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Abstract: Fine particulate matter (PM2.5) has a continuing impact on the environment, climate change
and human health. In order to improve the accuracy of PM2.5 estimation and obtain a continuous
spatial distribution of PM2.5 concentration, this paper proposes a LUR-GBM model based on land-use
regression (LUR), the Kriging method and LightGBM (light gradient boosting machine). Firstly,
this study modelled the spatial distribution of PM2.5 in the Chinese region by obtaining PM2.5

concentration data from monitoring stations in the Chinese study region and established a PM2.5

mass concentration estimation method based on the LUR-GBM model by combining data on land use
type, meteorology, topography, vegetation index, population density, traffic and pollution sources.
Secondly, the performance of the LUR-GBM model was evaluated by a ten-fold cross-validation
method based on samples, stations and time. Finally, the results of the model proposed in this paper
are compared with those of the back propagation neural network (BPNN), deep neural network
(DNN), random forest (RF), XGBoost and LightGBM models. The results show that the prediction
accuracy of the LUR-GBM model is better than other models, with the R2 of the model reaching
0.964 (spring), 0.91 (summer), 0.967 (autumn), 0.98 (winter) and 0.976 (average for 2016–2021) for
each season and annual average, respectively. It can be seen that the LUR-GBM model has good
applicability in simulating the spatial distribution of PM2.5 concentrations in China. The spatial
distribution of PM2.5 concentrations in the Chinese region shows a clear characteristic of high in
the east and low in the west, and the spatial distribution is strongly influenced by topographical
factors. The seasonal variation in mean concentration values is marked by low summer and high
winter values. The results of this study can provide a scientific basis for the prevention and control of
regional PM2.5 pollution in China and can also provide new ideas for the acquisition of data on the
spatial distribution of PM2.5 concentrations within cities.

Keywords: PM2.5; remote sensing retrieval; land-use regression; LightGBM; spatial and temporal
characteristics

1. Introduction

In response to the growing air pollution problem, China has set up large-scale ground-
based PM2.5 monitoring stations to monitor and warn of heavily polluted weather [1].
PM2.5 can largely reduce the body’s immunity and cause respiratory diseases such as
asthma and chronic bronchitis, as well as cardiovascular diseases such as heart disease
and atherosclerosis, and can increase the risk of cancer [2]. The 2019 Global Burden of
Disease Study reports that air pollution is the leading environmental risk factor for global

Int. J. Environ. Res. Public Health 2022, 19, 6292. https://doi.org/10.3390/ijerph19106292 https://www.mdpi.com/journal/ijerph

https://doi.org/10.3390/ijerph19106292
https://doi.org/10.3390/ijerph19106292
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com
https://orcid.org/0000-0002-8632-2515
https://orcid.org/0000-0001-5499-9217
https://doi.org/10.3390/ijerph19106292
https://www.mdpi.com/journal/ijerph
https://www.mdpi.com/article/10.3390/ijerph19106292?type=check_update&version=1


Int. J. Environ. Res. Public Health 2022, 19, 6292 2 of 20

health and the fourth leading risk factor for global mortality, with the disability-adjusted
annual loss of life due to PM2.5 pollution increasing to 118 million in 2019 and the number
of deaths increasing to 4.14 million [3]. Global publicly available PM2.5 concentration
monitoring data, estimation data and studies on the evolution of national-scale PM2.5
concentrations worldwide show that China is one of the countries with high and fast-
growing PM2.5 concentrations worldwide [4–7]. A related study estimated the number
of deaths caused by PM2.5 in 161 major cities in China and showed that PM2.5 exposure
caused about 652,000 premature deaths in 2015 [8]. Air pollution has become an important
environmental problem in China, and accurate prediction of PM2.5 concentrations has
an important impact on air pollution prevention and sustainable economic development.
Aerosol optical depth (AOD) products from satellite remote sensing inversions have been
widely used for PM2.5 estimation on a global scale [9]. Earlier studies used one-dimensional
linear regression models using only AOD as an indicator to estimate PM2.5 concentrations
or more sophisticated multiple or generalised linear regression models to estimate PM2.5
concentrations [10]. Subsequent studies have taken into account surface and meteorological
parameters to improve the accuracy of PM2.5 estimation [11]. The distribution of PM2.5 con-
centrations is a non-linear process related to a number of factors, with strong temporal and
spatial variability [12]. Thus, more sophisticated models have been developed to describe
the spatial and temporal variability in the relationship between PM2.5 concentrations and
AOD, such as geographically weighted regression models [13], mixed-effects models [14]
and generalised weighted mixed models [15]. The complex relationship between PM2.5,
AOD and other indicators is simplified within the model, leaving a large uncertainty in the
PM2.5 concentration estimates. With the development of computer technology, machine
learning (including deep learning) methods are increasingly used in the estimation of PM2.5
concentrations due to their powerful non-linear modelling capabilities [16,17]. Such as
support vector regression models [18,19], random forest models [20,21], artificial neural
network models [22,23], Bayesian methods [24,25], generalised regression neural network
models [26,27] and long and short-term memory networks [28], all of which have shown
better performance than traditional statistical models in the estimation of PM2.5 concen-
trations. In terms of the selection of influencing factors, these machine learning models
used PM2.5 information including adjacent temporal and spatial observations [29], land
use information [30], vegetation index information [31], nitrogen dioxide (NO2) concentra-
tion information [32], population density [33] and elevation [34], in addition to AOD and
conventional meteorological observation parameters. However, too many hand-designed
features are not only time-consuming and labour-intensive, but also too complex for the
engineering implementation of the model. In addition, the current model, although effec-
tive in reducing the complexity of the objective function, ignores the spatial and temporal
variability of PM2.5 concentrations. In order to effectively estimate PM2.5 concentrations at
spatial and temporal scales, a model with better non-linear expression capability and easy
engineering is needed. PM2.5 concentration data can be obtained through both ground-
based monitoring and satellite remote sensing monitoring. The number of ground-based
monitoring sites is usually limited and can only reflect local pollutant concentrations at
the monitoring sites, which cannot reveal the spatial heterogeneity of PM2.5 concentrations
within a large study area, which poses a great challenge to the spatial characterisation of
PM2.5 pollution. The spatio-temporal distribution of PM2.5 concentrations has been used to
estimate the spatio-temporal distribution of PM2.5 [35], but the models are still relatively
small and rely heavily on manual feature selection, which does not take full advantage to
express highly complex objective functions through deeper and wider network structures.
The existing machine learning models do not take into account the spatial and temporal
characteristics of PM2.5. To this end, there is an urgent need to develop machine learning
models that take into account land use information, correlation and spatio-temporal het-
erogeneity. Accurately revealing the spatial and temporal distribution characteristics of
PM2.5 concentrations is important for formulating PM2.5 pollution prevention, control and
management measures.
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The contributions of this study are as follows:

(1) This study uses an integrated approach combining the LUR model, Kriging method
and LightGBM model to improve the daily concentration estimates of PM2.5 in the
Chinese region from 2016 to 2021. AOD data, latitude and longitude information, me-
teorological observation elements, land use and road data are used to estimate PM2.5
concentrations. Specifically, the accuracy of PM2.5 change prediction is improved by
stepwise selection of LUR models to identify important predictor variables, and then
five machine learning algorithms (BPNN, DNN, RF, XGBoost and LightGBM) are
used to build prediction models.

(2) The hybrid spatial prediction model proposed in this paper combines the strengths
of LUR in identifying the most influential emission predictors. A hybrid spatial pre-
diction model built by identifying the most influential emission predictors combined
with LightGBM’s strength in estimating non-linear trends will be more widely effec-
tive than traditional machine learning estimation methods. Validated by R2, RMSE
and MAE metrics, the results show that LUR-GBM performs better.

(3) The spring, summer, autumn, winter and 2016–2021 average concentrations are mod-
elled, and the spatial and temporal characteristics of regional PM2.5 concentrations in
China are analysed.

The rest of the paper is organised as follows. The Section 2 focuses on the data sources
used in this study. The Section 3 introduces the methodology and model construction.
Section 4 discusses the model results and the spatial and temporal characteristics of PM2.5
distribution; Section 5 is the discussion, and Section 6, the conclusions.

2. Data Sources
2.1. MODIS Remote Sensing Data

The MODIS sensor of NASA is mounted on the Terra and Aqua satellites with multiple
channels, featuring multi-spectral, wide coverage and high temporal resolution, which can
invert the spatial distribution of AOD data with high accuracy. The MODIS MOD021KM
data released from 2016 to 2021 with a spatial resolution of 1 km were used in this work.

2.2. PM2.5 Site Monitoring Data

PM2.5 mass concentration ground-based monitoring data were downloaded from the
National Real-Time Urban Air Quality Dissemination Platform, and in this study, daily
PM2.5 mass concentrations were obtained as daily data for Chinese cities from 2016 to 2021.
The distribution of the monitoring stations is shown in Figure 1.
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2.3. Meteorological Data

The main meteorological data used are planetary boundary layer height (PBLH),
relative humidity (RH), air temperature (TEM), surface pressure (SP), wind speed (WIN)
and total rainfall (RF). The meteorological data were obtained from the ERA5 data on
the European Centre for Medium-Range Weather Forecasts website and were rastered,
resampled and cropped using ArcGIS to match the spatial resolution of the AOD data.

2.4. Land Use and Road Dataset

This study uses the land-use dataset published by the China Geographic Monitoring
Cloud platform. The classification and description of the independent variables are shown
in Table 1. Using ArcGIS 10.7 from Esri, Redlands, CA, USA, the land use was classified
into six categories, including arable land, forest land, grassland, water, construction land
and bare land, after stitching, cropping and reclassification, and considering the area and
attributes of each type of land. The road data was obtained from the vector road network
of OpenStreetMap, and four categories of highways, trunk roads, primary roads and
secondary roads, were extracted within the study area, and the same buffer zones were
established with the monitoring station as the centre. The length of each type of road within
each buffer zone was obtained as the road factor by the spatial superposition method.

Table 1. Classification and description of independent variables.

Variable Type Variable Name Unit Variable Description

Land type

cro % Cropland
for % Forest
gra % Grass
wat % Water
ind % Industrial and residential
sem % Seminatural

Terrain and landforms altitude m Altitude
Population pop people Population

Road traffic

hig m Highway
maj m Major road
hm m Sum of highway and Major road
min m Minor road

Meteorological elements

GST ◦C 0 cm Surface temperature
SSD h Sunshine hours
PRS hPa Pressure
TEM ◦C Temperature
RHU % Relative humidity
PRE mm Precipitation
WIN m/s Wind speed

3. Methods
3.1. LightGBM

The LightGBM algorithm is an improved optimisation algorithm for the gradient
boosting decision tree (GBDT) [36]. The model training process was based on a sufficient
amount of sample data, and the final output of the model was determined by building
multiple decision trees (weak learners) and combining the outputs of the decision tree
clusters. The actual training process can be expressed as follows: the decision trees are
added in an iterative manner, and when the increase in accuracy due to tree addition is less
than a certain threshold, the iteration is stopped and the LightGBM model consisting of
Ntree decision trees is obtained [37].

ϕ(PMi) =
Ntree

∑
k=1

fk(PMi) (1)
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where PMi is the PM2.5 influencing factors; fk(PMi) is the kth decision tree.
Heuristic information in LightGBM iteration trees can be used as an important measure

of features. Therefore, the tree structure-based metric will directly affect the quality of the
subset of candidate features and ultimately determine the experimental effectiveness of
the original machine learning algorithm. For any given tree structure, PM_Split represents
the total number of times each PM2.5 influence factor has been partitioned in the iteration
tree. PM_Gain represents the level of importance of each PM2.5 impact factor characteristic.
They are defined as follows:

PM_Split =
K

∑
t=1

Splitt , PM_Gain =
K

∑
t=1

Gaint (2)

where K is the K decision trees resulting from K rounds of iterations.

3.2. LUR Model

LUR is an effective method for modelling PM2.5 concentrations because of its high
simulation accuracy and comprehensive considerations [38]. In this study, a multivariate
regression equation, or LUR model, was constructed for PM2.5 concentrations in relation
to land-use type, topography, meteorology, road traffic, population density and pollution
sources. The basic form of the model usually consists of one dependent variable and two
or more independent variables and is calculated in equation [39].

y = α0 + α1PM(x1) + α2PM(x2) + . . . + αnPM(xn) + ε (3)

where y is the dependent variable and represents the PM2.5 concentration value; PM(x1),
PM(x2), . . . , PM(xn) are the different influencing factors of PM2.5; α0, α1, α2, . . . , αn are
the coefficient to be determined; ε is the random variable.

3.3. Kriging

The basic principle of Kriging’s method is to estimate data at other unobserved
locations in space from data at regularly distributed sample points in space [40].

3.3.1. Regionalised Variables

The study area can be considered as a regionalised variable satisfying Kriging’s
interpolation condition R(S), S1, S2, . . . , Sn are the location of PM2.5 ground monitoring
stations in the area. R(S1), R(S2), . . . , R(S3) are the observed value of PM2.5 at the
corresponding station. For a point S0 in the region, the spatial attribute Rd(S0) can be
obtained by interpolation with the Kriging method, and the temporal attribute Rt can
be expressed in terms of the month in which the point is located [41], which can be
expressed as:

Rd(S0) =
n

∑
i=1

ωiR(Si), Rt = m (4)

where Rd(S0) is the spatial attribute of the given point, ωi is the Kriging weight, R(Si) is
the monitoring value of the station around the point and m is the month of the given point.

Kriging satisfies the set of optimal coefficients with the smallest difference between
the estimated value Rd(S0) at the station and the true value R(S0), while satisfying the
condition of unbiased estimation, as follows:

min
ωi

Var(Rd(S0)− R(S0)), E(Rd(S0)− R(S0)) = 0 (5)

3.3.2. Variance Functions

The variance function is the basis of the kriging interpolation method and is a model
function used to describe the spatial relationship between PM2.5 ground monitoring stations
and between stations and pixels. The variance function for the regionalised variable R(S)
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can be expressed as the semi-variance µ(Si, Sj) of the difference between the observations
at the monitoring station Si and Sj as Equation (6):

µ(Si, Sj) =
1
2

E
[
Rd(Si)− R(Sj)

]2 (6)

3.3.3. Equation Solving

The Kriging equation can be obtained by minimising the variance of the unbiased sum
estimate in Equation (7).

n

∑
i=1

ωiµ(xi, xj)− ϕ = µ(x0, xi),
n

∑
i=1

ωi = 1 (7)

where ϕ is the Lagrangian multiplier factor. Solving the above system of equations yields
the Kriging weights ωi and hence the estimated value Rd(S0), for any point S0 in the region.
The Kriging method takes full account of the correlation of PM2.5 site data by calculating
the variance function of the sample.

3.4. LUR-GBM Model

Figure 2 shows the research framework. A total of six models (BPNN, DNN, RF,
XGBoost, LightGBM, LUR-GBM) were developed in this study. Given that the shortcomings
of machine learning models in selecting appropriate predictor variables can be addressed
by applying LUR, this study aims to use an integrated approach combining LUR and
machine learning models to improve the estimation of regional PM2.5 daily concentrations
in China for the period 2016 to 2021. First, a traditional LUR is used to identify significant
predictor variables. A deep neural network, random forest and XGBoost algorithms were
then used to fit a predictive model based on the variables selected by the LUR model.
Data partitioning, 10-fold cross-validation, external data validation and seasonal and year-
based validation methods were used to validate the robustness of the developed models.
Specifically, the significant predictor variables identified through the stepwise variable
selection of the LUR procedure were applied to LightGBM to improve the accuracy of
PM2.5 change predictions. A hybrid spatial prediction model combining the strengths
of LUR in identifying the most influential emission projections with the predictability of
machine learning in estimating non-linear trends will be more effective than techniques
that rely on LUR or machine learning alone. In order to fully consider the problem of
spatial correlation of monitoring station data in PM2.5 mass concentration estimation and to
improve the accuracy of PM2.5 spatial estimation, this paper introduces the Kriging method
and constructs a spatio-temporal LUR-GBM model, which provides a new idea to solve the
complex spatial relationship in PM2.5 estimation. The LUR-GBM model takes into account
the influence of the PM2.5 value at any point in space on the values of other stations in
the surrounding neighbourhood, using the spatial location estimate Rd calculated by the
Kriging method and the temporal location Rt of that point as input variables to the model.
The LUR-GBM model can be expressed as Equation (8).

EPM2.5 = Model( Rd, Rt, cro, f or, ind, altitude, AOD, TEM, WS, LAT, LON) (8)

where EPM2.5 is the LUR-GBM model PM2.5 estimate, Model is the LUR-GBM model, LAT
is the latitude and LON is the longitude.
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3.5. Accuracy Evaluation

To fully evaluate the performance of the LUR-GBM model, a ten-fold cross-validation
(10-CV) based on samples, sites and time was used, and the computed results were com-
pared with BPNN, DNN, RF, XGBoost and LightGBM. Three indicators, coefficient of
determination (R2), root mean square error (RMSE), mean prediction error (MAE) and
mean absolute percentage error (MAPE), were calculated separately from the model pre-
diction results to test the model performance [42]. R2 is a measure of the degree of linear
correlation between variables and reflects the proportion of the variation in the dependent
variable that can be explained by the independent variable. Therefore, the coefficient of
determination was selected as one of the indicators for model evaluation in this study [43].
Each evaluation indicator is calculated using the following formula:

RMSE =

√
∑ (PMF − PMT)2

N
(9)

R2 =
COV(PMF − PMT)√

var[PMF]var[PMT ]
(10)

MAE =
∑ (PMF − PMT)

2

N
(11)

MAPE =
∑|PMF − PMT |

N
× 100%

PMT
(12)

where PMF is the predicted PM2.5 value; PMT is the measured PM2.5 value; N is the
number of samples.

4. Results and Analysis
4.1. Correlation Analysis of PM2.5 Concentrations and Impact Factors

The results of the bivariate correlation analysis between PM2.5 concentration and
influencing factors are shown in Table 2. Within the land use sub-categories, arable land,
forest land, grassland and urban and rural industrial and mining residential land all
have a strong influence on the change of PM2.5 concentration. Among the road traffic
data, highways and major arterial roads had a strong influence on the change of PM2.5
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concentration, while topography, forest land, grassland and unused land had a negative
relationship with PM2.5 concentration, and road traffic, urban and rural industrial and
mining residential land maintained a positive relationship with PM2.5 concentration. PM2.5
concentrations are negatively correlated with factors such as woodland, grassland, water,
altitude, precipitation and relative humidity. PM2.5 concentrations are positively correlated
with factors such as industrial and mining settlements, barometric pressure, temperature,
population density and road length. p-values represent the level of significance. p-values
are highly significant at α = 0.01 for correlation and at α = 0.05 for correlation. Table 2 shows
that population was significantly correlated at α = 0.05, and all other modelling variables
were highly significant at the α = 0. 01 level, all passing the variable significance test.

Table 2. Results of bivariate correlation analysis between PM2.5 concentration and impact factors.

Independent
Variable

Pearson
Correlation p Independent

Variable
Pearson

Correlation p

cro 0.343 0.003 pop 0.310 0.021
wat −0.059 0.002 altitude −0.559 0.000
for −0.379 0.000 GST 0.178 0.000
gra −0.299 0.000 SSD 0.018 0.000
ind 0.322 0.000 PRS 0.302 0.000
sem −0.134 0.000 TEM 0.523 0.000
hig −0.084 0.000 RHU −0.215 0.001
maj 0.187 0.002 PRE −0.346 0.004
hm 0.177 0.000 WIN 0.415 0.000
min 0.125 0.002

4.2. Model Performance

Using China as the study area, data from 1 January 2016 to 31 December 2021 were
selected, and the training dataset and the test validation dataset were selected by multiple
random sampling. The training set was 70%, the test validation set was 30% and the
experimental evaluation was repeated and averaged as the evaluation result of the model.
Training of the LUR-GBM model was completed via Python 3.7. The LUR-GBM model
was trained using the target factors selected by bivariate correlation analysis as features of
the model and the PM2.5 concentrations at the monitoring stations as supervised values.
The LightGBM model had the following detailed parameters: Base learner = GBDT, the
number of base learners is 100, Num_leaves = 31, Learning_rate = 0.05, Feature_fraction = 0.9,
Bagging_fraction = 0.8, Bagging_freq = 5.

Table 3 shows the performance of the machine learning models, with R2 ranging from
0.76 to 0.98 for the five machine learning models in a sample-based cross-validation. The
R2 of both the LightGBM and LUR-GBM models considering site data correlation, was
greater than 0.9, with the LUR-GBM model performing best. The RMSE of the models
ranged from 6.43 to 11.37 µg/m3, with the LUR-GBM model having the lowest RMSE value
and the BPNN model having the highest RMSE value (11.37 µg/m3). The MAE was 4.17
to 8.35 µg/m3, with the LUR-GBM model having the lowest MAE value of 4.17 µg/m3,
followed by the LightGBM model at 4.56 µg/m3.

In the site-based cross-validation, the R2 values of the LightGBM and LUR-GBM
models considering geographical correlation and temporal variation were significantly
higher than those of traditional machine learning models such as XGBoost, RF, and BPNN,
but the R2 values were lower compared to those of the sample-based cross-validation
because of the significant spatial heterogeneity of PM2.5 distribution in space. The LUR-
GBM model has the highest R2 value of 0.91, followed by the LightGBM model, and the
BPNN model performed the worst. Comparing the RMSE and MAE metrics, the RMSE
and MAE values of the LightGBM and LUR-GBM models were significantly lower than
those of other traditional machine learning models, with the LUR-GBM model performing
best with RMSE and MAE values of 7.46 µg/m3 and 5.01 µg/m3, respectively.
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Table 3. Comparison of results of various models.

Based on Samples Based on Sites Based on Time

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

BPNN 0.76 11.27 8.35 0.65 11.26 9.34 0.56 13.28 9.69
DNN 0.84 10.33 8.05 0.78 11.09 8.86 0.77 10.43 7.67

RF 0.86 9.19 6.08 0.81 11.03 7.46 0.79 11.27 8.03
XGBoost 0.88 7.34 4.79 0.83 10.54 6.78 0.81 9.86 6.93

LightGBM 0.91 6.56 4.56 0.85 8.32 5.76 0.83 7.86 5.49
LUR-GBM 0.98 6.43 4.17 0.91 7.46 5.01 0.89 7.07 4.95

The LUR-GBM model performs well at the spatial scale, taking full account of the
relevance of site data. The relatively poor performance of the time-based cross-validation
models is due to the fact that the PM2.5 distribution varies significantly in time scale.
The R2 of each machine learning model ranged from 0.56 to 0.89, with the LUR-GBM
model performing the best with an R2 value of 0.89, followed by the LightGBM model
and the BPNN model performing the worst. Comparing the RMSE and MAE indices, the
LUR-GBM model had the lowest RMSE and MAE values of 7.07 µg/m3 and 4.95 µg/m3,
respectively, while the BPNN model had the highest RMSE and MAE values of 13.28 µg/m3

and 9.69 µg/m3. This indicates that the LUR-GBM model, which takes into account time
variation, performs better on the time scale.

Figure 3 shows the scatter plot of the PM2.5 concentrations estimated by the BPNN,
RF, DNN, XGBoost, LightGBM and LUR-GBM models fitted to the PM2.5 concentrations
measured at the ground monitoring sites. As can be seen from Figure 3, the LightGBM
model and LUR-GBM model outperform traditional machine learning models such as
BPNN, DNN, RF and XGBoost. The reason for this is that the LightGBM model and
the LUR-GBM model take into account site data and temporal variation and can better
characterise the spatial and temporal characteristics of PM2.5. The scatter density plots
drawn by the LightGBM model and the LUR-GBM have a fit ratio R2 of 0.91 and 0.98,
respectively, indicating that the LUR-GBM model is the best fit. The LUR-GBM is based
on the LightGBM model with the introduction of the Kriging method, which improves
the accuracy of PM2.5 estimation by calculating the variance function and taking full
account of the spatial correlation of station data. The BPNN estimated ground-level PM2.5
mass concentrations were the least well fitted, grossly underestimating PM2.5 values and
performing the worst. The overall error values of our model are small, but as some extreme
phenomena can occur, such as dust storms in places like Xinjiang, most of the areas where
the detection values exceed 200 µg/m3 are in these areas. This leads to situations where
some of the predicted data can deviate significantly from the true values, which, combined
with the fact that the monitoring stations in this part of the country are not fully covered
and the large distances between the various monitoring stations, leads to large deviations.
Furthermore, the model is based on daily regional PM2.5 mass concentration data for 2016–
2021 in China, taking into account regional variability and, therefore, a small number of
deviations in the predicted values. We can find by the value of MAPE that the average
error of BPNN is more than 30% at maximum, and the value of MAPE of the LightGBM
model and LUR-GBM model among the six models is less than 20%, where the average
error of LUR-GBM model is 15.304%. A comprehensive comparison of the six machine
learning models showed that the LUR-GBM model had the best prediction performance,
followed by the LightGBM model, while the BPNN had the worst prediction performance
among the six models.
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We validated the six models using annual average data from 2016 to 2021, and Figure 4
shows the scatter density plots of PM2.5 concentrations estimated by the BPNN, RF, DNN,
XGBoost, LightGBM and LUR-GBM models fitted to the actual PM2.5 concentrations mea-
sured at ground monitoring stations. The overall performance of the six models was better
than the performance of the predictions of daily concentrations. This is due to the fact that
annual concentrations are less variable and volatile and that annual values are less affected
by extreme values. As can be seen from Figure 4, the LightGBM and LUR-GBM models
outperformed traditional machine learning models such as BPNN, DNN, RF and XGBoost,
with R2 values of 0.82 and 0.866, respectively, in terms of goodness of fit. BP and DNN had
the worst fit performance of 0.75 and 0.79, respectively. The best RMSE values among the
six models were 5.571 ug/m3 for the LightGBM model and 5.291 ug/m3 for the LUR-GBM
model, while the worst was 6.669 ug/m3 for the BP. In terms of MAE values, the LUR-GBM
model had a minimum of 4.021 ug/m3 and the BP had a maximum of 6.669 ug/m3. In
terms of MAPE values, all six models were less than 15%, with the LUR-GBM model
being the smallest at 10.71%. A comprehensive comparison of the six machine learning
models shows that the LUR-GBM model had the best prediction performance, followed by
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the LightGBM model, while the BPNN has the worst prediction performance among the
six models. The values of RMSE, MAE and MAPE all decreased compared to the annual
concentration data. However, the R2 was considerably lower compared to the annual
concentration data, mainly because the annual concentration data was too small compared
to the daily concentration data for a good fit.
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Figure 4. Scatter density plots of annual mean concentrations for the six models.

Figure 5 shows a scatter density plot of the PM2.5 concentrations estimated by the
LUR-GBM model on a seasonal scale and fitted to the PM2.5 concentrations measured at
ground-based monitoring stations. A ten-fold cross-validation based on samples showed
that R2 (0.98) was highest in autumn. The highest RMSE (12.54 µg/m3) in spring and MAE
(7.61 µg/m3) in winter were the seasons where the higher correlation between surface
temperature and PM2.5 contributed to the difference in R2. In contrast, the lowest R2 (0.91)
and the lowest RMSE (4.34 µg/m3) and MAE (3.01 µg/m3) were recorded in summer.
The lower estimation error in summer was due to the lower ground level PM2.5 mass
concentration due to frequent rainfall and the higher estimation accuracy. Overall, the
LUR-GBM model performed well on seasonal scales and was able to predict the distribution
of PM2.5 mass concentrations on seasonal scales. To test the accuracy of the LUR-GBM
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model simulation, a linear correlation analysis was performed between the simulated PM2.5
model values at the validation site and the actual measured values at the site. As shown
in Figure 6, the fitted R2 for 2016, 2017, 2018, 2019, 2020 and 2021 are 0.98, 0.97, 0.97, 0.98,
0.98 and 0.98 respectively. The fitted R2 for the 6-year mean was 0.98, and the accuracy of
the annual mean inversion was slightly higher than the accuracy of the quarterly mean
inversion. The results show that the inversion of PM2.5 concentrations by constructing
the LUR-GBM model is highly accurate. The training and validation results of the LUR-
GBM model for 2016, 2017, 2018, 2019, 2020 and 2021 data showed a mean RMSE value of
9.29 µg/m3 and a mean MAE value of 5.819 µg/m3.
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4.3. Spatial and Temporal Distribution Characteristics of PM2.5 Mass Concentration in China
4.3.1. Seasonal Distribution Characteristics

The seasons were first divided according to the climatic conditions of the Chinese
region as a whole: spring from March to May, summer from June to August, autumn from
September to November and winter from December to February. The spatial distribution of
seasonal average PM2.5 concentrations is shown in Figure 7, mostly high in winter and low
in summer, falling in spring and rising in autumn. Summer air quality is good in all cities,
with pollution below 35 µg/m3 in most areas. East China, Central China and the Fenwei
Plain are the most polluted in winter, with most cities in the region exceeding 70 µg/m3.
Concentrations are higher in the north than in the south in spring and more serious in
autumn, mainly in East China and Xinjiang. The very highest values of seasonal pollution
occur in winter in Xinjiang, reaching above 100 µg/m3. Apart from the relatively good air
quality in summer, Xinjiang has a certain degree of pollution in all other seasons, but it is
still among the most polluted of all cities in the country in summer, and the pollution is
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at high levels throughout the region in winter. The overall air quality in southern China
is good, with little difference between spring, summer and autumn, based on less than
40 µg/m3, and relatively serious pollution in winter, mostly concentrated in Hunan and
Jiangxi provinces.
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4.3.2. Spatial and Temporal Distribution of PM2.5 Concentrations in China

Figure 8 shows the spatial distribution of annual average PM2.5 mass concentrations in
the Chinese regions as estimated by the LUR-GBM model. The PM2.5 values estimated by
the LUR-GBM model are consistent with the distribution trend of the measured values at
ground monitoring stations, with an annual average PM2.5 mass concentration of 38 µg/m3

from 2016 to 2021. The average PM2.5 concentrations from 2016 to 2021 show a spatially
higher level in the north than in the south. In 2016, the annual average PM2.5 concentration
was 47 µg/m3, with heavy pollution mainly concentrated in southern Hebei, Shandong
Province (except Weihai and Yantai) and the borders of Shandong, Anhui and Jiangsu
provinces, with some cities reaching severe pollution levels. Moderate pollution is mainly
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concentrated in the northeast and north of the Yangtze River, with some cities south of the
Yangtze being lightly polluted and some meeting air quality standards. In 2017, the overall
national pollution situation improved somewhat, with an annual average concentration of
43 µg/m3. Pollution concentrations in the southern part of the region were not significantly
different from 2016, with fewer areas of severe pollution in Shandong Province and some
cities having reduced from heavy to moderate pollution, although pollution in some cities
in Anhui increased; some areas south of the Yangtze River met air quality standards
with annual average concentrations below 35 µg/m3. In 2018, the annual average urban
PM2.5 concentration in China was 39 µg/m3, with significant improvement in air quality
conditions across the region. Heavy pollution areas are concentrated in the central region
provinces such as southern Gansu, southern Shaanxi, Shanxi, Henan and northern Hubei.
North of the Yangtze River has been reduced from moderate pollution to light pollution, and
the number of areas south of the Yangtze River air quality standards increased significantly.
In 2019, the national average PM2.5 concentration was 36 µg/m3, 57 µg/m3 in Beijing,
Tianjin, Hebei and surrounding areas, and 41 µg/m3 in the Yangtze River Delta, a decrease
of 2.4% from 2018. The concentration of PM2.5 in the Fenwei Plain was 55 µg/m3, with
serious pollution concentrated in the Fenwei Plain, Eastern China and Xinjiang. In 2020,
the national PM2.5 concentration was 33 µg/m3. The overall trend of contamination was
down due to the impact of the epidemic. In Beijing, Tianjin, Hebei and surrounding areas,
including key areas such as the Fenwei Plain, emissions of air pollutants remain high,
and PM2.5 concentrations remain high. The ratio of good days in prefecture-level cities
and above was 87.5% in 2021, an increase of 0.5 percentage points year-on-year; the PM2.5
concentration was 30 µg/m3. With the exception of Xinjiang and some provinces in East
and Central China, there were fewer areas of overall pollution. Polluted provinces such as
Henan, southern Hebei and northern Shaanxi all saw varying degrees of decline. China’s
series of environmental protection measures in recent years have been effective in reducing
the concentration of PM2.5 pollution, and the government should continue to maintain its
environmental monitoring efforts to improve air quality standards. The above analysis
shows the spatial distribution of annual average PM2.5 concentrations in Chinese cities
from a global perspective.
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Figure 8. Simulated annual average distribution of PM2.5 concentrations based on the
LUR-GBM model.

Spatially, as a whole, the polluted regions show more serious pollution in the east
than in the west, which is consistent with China’s overall economic development and
urbanisation and population distribution. Pollution is serious in northern China, with
pollutants concentrated in southern Hebei, northern Henan and western Shandong, with
average concentrations above 70 µg/m3, due to dense industry and serious pollutant
emissions in northern China. Central China and the Sichuan Basin also have greater air
pollution due to the economically developed and densely populated central China, where
intense human activity has led to increased pollutant emissions, and the special topography
of the Sichuan Basin, which is not conducive to the dispersion of pollutants. Due to its
southerly location, coastal position, high rainfall and low air pollution, the average PM2.5
concentration in southern China is below 30 µg/m3, which is lower than the national
average annual concentration. In addition, the Xinjiang region also experienced more
serious air pollution due to the frequent dust storms and poor air quality in the Taklamakan
Desert in Xinjiang.

4.4. Fitting Assessment of PM2.5 Concentrations in Typical Chinese Cities

The Beijing-Tianjin-Hebei Urban Agglomeration, the Yangtze River Delta and the Fenwei
Plain are areas with high emission intensity per unit area of air pollution sources in China,
and these three regions are also key areas identified by the state for air pollution prevention
and control [44]. We fitted PM2.5 concentrations to 10 typical cities in heavily polluted areas,
which are cities with large populations in Beijing, Tianjin and Hebei, the Fenwei Plain and
the Yangtze River Delta and have a relatively large number of observation sites. As shown in
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Figure 9, the R2 of the fit was above 98% for all 10 cities, with Hangzhou and Hefei having the
highest accuracy in terms of RMSE and MAE values and Shijiazhuang and Tianjin having
poorer results. We found that the accuracy of northern cities was lower than that of southern
cities, and the main reason for this is that northern cities such as Beijing and Tianjin are affected
by sandstorms, while the lower winter temperatures and more snow and ice lead to more
complex aerosol types, which affects the accuracy of the model.Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW  18  of  22 

 

 

 

Figure 9. Scatter plot of model results for the 10 cities  in the heavily polluted areas based on the 

LUR‐GBM model. 
Figure 9. Scatter plot of model results for the 10 cities in the heavily polluted areas based on the
LUR-GBM model.



Int. J. Environ. Res. Public Health 2022, 19, 6292 17 of 20

5. Discussion

(1) To verify that the PM2.5 concentration prediction based on the LUR-GBM model was
more accurate, validation was carried out from the perspective of different datasets
and different control models. In terms of cross-sectional datasets, by predicting PM2.5
concentrations based on sample-based datasets, site-based datasets and time-based
datasets, the LUR-GBM model was found to have the highest prediction accuracy
with sample-based datasets. In particular, compared to the PM2.5 concentration pre-
diction based on the station dataset, the result of the sample dataset-based prediction
improved R2 by 7.69%, reduced RMSE by 13.81% and reduced MAE by 16.77%. Com-
pared to the PM2.5 concentration prediction based on the time dataset, the result of
the sample dataset-based prediction improved R2 by 10.11%, reduced RMSE by 9.05%
and reduced MAE by 15.76%. From the models, the LUR-GBM model had improved
prediction accuracy over BPNN, DNN, RF, XGBoost and LightGBM. Compared to
the BPNN model, the LUR-GBM model improved R2 by 42.63%, reduced RMSE by
41.15% and reduced MAE by 48.45% on average. Compared to the DNN model, the
LUR-GBM model improved R2 by an average of 16.31%, reduced RMSE by 34.23%
and reduced MAE by 42.37%. Compared to the RF model, the LUR-GBM model
improved R2 by 12.99%, reduced RMSE by 33.22% and reduced MAE by 34.20%.
Compared to the XGBoost model, the LUR-GBM model improved R2 by an average
of 10.29%, reduced RMSE by 23.31% and reduced MAE by 22.54%. Compared to the
LightGBM model, the LUR-GBM model improved R2 by an average of 7.33%, reduced
RMSE by 7.46% and reduced MAE by 10.47%.

(2) The distribution of PM2.5 concentrations in China is characterised by high winter and
low summer, falling in spring and rising in autumn. In winter, PM2.5 pollution is most
severe in areas such as the Fenwei Plain. In spring, PM2.5 concentrations are higher in
northern China than in southern regions. In autumn, PM2.5 pollution is most severe
in eastern China and Xinjiang. In summer, air quality is better throughout the country,
except in Xinjiang.

(3) A further decrease was found in the national average PM2.5 concentration from
47 ug/m3 to 30 ug/m3 from 2016 to 2021. Seriously polluted areas are concentrated
in the Fenwei Plain, Eastern China and Western Xinjiang. In terms of the spatial distri-
bution of PM2.5 concentrations, China’s pollution regions as a whole are characterised
by higher levels in the east than in the west. North China is the most polluted region,
mainly including southern Hebei, northern Henan and western Shandong. This was
followed by greater air pollution in Central China, the Sichuan Basin and Xinjiang.
Southern China has the lowest PM2.5 concentration and the best air quality.

(4) PM2.5 concentration predictions for ten typical cities in heavily polluted regions of
China were studied and discussed and found to be less accurate in northern cities
than in southern cities. Hangzhou and Hefei had the highest forecast accuracy, while
Shijiazhuang and Tianjin had a lower forecast accuracy.

6. Conclusions

In this paper, a typical hybrid model LUR-GBM is proposed based on the PM2.5
observation data of China from 2016 to 2021. The spatial and temporal distribution of PM2.5
concentrations was estimated using AOD data from satellite remote sensing inversions
as well as conventional meteorological observation elements, land use and road data. By
analysing the spatial and temporal patterns of PM2.5 and its influencing factors, this paper
clarifies the changes in PM2.5 at different time scales and the underlying mechanisms in
recent years and summarises the general patterns of PM2.5 concentrations in the spatial
and temporal distribution in China. Therefore, the inversion of PM2.5 can help to grasp
the regional variation process of PM2.5 in time and space by taking into account the land
use information, correlation and spatio-temporal heterogeneity. This study provides a
scientific basis for the prevention and control of regional PM2.5 pollution and a new way
of thinking for management departments to obtain data on the spatial distribution of
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PM2.5 concentrations. The LUR-GBM method is a better solution to the problem of spatial
heterogeneity of research objects.

The recommendations in this paper are as follows:

(1) Improve joint prevention and control mechanisms in different regions. The formation
and sources of PM2.5 are complex, and it is difficult to control a single source and
a single city to radically reduce the pollution. Analysis of the spatial distribution
of PM2.5 on a regional scale can further provide reliable information to support the
establishment of improved regional joint prevention and control mechanisms in order
to better address urban air pollution.

(2) Fine-grained regulation of pollution levels by zoning. Pollution prevention and
control measures are formulated according to the different geographical features,
meteorological conditions and economic development of different regions, taking
into account local conditions. Differential control management for heavily polluted
areas and general areas. The relevant government departments should speed up the
improvement of early warning and treatment of heavily polluted areas.

(3) Implementation of seasonal differentiation of control. This study found significant
differences in PM2.5 concentrations between seasons, requiring the implementation
of targeted prevention and control measures. Measures such as reducing pollu-
tion through artificial precipitation, imposing restrictions on motor vehicles and
reasonable heating.

(4) Strengthen the control of pollution at the source. There is a need to increase energy
restructuring and energy conservation and emission reduction efforts to prevent and
control air pollution at the source. Rational allocation of functional tasks of agency
staff to areas with different PM2.5 levels through predictive warning. Timely release
of information on pollution sources to achieve the transformation from governance
to prevention.
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