine-grained analysis. Second, the set of gene communities

corresponds to a set of publication communities. Third, associa-

tions between publications and gene communities can be

calculated with higher stringency using the edge-swapping null-

model in conjunction with bi-binomial P-values as compared to

binomial or hypergeometric statistics.

The bipartite graph to be analyzed is composed of PubMe-

dID_listID-gene pairs (see supplementary material Table S1). Co-

occurrence analysis was carried out in two ways: First, gene co-

occurrence was analyzed and communities of co-occurring genes

were defined by edge-betweenness clustering as described in

Materials and Methods. Second, co-occurrence of PubMedID_lis-

tIDs was analyzed. To this end, the order of PubMedID_listID-

gene pairs was reversed to form GENE-PUBMEDID_LISTID

pairs. Thus, the lists in the resulting bipartite graph are formed by

genes and the entries are the PubMedID_listIDs where the genes

are reported as differentially regulated. Occurrence probabilities

for the reversed bipartite graph can be obtained by transposing the

occurrence probability matrix of the original bipartite graph. Since

the gene communities identified in gene co-occurrence analysis

reflect the structure inherent in the bipartite graph (which is not

affected by reversing the list-entry order), co-occurrence analysis of

the reversed bipartite graph will result in PubMedID_listID

communities that reflect the same underlying structure in the

bipartite graph. In other words, PubMedID_listID communities

correspond to gene communities. In less abstract terms, the

PubMedID_listID communities should correspond to sets of

publications that report similar sets of genes as differentially

regulated. The identification of communities of publications can

help the researcher to easily identify publications studying genes in

a gene community that is of interest to the researcher.

The results of both types of co-occurrence analysis are displayed

in Fig. 6. Fig. 6A shows the gene clusters identified. The clusters

are named after significant enrichments of gene categories as

determined by functional category enrichment using DAVID [41].

The P-values shown are Benjamini corrected for multiple testing

as reported by DAVID. The clusters are very similar to the clusters

published previously [35]. There is one new cluster that is strongly

enriched for ribosomal proteins (‘‘protein biosynthesis’’ cluster),

which has not reached significance in our previous analysis. The

‘‘surface antigen’’ cluster contains many genes that had been

reported as part of the ‘‘signal transduction’’ cluster. Altogether,

however, these results strongly support the notion that the gene

clusters in the PubLiME data set can be reproduced by the more

fine-grained analysis that considers sublists in each publication as

separate signatures.

The corresponding clusters of PubMedID_listIDs are shown in

Fig. 6B. There are five clusters, which have been named after their

corresponding gene cluster. Only one cluster (the ‘‘extracellular

matrix-immune response cluster’’) cannot be separated by edge-

betweenness clustering at the point of maximal graph modularity.

To see that this naming is indeed justified, we needed to

investigate how strongly a given PubMedID_listID is associated

with a given gene cluster, i.e. how significant is the overlap of the

genes reported in a gene cluster and the genes reported in a

PubMedID_listID. Binomial or hypergemetric statistics are

generally used to calculate this significance. However, the bipartite

graph model in conjunction with the edge-swapping null-model

offers a more fine-grained approach based on bi-binomial

statistics.

The edge-swapping null-model determines occurrence proba-

bilities in such a way that the number of genes in a given

PubMedID_listID is associated with insignificant P-values in the

context of the complete bipartite graph. However, when a subset

of genes is analyzed, e.g. all the genes that are reported in a

particular list, the P-value associated with the number of genes

contained in this list will likely be highly significant according to

how unlikely it is to obtain all the genes contained in a given list in

a random draw from all genes present in the bipartite graph. Thus,

PubMedID_listID association with a set of genes in the bipartite
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graph model can be calculated in the following way: The set of

genes that is used to analyze association is used to extract a

subgraph from the original bipartite graph where occurrence

probabilities for each gene-PubMedID_listID pair are identical to

those in the original bipartite graph (i.e. they are not recalculated

by edge-swapping). The vertex degree of the PubMedID_listID

vertices in the subgraph indicates the number of genes contained

in each PubMedID_listID overlapping with the set of genes used

to extract the subgraph. From the occurrence probabilities of the

genes in a given PubMedID_listID, the bi-binomial P-value can

then be calculated for every list vertex degree observed in the

subgraph. In Fig. 7, the significance of association of the

PubMedID_listIDs (see Fig. 6B) with the cell cycle cluster of

genes (Fig. 6A) is calculated. For comparison, binomial and

hypergeometric P-values are also shown. It can be seen that the bi-

binomial P-value is larger than the binomial and hypergeometric

P-values, which means that the strength of association is evaluated

in a more stringent manner using BBD statistics (see Discussion for

an explanation of this observation).

The analysis of significant associations between PubMedID_lis-

tIDs and gene clusters now permit answering the question whether

there is correspondence between gene clusters and PubMedID_lis-

tID clusters. The naming of PubMedID_listID clusters shown in

Fig. 6B is based on the number of PubMedID_listID that are

significantly associated with gene clusters shown in Fig. 6A. First, for

each gene cluster, all the PubMedID_listIDs that are associated with

that cluster with more than 95% confidence (i.e. cumulative bi-

binomial P-values. = 0.95) were identified. Second, the number of

significant PubMedID_listIDs in each PubMedID_listID cluster

was counted for every gene cluster. The significance of this number

was then calculated using binomial statistics. The results of this

analysis are shown in Table 1. Negative decadic logarithms of the

binomial P-value are displayed. It is apparent that each Pub-

MedID_listID cluster is strongly associated with at least one gene

cluster, except for the ‘‘extracellular matrix-immune response’’

cluster, which is associated with two gene clusters. The strength of

these associations suggests that the PubMedID_listID clusters are

indeed corresponding to the gene clusters and that both the gene

and the PubMedID_listID clusters reflect the structure of the

bipartite graph representing the PubLiME data set.

Details about all the lists analyzed are attached as supplementary

material Table S2. Looking at these lists, some general conclusions

about the gene clusters can be drawn. Cell cycle cluster genes have

been found deregulated in a wide variety of tumor types such as

colon cancer, breast cancer, in biliary tract cancer, pancreatic

cancer, gastric cancer, prostate cancer, T-cell leukemia, glioma,

acute lymphoblastic and myeloblastic leukemias, soft tissue

sarcoma, neuroblastoma, as well as in a number of cellular model

systems in response to different stimuli. Thus, the cell cycle cluster

seems to consist of genes with a general role in oncogenesis. The

surface antigen cluster instead seems to be derived preferentially

from studies on leukemia. The interferon cluster genes are found

deregulated in virus induced pathologies such as papilloma virus

induced cervical cancer, and viral hepatitis. Immune response

Figure 6. Gene and list communities in PubLiME. A) Co-occurrence analysis of the PubLiME data set was carried out as described in Materials
and Methods. Gene communities in the co-occurrence network were identified by edge-betweenness clustering removing four edges corresponding
to maximal graph modularity. Functional gene category enrichment analysis was carried out for community genes using the DAVID database.
Benjamini corrected P-values are shown for the most significant categories. B) List co-occurrence analysis of the PubLiME data set was carried out on
the bipartite graph with reversed list-gene order as described in Materials and Methods. List communities were identified by edge-betweenness
clustering removing 130 edges corresponding to maximal graph modularity. Community names are derived from analyzing the probability of finding
lists significantly enriched for genes in gene communities as part of the list community as described in Materials and Methods.
doi:10.1371/journal.pone.0003178.g006
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cluster genes were reported as differentially regulated in inflamma-

tory conditions such as ulcerative colitis, Crohn’s disease, and

Helicobacter pylori infections. Genes of the extracellular matrix

cluster seem to be associated with cancer progression studies and

metastatic potential. For the protein biosynthesis cluster, there are

15 signatures that are significantly enriched for those genes. The

Figure 7. Lists associated with cell cycle cluster. A) Association is calculated as the cumulative bi-binomial probability of observing a given
number of occurrences of an entry of interest in a subset of lists. When the subset of lists to be analyzed for association is derived from a community
of entries, the underlying bipartite graph must be reversed such that entries become lists and vice versa. Occurrence probabilities for the transformed
graph are obtained by transposing the occurrence probability matrix. B) The cumulative P-value of PubLiME publications reporting 37 genes of the
cell cycle community (Figure 6A) is calculated using BBD, binomial and hypergeometric statistics. The lists are sorted by ascending P-value. BBD
statistics are obtained following the scheme shown in panel A. Binomial and hypergeometric statistics are calculated as: Number of success: the
number of cell cycle genes reported by the list. Number of trials: the number of genes reported in the cell cycle cluster. Probability of success: list
length divided by 7358 total genes in the PubLliME data set used to generate the co-occurrence network.
doi:10.1371/journal.pone.0003178.g007

Table 1. Cluster correspondence.

gene cluster\list cluster LC# (size) LC1 (28) LC2 (31) LC3 (8) LC4 (18) LC5 (3)

surface antigen (193 lists) 16 (4.52) 1 (0.01) 0 (0.11) 1 (0.07) 0 (0.36)

protein biosynthesis (15 lists) 2 (2.13) 1 (1.12) 0 (0.95) 1 (1.55) 3 (7.00)

interferon (64 lists) 4 (1.50) 0 (0.06) 8 (8.66) 3 (1.57) 0 (0.76)

cell cycle (122 lists) 0 (0.01) 22 (11.51) 0 (0.21) 0 (0.05) 0 (0.52)

extracelullar matrix (102 lists) 1 (0.11) 1 (0.09) 0 (0.26) 14 (9.36) 0 (0.58)

immune response (57 lists) 2 (0.68) 2 (0.60) 1 (1.13) 10 (8.32) 0 (0.81)

For every list cluster (LC), the number of lists was determined that are significantly (PBBD. = 0.95) enriched for genes that are part of gene clusters. The significance of
this number was evaluated using binomial statistics: #success – enriched lists in list cluster, #trials – number of lists reporting genes in gene cluster (e.g. 122 for cell
cycle cluster), probability of success: size of list cluster divided by total number of lists (e.g. 31/1015 for LC2). The final P-value is obtained as 1 minus the cumulative
binomial P-value. The negative decadic logarithm of the final P-value is shown in parentheses.
doi:10.1371/journal.pone.0003178.t001
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cancers studied comprise medulloblastoma, glioblastoma, pancre-

atic cancer, soft tissue sarcoma, lung carcinoma, breast carcinoma,

prostate carcinoma, multiple myeloma, and lymphocytic leukemia.

The genes are also found deregulated in response to DNA damage.

Although the number of signatures is limited, the variation in

conditions where the genes are deregulated is compatible with the

hypothesis that protein biosynthesis genes, as cell cycle genes, are

deregulated in many cancer types, which might reflect the general

property of cancer cells to divide and grow in an uncontrolled

fashion.

Discussion

Here we have investigated basic aspects of co-occurrence

analysis and present a software tool, NetCutter, which can be used

to identify and analyze generic co-occurrence networks. In

NetCutter, a co-occurrence data set is represented as a bipartite

graph with one part representing lists and the other part list entries

whose co-occurrence patterns are studied. The bipartite graph

representation of co-occurrence data sets allows the efficacy of

different null-models to be tested systematically. We have shown

that an edge-swapping procedure used to randomize the bipartite

graph generates a null-model that allows co-occurrence analysis

with the highest stringency. The other null-models tested here tend

to underestimate occurrence probabilities of entries per list for lists

and genes with high vertex degrees, i.e. for lists and genes where

most co-occurrences are observed. As a result, co-occurrences are

judged more significant than they really are.

Co-occurrence data sets with exactly equal lists lengths are likely

to be the exception from the rule. It can be assumed that some list-

length-heterogeneity will be present in most circumstances. An

important consequence of list-length-heterogeneity regards the co-

occurrence probability distribution used to evaluate the signifi-

cance of the observed number of co-occurrences. Co-occurrence

analysis in the presence of list-length-heterogeneity is best

performed using the Poisson-binomial distribution (a binomial

distribution with trial specific probabilities). However, calculating

Poisson-binomial P-values for large numbers of lists is difficult

using existing procedures [36]. We have presented an approxi-

mation to the Poisson-binomial distribution, called bi-binomial

distribution, which is based on replacing the set of Poisson trials by

two sets of Bernoulli trials. The resulting distribution reproduces

the Poisson-binomial distribution nearly exactly and its P-values

can be calculated with ease even for thousands of lists (see also

supplementary material Simulation S1 for details on the precision

of BBD). Importantly, BBD provides a novel measure of

association, which is shown to be superior to existing measures

such as the Jaccard coefficient and the uncertainty coefficient,

whose values cannot be interpreted properly in the absence of

knowledge about the occurrence probabilities of co-occurring

entities.

It is worth noting that Poisson-binomial Z-scores are distin-

guished from Gaussian Z-scores by the fact that they do not

correspond to the same P-value for different PBDs, BBDs, and

even BDs. This is because the Z-score is an explicit part of the

function defining the normal probability density while it is not part

of the definitions of BD, PBD, and BBD densities. As a

consequence, the simple Poisson-binomial Z-score based approach

to evaluating significance of co-occurrence must be complemented

with the BBD to approximate Poisson-binomial P-values in order

to enable multiple testing corrections and to allow calculation of

confidence levels in association studies precisely. However,

NetCutter is equipped with a bipartite graph randomization tool

that permits measuring the number of false positives due to

multiple testing directly by comparing the number of significant

co-occurrence modules in the real bipartite graph to the

corresponding number in a randomized version thereof. Ran-

domization is performed by edge-swapping in order to preserve

vertex degrees. The resulting signal-to-noise ratios that are plotted

for each Z-score/P-value cutoff provide a highly reliable and

visually intuitive defense mechanism against false positives (see also

supplementary material Simulation S1).

In the vast majority of co-occurrence studies, pair-wise co-

occurrences have been analyzed using different statistical models.

We have observed that the stringency of pair-wise co-occurrence

analysis is far below the stringency of co-occurrence analysis using

higher order combinations of co-occurring entities [35]. In

NetCutter, co-occurrence analysis is preceded by occurrence

analysis, i.e. the occurrence probability of each entry in each list is

determined. Starting from occurrence probabilities, co-occurrence

probabilities for any size of co-occurrence modules under study

can be obtained by multiplying the respective list-specific

occurrence probabilities. Given the list-specific co-occurrence

probabilities, bi-binomial P-values are then calculated in exactly

the same way for any module size. As a consequence, NetCutter

can perform co-occurrence analysis for higher order combinations

of co-occurring entries (i.e. larger module sizes) using the same

statistical model. One of the benefits of using higher module sizes

is robustness of the analyses in the presence of noise. This is

because each edge in the resulting co-occurrence network is

evaluated many times since every pair of co-occurring entries can

be part of many higher order co-occurrence modules [35].

Another advantage is that implicit relationships between entries,

which have never occurred together [18], can be derived as a

natural by-product of using module sizes larger than 2. As shown

in a simulation study (supplementary material Simulation S1), the

result is a dramatic reduction of misclassifications at higher

module sizes.

NetCutter can be used to calculate the strength of association

between a subset of entries and lists reporting those entries. In this

case, the analysis is performed on a subgraph of the original

bipartite graph. The subgraph can correspond to communities of

entries in the co-occurrence network, or any set of entries of

interest. NetCutter will then calculate the significance of observing

a given number of occurrences of an entry in the user defined

subset of lists using bi-binomal statistics. This analysis mode

corresponds to association studies with the advantage that the

structure of the underlying bipartite graph (i.e. list length

heterogeneity) is considered and handled appropriately using the

bi-binomial distribution. As a consequence, association studies can

be performed with higher stringency.

This result can be understood by examining the occurrence

probability matrix that is implicitly assumed in performing binomial

or hypergeometric tests for the significance of overlaps. In both tests,

a gene is assumed to have an equal opportunity to be present in a

list. Therefore, the probability of success for a gene to be part of a list

is given by the list vertex degree divided by the total number of

genes. In other words, both tests are implicitly based on the list

vertex degree model, which has been shown previously to

underestimate the occurrence probability and the expected number

of co-occurrences for genes with high vertex degree (see Fig. 2A).

Since the BBD P-values are calculated from the ES-model, which

assigns higher occurrence probabilities to genes with higher vertex

degree and more expected co-occurrences, the observed number of

overlaps between a set of genes of interest and the content of a given

list (which can be viewed as co-occurrence of the overlapping genes

in that list) will be judged less significant when the overlapping genes

are of high vertex degree (and vice versa when the overlapping
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genes are of low vertex degree) as compared to binomial or

hypergeometric tests. Since the BBD P-values are derived from the

most stringent ES null-model, BBD P-values provide a more reliable

estimate for the significance of overlap.

Co-occurrence analysis of data represented as bipartite graphs

permits visualizing the structure of the bipartite graph either as

communities of list entries (genes) or as communities of lists

(PubMedID_ListID) in co-occurrence networks. We have ana-

lyzed the PubLiME data set for the presence of corresponding

gene and list clusters. In addition to previously published clusters

of genes, we describe a novel gene cluster that is composed of

protein biosynthesis associated genes [35]. We found that the

corresponding clusters of PubMedID_ListID (gene expression

signatures) are in general strongly enriched for genes reported in

the corresponding gene cluster and that interrogation of

corresponding clusters can be used to deduct hypotheses about

the putative function of gene clusters.

In addition to co-occurrence analysis, NetCutter offers a

number of tools for the analysis of co-occurrence networks, or

any undirected graph. In particular, community identification is

supported by four different community identification algorithms.

NetCutter also offers a range of convenience functions that are of

help in network analysis. Worthy of mentioning are the random

graph generators that can provide control graphs for topological

studies. The complete set of options is described in the software

documentation.

In summary, we present a general framework for co-occurrence

analysis with many potential applications. We illustrate a number

of advantages of using the bipartite graph representation of data

and the associated statistics. In particular, the identification of

corresponding clusters permits the identification of functional

subunits such as gene clusters on the one hand, and the generation

of hypotheses about the function of those units by analyzing the

corresponding list clusters on the other hand. Future developments

will be directed towards the analysis of data sets that are

considerably larger than the data sets analyzed so far. For

example, co-occurrence analysis might be of interest for the

analysis of single nucleotide polymorphism (SNP) data sets and

association studies of genome variability with disease. Each patient

is characterized by a specific range of SNPs. Co-occurrence

patterns of patients according to their SNPs could be compared to

clinical parameters with the aim of identifying genomic regions

associated with disease. The increased stringency of association

studies offered by NetCutter may be of use in the analysis of

polygenic diseases where conventional methods fail. For being

useful in this setting, NetCutter must be capable of analyzing

bipartite graphs with millions instead of thousands of vertices.

Materials and Methods

Implementation of NetCutter
NetCutter is written in Java using NetBeans6 software (http://

www.netbeans.info/) and tested on the Java Runtime environment

1.6.0.0. on a Windows XP Professional computer. The Java

Runtime environment, which can be downloaded from http://

java.sun.com/, must be installed on a computer that is intended to

run NetCutter. NetCutter is provided as a single jar file and should

run by double clicking the jar file, provided that the Java runtime

environment is properly installed. NetCutter makes use of the

following software packages and classes: JUNG version 1.3

(http://jung.sourceforge.net/download.html), Apache Jakarta

Commons Collections 3.1 (http://jakarta.apache.org/commons/

collections/), Cern Colt Scientific Library 1.2.0 (http://dsd.lbl.

gov/,hoschek/colt/), Xerces (http://xerces.apache.org/xerces2-

j/index.html), Jama (http://math.nist.gov/javanumerics/jama/),

Netlib Java LAPACK (http://www.netlib.org/lapack/), JFree-

Chart (http://www.jfree.org/jfreechart/), partition.java (http://

astro.u-strasbg.fr/,fmurtagh/mda-sw/java/partition.java).

Bi-binomial approximation of Poisson-binomial
distribution

The Poisson-binomial distribution (binomial distribution with

trial specific probabilities) has recently been proposed as a statistic

that properly handles largely differing sizes of gene expression

signatures in meta-analysis of gene expression data [35]. Z-scores

have been used to estimate the significance of co-occurrence

because P-value calculation is cumbersome and error prone. Two

methods reported by [36] suffer from numerical overflow/

underflow problems when large numbers of Poisson trials with

probabilities deviating significantly from 0.5 are being analyzed.

Therefore, we propose a fast approximation of P-values based on a

bi-binomial distribution. The bi-binomial distribution is a special

case of the Poisson-binomial distribution where the probability of

success can assume only two values. In order to achieve a good

approximation of the underlying Poisson-binomial distribution,

the values of these two probabilities and the number of trials where

they are assumed must be determined carefully. As is shown in the

following, the values of the two trial probabilities and their number

of occurrences follow from the formula used to calculate the

variance of the Poisson-binomial distribution and from the

formula yielding the population variance of trial probabilities of

the Poisson-binomial distribution to be approximated.

The mean m and the variance s2 of the Poisson-binomial

distribution are given by equation (1) and (2), respectively.

m~
XN

i~1

pi ð1Þ

s2~
XN

i~1

pi{
XN

i~1

p2
i ð2Þ

pi is the trial-specific probability of success and N is the total

number of trials. For the sake of completeness, a formal proof of

equation (1) is reported as supplementary material Proof S1 and

the proof of equation (2) can be obtained in an analogous fashion.

The population variance S2 of trial probabilities pi is given by

equation (3).

S2~

N1PN
i~0

p2
i {

PN
i~0

pi

� �2

N2
ð3Þ

Rearranging equation (3) considering (1) and (2) leads to (4) and

(5), where pa denotes the average trial probability of success and qa

its complement.

S2~
N1 m{s2
� �

{m2

N2
ð4Þ

S2~pa{p2
a{

s2

N
~paqa{

s2

N
ð5Þ
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Now let’s define two trial probabilities p1 and p2, which are used N1

and N2 times during the Poisson trials, respectively. Thus, N1 and

N2 add up to N.

N~N1zN2 ð6Þ

Considering (1), the average trial probability pa can then be

obtained from (7).

pa~
m

N
~

N1

N
p1z

N2

N
p2 ð7Þ

Using (7), p1 can thus be calculated as (8).

p1~
N � pa{N2 � p2

N1
ð8Þ

Similarly, considering (2), the variance s2 is given by (9).

s2~N1p1zN2p2{N1p2
1{N2p2

2 ð9Þ

Substituting p1 in (9) using (8) followed by substituting s2 in (5)

by (9) leads to a quadratic equation for p2 as a function of pa, N,

and S2, as shown in equation (10).

p2
2{2pap2zp2

a{
N1

N2

S2~0 ð10Þ

The solution to (10) is given by (11).

p1,2~pa+

ffiffiffiffiffiffiffiffiffiffiffiffi
N1

N2
S2

r
: ð11Þ

Setting p2 to

p2~paz

ffiffiffiffiffiffiffiffiffiffiffiffi
N1

N2
S2

r
ð12Þ

p1 can be obtained from (8) and shown to be given by formula (13):

p1~pa{

ffiffiffiffiffiffiffiffiffiffiffiffi
N2

N1
S2

r
ð13Þ

Choosing p2 as

p2~pa{

ffiffiffiffiffiffiffiffiffiffiffiffi
N1

N2

S2

r
ð12aÞ

leads to p1

p1~paz

ffiffiffiffiffiffiffiffiffiffiffiffi
N2

N1
S2

r
ð13aÞ

Comparing (13a) to (12) and (12a) to (13), it can be seen that the

formulae are identical except for the fact that N1 and N2 are

reversed. Since the assignment of which set of trials is called N1

and which set of trials is called N2 is completely arbitrary, we can

limit the remaining analysis on (12) and (13) without loss of

generality.

Note that (12) and (13) do not guarantee that p1 and p2 are

always confined between 0 and 1 for any combination of N1 and

N2. While probabilities smaller than 0 or bigger than 1 would still

result in a distribution with the same overall variance as the

original distribution, P-value calculation will be imprecise because

the tails of the distribution will deviate significantly from the

original distribution. Thus, we need to define the values N1 and N2

in such a way that p2, = 1 and p1. = 0. This can be achieved by

evaluating (12) and (13).

Evaluating (12) for the condition that p2, = 1, solving the

resulting inequality for N2, and considering (5), which relates S2

and s2, we obtain (14).

N2ƒ
m2

m{s2
ð14Þ

Similarly, evaluating (13) for the condition p1. = 0, solving the

resulting inequality for N2, considering (5), which relates S2 and s2,

and defining mf the expected number of failures as N * (12pa) (15),

mf ~N1 1{pað Þ~Nqa ð15Þ

we obtain (16)

N2§
m1mf {Ns2

mf {s2
ð16Þ

The meaning of these boundaries is best illustrated by

considering a Poisson-binomial distribution whose variance is 0,

i.e. that assumes 1 at X = m and 0 otherwise. In this case (14)

requires N2, = m while (16) requires N2. = m. These conditions

can only be fulfilled contemporaneously when N2 is set to m.

Intuitively, this means that there are m trials with probability of

success 1 and N2m trials with probability of 0, resulting in a

Poisson-binomial distribution with variance s2 = 0 and mean m.

When s2 is larger than 0, the choice of N1 and N2 is more flexible.

However, since the choice of N2 = m is valid for all possible values

of s2, this is how NetCutter determines N1 and N2. When m is not

an integer, N2 is set to the integer closest to m.

Having determined p2 (12) and p1 (13) as well a N1 and N2 (14,

16, 6), we can now calculate the bi-binomial approximation of the

Poisson-binomial distribution in a fashion that is very similar to

calculate the binomial P-value. With q1 = 12p1 and q2 = 12p2 we

obtain:

P X~ið Þ~
Xi

j~0

N1

j

� �
N2

i{j

� �
p

j
1p

i{j
2 q

N1{j
1 q

N2{izj
2 ð17Þ

The summation is necessary because i successes can be obtained

from any combination of j p1 and i2j p2 trials, where j can assume

any value from 0 to i.

Calculating Jaccard and uncertainty coefficients
For the purpose of comparing the efficacy of the bi-binomial

distribution as a significance measure of co-occurrence, Jaccard
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and uncertainty coefficients (which are also called measures of

association) were calculated using the formulae:

J~
A\B

A\BzB\AzA\B

The Jaccard coefficient J is calculated as the number of times A

and B occur together divided by the number of times A occurs

without B plus the number of times B occurs without A plus the

number of times A and B occur together [42].

The uncertainty coefficient [42] is calculated as:

UC~
21 H Að ÞzH Bð Þ{H A\Bð Þð Þ

H Að ÞzH Bð Þ

H Að Þ~{
X2

i~1

ni

N
ln

ni

N

� �

H Bð Þ~{
X2

j~1

nj

N
ln

nj

N

� �

H A,Bð Þ~{
X2

i~1

X2

j~1

nij

N
ln

nij

N

� �

H is the entropy associated with A, B, and AB. For A, the entropy is

calculated from the probabilities of A occurring in n1 out of N lists (n1/

N) and A not occurring in n2 out of N lists (n2/N). Analogous

calculations lead to the entropy associated with B. For H(A,B), the

probabilities of A occurring without B, B occurring without A, A and B

occurring together, and neither A nor B occurring in the lists are used.

Co-occurrence analysis of the PubLiME data set
The bipartite graph to be analyzed is composed of 27619

PubMedID_listID-gene pairs (see supplementary material Table

S1). Edge-swapping (1000 simulations, see above) was used to

determine occurrence probabilities and gene co-occurrence was

analyzed using module size 3 (co-occurrence of three genes), bi-

binomial Z-score cutoff 6, bi-binomial P-value cutoff 1.0E-5, and

support 5. Supplementary material Simulation S1 provides details

on why module size 3 is chosen. The support parameter ensures

that each 3-gene co-occurrence module is present in at least 5

signatures. We identified 1654 significant modules in the test data

compared to 5 modules in a randomized bipartite graph,

corresponding to a signal-to-noise ratio of 331. The co-occurrence

network was generated from the significant co-occurrence modules

by drawing an edge between each pair wise combination of genes

that are part of the same co-occurrence module. Gene

communities were identified in this network by edge-betweenness

clustering removing 4 edges, which resulted in a maximal network

modularity of 0.63. Modularity is calculated as described by [43].

For the identification of PubMedID_listID clusters, the Pub-

MedID_listID-gene pairs in the original bipartite graph were

reversed to form gene-PubMedID_listID pairs. Occurrence proba-

bilities were obtained by transposing the original occurrence

probability matrix determined by edge-swapping as described

above. PubMedID_listID co-occurrence was analyzed using module

size 5, Z-score cutoff 6, bi-binomial P-value cutoff 1.0E-5, and

support 3. Please note that the choice of these parameters is dictated

by the parameters used in gene co-occurrence analysis. The reversal

of the bipartite graph necessitates the support parameter used in

gene co-occurrence analysis (5) to be used as module size in

PubMedID_listID co-occurrence analysis and the module size used

in gene co-occurrence analysis (3) to be used as the support

parameter in PubMedID_listID co-occurrence analysis if the scope

of the analysis is the identification of PubMedID_listID clusters that

correspond to gene clusters identified before. The significance cutoffs

remain unchanged. PubMedID_listID co-occurrence analysis re-

vealed 448 significant co-occurrence modules in the real bipartite

graph and 6 significant co-occurrence modules in the randomized

bipartite graph with a signal-to-noise ratio of 75. Communities in the

resulting co-occurrence network were identified by edge-between-

ness clustering removing 130 edges. The resulting maximal network

modularity was found to be 0.47.
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