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Gliomas with chromosome 1p/19q codeletion were considered a specific tumor entity.
This study was designed to reveal the biological function alterations tightly associated with
1p/19q codeletion in gliomas. Clinicopathological and RNA sequencing data from glioma
patients were obtained from The Cancer Genome Atlas and Chinese Glioma Genome
Atlas databases. Gene set variation analysis was performed to explore the differences in
biological functions between glioma subgroups stratified by 1p/19q codeletion status.
The abundance of immune cells in each sample was detected using the CIBERSORT
analytical tool. Single-cell sequencing data from public databases were analyzed using the
t-distributed stochastic neighbor embedding (t-SNE) algorithm, and the findings were
verified by in vitro and in vivo experiments and patient samples.We found that the
activation of immune and inflammatory responses was tightly associated with 1p/19q
codeletion in gliomas. As the most important transcriptional regulator of Galectin-9 in
gliomas, the expression level of CCAAT enhancer-binding protein alpha in samples with
1p/19q codeletion was significantly decreased, which led to the downregulation of the
immune checkpoints Galectin-9 and TIM-3. These results were validated in three
independent datasets. The t-SNE analysis showed that the loss of chromosome 19q
was the main reason for the promotion of the antitumor immune response. IHC protein
staining, in vitro and in vivo experiments verified the results of bioinformatics analysis. In
gliomas, 1p/19q codeletion can promote the antitumor immune response by
downregulating the expression levels of the immune checkpoint TIM-3 and its ligand
Galectin-9.

Keywords: glioma, 1p/19q codeletion, DNA repair functions, immune checkpoint, prognosis prediction
org December 2021 | Volume 12 | Article 8009281

https://www.frontiersin.org/articles/10.3389/fimmu.2021.800928/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.800928/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.800928/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhangwei_vincent@126.com
mailto:wanghongjun8000@sina.com
mailto:neuro_yw@njmu.edu.cn
https://doi.org/10.3389/fimmu.2021.800928
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.800928
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.800928&domain=pdf&date_stamp=2021-12-08


Li et al. 1p19q Codeletion Promote Immune Response
INTRODUCTION

Gliomas, the most common and lethal primary intracranial
tumor in adults, are characterized by strong invasiveness and a
high recurrence rate (1–3). Tumor-specific molecular alterations,
such as isocitrate dehydrogenase 1 (IDH1) mutation and the
codeletion of chromosome arms 1p and 19q (1p/19q codeletion),
could serve as prognostic indicators or therapeutic targets for
glioma patients (4–6). These biomarkers were also included in
the 2016 World Health Organization (WHO) Classification of
Tumors of the Central Nervous System (CNS), providing an
important theoretical foundation for the diagnosis and
individualized treatment of gliomas (7). However, the specific
molecular mechanism by which 1p/19q codeletion affects the
biological characteristics and clinical prognosis of gliomas
remains unclear.

Chromosome 1p/19q codeletion is a representative event in
the oligodendroglial histologic type of gliomas and is strongly
associated with overall survival of glioma patients (8–10). In
general, glioma patients with 1p/19q codeletion tend to have a
better prognosis (8, 11). Patients with 1p/19q codeletion are
more sensitive to chemotherapy with alkylating agents such as
temozolomide (TMZ) (12). The loss of chromosome 1p or 19q
inevitably results in significant reductions in the expression of
multiple genes located on these regions; thus, 1p/19q
codeletion can cause significant abnormalities in the
biological function of gliomas (13). The remolding of the
tumor immune environment plays an essential role in
chemotherapy resistance of various cancers (14). Thus, we
hypothesized that 1p/19q codeletion may improve glioma
sensitivity to postoperative treatment by regulating the
tumor immune microenvironment.

This study comprehensively analyzed the alterations in
biological functions associated with 1p/19q codeletion in
gliomas by gene set variation analysis (GSVA) (15). We
observed differences in immune system process between
patients according to 1p/19q codeletion status. To further
clarify the specific molecular mechanism of 1p/19q
codeletion remodeling of the immune microenvironment of
gliomas, CIBERSORT was applied, revealing seven immune
metagenes (16, 17). The results suggested that 1p/19q
codeletion upregulated immune response by reducing the
expression of TIM-3 and its ligand Galectin-9 but had no
significant effect on immune cell infiltration. We also found
that the transcription factor CCAAT enhancer-binding protein
alpha (CEBPA), located on chromosome 19q, played a key role
in regulating the expression level of Galectin-9 in both lower-
grade glioma (LGG) and glioblastoma (GBM). These results
indicate that the loss of chromosome 19q in glioma patients
with 1p/19q codeletion could significantly inhibit Galectin-9
expression and the immunosuppressive function of TIM-3. In
conclusion, this is the first integrative study to illustrate the
association between 1p/19q codeletion and the immune
microenvironment of gliomas, which may provide a more
accurate assessment of individualized clinical management in
patients with gliomas.
Frontiers in Immunology | www.frontiersin.org 2
METHODS

Sample and Databases
This study was approved by Beijing Tiantan Hospital Institutional
Review Board (IRB). Written informed consents were obtained
from the patients (or their families).

This study included a total of 368 patients with data on
transcriptome sequencing and 1p/19q codeletion status. The
details of sample acquisition and sequencing were described
previously (18). Pathological diagnosis was confirmed by at least
two neuropathology experts in the Neuropathology Department of
Beijing Neurosurgical Institute. The tumor 1p36 and 19q13 statuses
were determined using fluorescent in situ hybridization analysis of
formalin-fixed, paraffin-embedded blocks. The CGGA project
performed transcriptome sequencing on two batches of glioma
samples at different periods, named the CGGA database and the
CGGA New database respectively. These two databases are
mutually independent databases and can be used as an
independent verification database for each other. Sequence data
from the Cancer Genome Atlas (TCGA) mRNA-seq database were
downloaded from public databases (https://cancergenome.nih.gov).
The clinical information of the patients is summarized in Table 1.

Availability of Data and Material
The sequencing data, clinical data and molecular pathology data
of all patients were uploaded to the CGGA portal (http://cgga.
org.cn/). All data related to this research are available on
reasonable request from the first and corresponding authors.

GSVA
A total of 7,345 biological functional enrichment scores calculated
independently for each patient were generated based on default
parameters in the gsva package in R, as described previously (19).
Subsequently, all negatively regulated BPs have been removed.
Based on the remaining 6613 biological processes, the biological
functions related to 1p/19q codel status were examined. The gene
list for each biological function is available from the AmiGO 2
Web portals (http://amigo.geneontology.org).

Immune Cells and Cytokine
Enrichment Scores
The abundance of immune cells in each patient was estimated
from transcriptome sequencing data using CIBERSORT
analytical tool developed by Newman et al. (16). The
calculation was performed online using default parameters
(https://cibersort.stanford.edu). The calculation of cytokines
scores and the corresponding gene list were calculated by the
GSVA algorithm as described previously (18, 20). Subsequently,
the significance of the difference between the enrichment score of
two groups was verified by Student’s t-test.

Single-Cell Sequencing Analysis
Single-cell sequencing and molecular pathology data were
downloaded from the Gene Expression Omnibus databases
(https://www.ncbi.nlm.nih.gov/gds/?term=GSE70630 and
https://www.ncbi.nlm.nih.gov/gds/?term=GSE89567). Based on
December 2021 | Volume 12 | Article 800928
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the cell markers from the Cellmarker website (http://biocc.
hrbmu.edu.cn/CellMarker), the cells for each patient were
grouped independently using the t-distributed stochastic
neighbor embedding (t-SNE) algorithm in the R environment.

Immunohistochemical (IHC) Staining
Paraffin-embedded tissues were obtained from the CGGA
sample bank. The IHC experimental procedures and scoring
methods were as reported previously (21). The antibodies for
IHC staining included those for CEBPA (Abcam, ab140479,
1:200), Galectin-9 (Proteintech, 17938-1-AP, 1:100), and TIM-
3 (Proteintech, 60355-1-lg, 1:1000).

Cell Isolation and Culture
293T and U87 cell lines were obtained from the Institute of
Biochemistry and Cell Biology, Chinese Academy of Science.
293T and U87 cell lines were cultured in medium containing
DMEM (Gibco) supplemented with 10% FBS (Gibco). T cells
were obtained from a healthy adult male donor. Isolation and
culture of T cells was performed following the protocol as
previously described (22).

siRNA Transfection
The CEBPA siRNA and the corresponding negative control
plasmid were purchased from syngentech (Beijing, China).
293T cells were transfected with siRNA using X-tremeGENE
HP DNA Transfection Reagent (Roche, Switzerland) according
to instructions exactly. The transfection efficiency was
determined by the proportion of fluorescence-labeled cells.

Western Blotting
The extraction of total cell protein and the Western Blotting
experiment were carried out as previous described (23).
Antibodies for Western Blotting: CEBPA antibody (Abcam,
Frontiers in Immunology | www.frontiersin.org 3
ab140479, 1:1000), Galectin-9 antibody (proteintech, 17938-1-
AP, 1:500), TIM-3 antibody (proteintech, 60355-1-lg, 1:1000),
GAPDH antibody (proteintech, 60004-1-lg, 1:5000).

Flow Cytometry
The surgically removed tumor tissue was washed with
phosphate-buffered saline and immediately immersed in
DMEM medium and transported to the laboratory within half
an hour. Then, the tumor sample was fully mechanical and
enzymatic dissociated into single cells. After the dead cells
removed by Dead Cell Removal Kit (miltenyi, 130-090-101),
the remaining cells were used for flow cytometry. Antibodies for
flow cytometry: TIM-3 antibody (1:100, BioLegend, 345012),
Galectin-9 antibody (1:100, BioLegend, 348911), CD3 antibody
(1:100, STEMCELL, 60011AZ.1).

In Vivo Xenograft Growth
Animal experiments were performed at the animal laboratory of
Beijing Neurosurgical Institute according to NIH guidelines.
Luciferase labeled glioma tumor cells with/without CEBPA knock
down and T cells were mixed (1:1, totally 4 × 105 cells in 5 mL of
PBS) and then transplanted into the right hemisphere of NOD-
Prkdcscid Il2rgnull mice (23). The growth of intracranial tumors in
mice was monitored weekly by in vivo fluorescence imaging.

Statistical Analysis
The statistical analysis and visualization in this study were
performed using R (https://www.r-project.org/, v3.5.0), IBM
SPSS Statistics for Windows, version 25.0 (IBM Corp.,
Armonk, NY) and GraphPad Prism version 8.0 (La Jolla, CA).
After applying the homogeneity test of variance, significant
differences between two groups of normally distributed data
were verified by the Student’s t-test. Significant correlations
between two groups of normally distributed data were verified
TABLE 1 | Clinical information of patients.

Characteristics No. of Patients (CGGA) No. of Patients (CGGA New) No. of Patients (TCGA)

Codel Non-Codel Codel Non-Codel Codel Non-Codel

Age at diagnosis
Mean 38.5 38.1 41.3 38.9 43.5 37.8
Standard Deviation 7.4 8.2 9.3 8.9 12.3 11.7
Gender
Male 29 27 25 46 44 61
Female 15 19 26 24 38 59
Histology
Astrocytoma 0 31 5 30 2 44
Oligodendroglioma 22 1 16 3 63 31
Oligoastrocytoma 22 14 30 37 17 45
WHO Grade
II 44 46 51 70 82 120
III or IV 0 0 0 0 0 0
IDH1 Mutation
Mutation 44 46 51 70 82 120
Wildtype 0 0 0 0 0 0
Survival Time
Range (Days) 181-4143 19-4163 127-4075 41-4374 2-5466 1-6331
Median (Days) 3197 552.5 2703 664 439 373
December
 2021 | Volume 12 |
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using the Pearson’s correlation analysis. For all statistical
methods, p<0.05 indicated significant differences.
RESULTS

Gliomas With 1p/19q Codeletion Show a
Unique Tumor Immune Status
Chromosomal 1p/19q codeletion, as a genomic variation at the
chromosome level, contribute to dysfunction in tumor biological
processes (11, 24). To explore the potential functional
characteristics of 1p/19q codeleted tumors, the enrichment
scores of 6,613 biological functions were obtained through
GSVA of the CGGA and TCGA RNA-seq databases. As shown
in Figures 1A–C, more than 3,000 biological functions showed
significant differences between 1p/19q codeleted and non-
codeleted tumors. After classifying these functions, we found
that the immune system process was most tightly correlated
with the 1p/19q codeletion status in the glioma samples
(Figures 1D–F). These results indicated that 1p/19q codeletion
may play an essential role in the regulation of the tumor immune
microenvironment of gliomas.
Frontiers in Immunology | www.frontiersin.org 4
Overview of the Immune Process
in Tumors With Different 1p/19q
Codeletion Statuses
To overview the differences in immune response between 1p/19q
codeleted and non-codeleted samples, we included the top 11
critical immune system processes. Student’s t-tests were
performed to evaluate the differences in enrichment scores
between stratified patients. The results suggested that most
tumor-related immune responses were tightly correlated with
1p/19q codeletion status in the CGGA database, especially the
activation of T lymphocytes, T cell and natural killer (NK) cell-
mediated immune response to tumor cells, as well as the
production and secretion of cytokines (Figure 2A). These
analyses were also performed in the CGGA NEW and TCGA
RNA-seq database for validation, with similar results
(Figures 2B, C). These results indicated that 1p/19q codeletion
status had a significant effect on T lymphocytes, NK cells, and
cytokine-mediated antitumor immunity.

1p/19q Codeletion Status Was Associated
With Tumor Inflammatory Activities
Infiltrating immune cells are a vital component of the tumor
microenvironment, which has diverse roles in glioma biology (25).
A CB

D FE

FIGURE 1 | Relationships between chromosome 1p/19q codeletion and altered biological processes in glioma. (A–C) Heatmap showing the enrichment patterns of
biological processes associated with 1p/19q codeletion status in the CGGA, CGGA New and TCGA databases. (D–F) Alterations in different classifications of
biological functions in gliomas samples with 1p/19q codeletion.
December 2021 | Volume 12 | Article 800928
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Thus, to further explore whether there was a significant difference
in immune cell infiltration between 1p/19q codeletion and 1p/19q
non-codeletion samples, we evaluated the abundance of various
types of immune cells in the CGGA and TCGA databases by
CIBERSORT. The results showed significant differences between
stratified patients for only a few types of immune cells; however,
these differences could not be mutually verified in the three
databases (Supplementary Figures 1A–C). This finding
indicates that 1p/19q codeletion status may not regulate the
tumor immune microenvironment by affecting the infiltration
of immune cells in gliomas. To further investigate the function of
1p/19q codeletion in the tumor immune microenvironment of
gliomas, we assessed seven metagenes. As we described previously,
these seven metagenes represent several types of inflammation
and immune responses (18). The results showed significantly
Frontiers in Immunology | www.frontiersin.org 5
reduced enrichment scores for hematopoietic cell kinase,
lymphocyte-specific protein tyrosine kinase, and major
histocompatibility complex II (MHC-II) in patients with 1p/19q
codeletion (Figures 3A–C), suggesting the activation of the
immunological functions of lymphocyte and antigen-
presenting cells.

Specific Reduction in the Expression of
TIM-3 and Its Ligands in Gliomas With
1p/19q Codeletion
Our previous studies showed that immune checkpoints such as
programmed cell death protein 1 (PD1) and TIM-3 play a crucial
role in the regulation of the immune and inflammatory response
in glioma (18, 20). This study investigated multiple immune
checkpoint receptors and their ligands to further explore the
A

C

B

FIGURE 2 | Overview of the differences in kernel immune response in glioma patients stratified by 1p/19q codeletion status in the CGGA (A), CGGA New (B), and
TCGA (C) databases. The significance of the difference between the two groups was verified by Student’s t-test. nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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effect of 1p/19q codeletion on the expression level of immune
checkpoints. We observed significant differences in some
immune checkpoint receptors and their ligands in patients
stratified according to 1p/19q codeletion status in the CGGA
database (Figures 4A, B). For further validation, similar analyses
were performed in the CGGA NEW database and TCGA
database (Figures 4C–F). The results showed that only TIM-3
and DNAX accessory molecule-1 (DNAM-1) with their
Frontiers in Immunology | www.frontiersin.org 6
respective ligands showed consistent expression differences
between stratified patients across all databases (Figures 4A–F).
However, the expression level of DNAM-1 and its ligand CD155
in glioma was very low, indicating that they may play a limited
role in regulating the glioma tumor immune microenvironment
(Figures 4G–I). In contrast, high expression levels of TIM-3 and
its ligand Galectin-9 were observed in glioma samples
(Figures 4G–I and Supplementary Figure 2). Thus, we
A

C

B

FIGURE 3 | Enrichment scores of seven immune and inflammatory-related metagenes in glioma patients with different 1p/19q codeletion status in the CGGA (A),
CGGA New (B), and TCGA (C) databases. The significance of the difference between the two groups was verified by Student’s t-test. nsp > 0.05, *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.
December 2021 | Volume 12 | Article 800928
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hypothesized that 1p/19q codeletion may change the immune
microenvironment of glioma by affecting TIM-3 or Galectin-9
expression levels.

Decreased Expression of TIM-3 and Its
Ligands in 1p/19q Codeletion Tumors
Owing to Decreased CEBPA
To explore whether the differential expression of TIM-3 and its
ligands in different 1p/19q codeletion status was independent of
clinical characteristics, the relationship between them was
studied. The results showed that gender, age, total number of
tumor involved regions, and the degree of surgical resection are
not related to the expression of Galectin-9 and TIM-3
(Supplementary Figures 3–5). We further investigated the
specific molecular mechanism by which 1p/19q codeletion
affected TIM-3 and Galectin-9 expression levels. Relevant
studies confirmed that four transcription factors (AR, CEBPA,
CEBPB, and TFAP2C) are involved in the regulation of Galectin-
9 gene expression (26–28). We found that, among these four
Frontiers in Immunology | www.frontiersin.org 7
transcription factors, only CEBPA located on chromosome
19q13.11 was tightly correlated with Galectin-9 expression
level in both CGGA and TCGA databases (Figure 5A and
Supplementary Figure 6). Furthermore, we downloaded a
pan-cancer database from a public website to further explore
whether there are similar phenomena in other kinds of tumor
tissues. As shown in Figure 5B, compared with other tumor
samples, CEBPA and Galectin-9 were most closely correlated in
lower-grade glioma (LGG, WHO grades II and III). They were
also tightly correlated in glioblastoma multiforme (GBM, WHO
grade IV). These results indicated differences in the transcription
factors regulating Galectin-9 expression in different tumor
tissues. Among them, CEBPA played a key role in the
regulation of Galectin-9 expression in gliomas. As CEBPA is
located on chromosome 19q13.11, the deletion of chromosome
19q likely inhibits Galectin-9 transcription by downregulating
CEBPA expression. Due to the absence of ligands, the
immunosuppressive effect of TIM-3 was significantly
attenuated. This may explain the better prognosis of glioma
A

C D

E F

B

H

I

G

FIGURE 4 | Association between 1p/19q codeletion and immune checkpoints. (A–F) Differences in immune checkpoint expression in glioma patients with different
1p/19q codeletion status in the CGGA (A, B), CGGA New (C, D), and TCGA databases (E, F) databases. (G–I) TIM-3/Galectin-9 and DNAM-1/CD155 expression
levels in the CGGA (G), CGGA New (H), and TCGA (I). The significance of the difference between the two groups was verified by Student’s t-test. ****p < 0.0001.
December 2021 | Volume 12 | Article 800928

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. 1p19q Codeletion Promote Immune Response
patients with 1p/19q codeletion. To further investigate whether
the chromosome 1p deletion also participated in the regulation
of CEBPA and Galectin-9 expression, we also analyzed single-cell
sequencing data from the GSE70630 and GSE89567 databases. t-
SNE was performed to evaluate CEBPA and Galectin-9
expression levels in glioma cells with different 1p/19q
codeletion statuses. The results revealed significantly reduced
CEBPA and Galectin-9 expression levels in most glioma cells
with 1p/19q codeletion (Figure 5C). The same phenomenon was
found in glioma cells with only chromosome 19q deletion
(Figure 5C). However, glioma cells with intact chromosome
1p/19q showed a significantly increased proportion of cells with
high CEBPA and Galectin-9 expression levels (Figure 5C).

CEBPA, Galectin-9, and TIM-3 Protein
Expression Levels by IHC
To further verify the results of the bioinformatics analyses
described above, IHC protein staining was performed in an
independent group of glioma patients from the CGGA
database. After stratifying glioma samples according to WHO
grade and 1p/19q codeletion status, we found lower expression
levels of CEBPA, Galectin-9, and TIM-3 proteins in whole grade
glioma samples with 1p/19q codeletion compared with those in
samples with retained 1p/19q or normal tissues (Figures 6A, B).
Frontiers in Immunology | www.frontiersin.org 8
Collectively, we proved that 1p/19q codeletion status had a
significant impact on the tumor immune microenvironment of
gliomas at mRNA and protein levels.

The Decreased Galectin-9 Regulated
by CEBPA Can Improve the
Efficacy of Cytotherapy
To further verify the regulatory relationship between CEBPA and
Galectin-9, biochemical studies were performed. In vitro
experiments confirmed that knockdown of CEBPA can
significantly decrease in expression of Galectin-9 at the
transcriptome level and protein level (Figures 7A, B).
Furthermore, 4 samples from 1p/19q codel LGG and 5 samples
from 1p/19q non-codel LGG were collected for flow cytometry
experiments. The proportion of cells expressing CD3, TIM-3 and
Galectin-9 were tested by Flow Cytometer. The results showed
that the proportion of CD3+ cells was no significant correlated
with the 1p/19q codel status of LGG, and the positive ratio of
TIM-3 and Galectin-9 were significantly lower in 1p/19q codel
LGG (Figure 7C).

Cytotherapy, as a new type of tumor immunotherapy, is
coming into focus recently (29). Therefore, the difference in
efficacy of cytotherapy in 1p/19q codel and non-codel tumors
were explored. Luciferase labeled glioma tumor cells with/
December 2021 | Volume 12 | Article 800928
A C

B

FIGURE 5 | 1p/19q codeletion downregulated Galectin-9 expression via CEBPA. (A) Correlations between Galectin-9 and transcription factors by Pearson
correlation analysis in the CGGA and TCGA databases. (B) Correlation between Galectin-9 and CEBPA detected by Pearson correlation analysis in the TCGA pan-
cancer database. (C) t-SNE analysis performed to evaluate the association between Galectin-9 expression and the loss of chromosome 19q.
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without CEBPA knock down and T cells were mixed (1:1) and
then transplanted into the intracranial of immunodeficient mice.
The growth of intracranial tumors in mice was monitored weekly
by in vivo fluorescence imaging. The results showed that tumors
with CEBPA knock down (simulate the 1p/19q codel tumor) can
improve the inhibition of T cells on tumor cells (Figure 7D).
DISCUSSION

The 2016 WHO Classification of Tumors of the CNS included
several tumor-specific molecular alterations in its classification
and diagnosis of gliomas (7). Among them, 1p/19q codeletion
status was included in the stratification of oligodendroglioma.
Several studies have demonstrated the significant prognostic value
of 1p/19q codeletion in WHO subgroups of oligodendrocytoma
(10, 12). In recent years, immunotherapy has been widely applied
in tumors, but many solid tumors show poor immunotherapy
effects due to the special immunosuppressive microenvironment
(30). Glioma, as an immunologically “cold tumor”, is considered
to be highly resistant to immunotherapy (31). However, our study
found that patients with 1p/19q co-deleted glioma may benefit
Frontiers in Immunology | www.frontiersin.org 9
from immunotherapy. Our research provided a theoretical basis
for the application of immunotherapy in these glioma patients.

The tumor immune microenvironment, including immune
cells and immune-related molecules, plays an essential role in
glioma occurrence and development (32). The present study
mainly explored the association between 1p/19q codeletion and
glioma tumor immune microenvironment. In this study, we
found that 1p/19q codeletion status did not significantly affect
immune cell infiltration. However, the expression levels of
immune checkpoint TIM-3 and its ligand Galectin-9 were
tightly associated with 1p/19q codeletion. To further explore
the specific molecular mechanism of this phenomenon, we
assessed four transcription factors of Galectin-9 (AR, CEBPA,
CEBPB, and TFAP2C) and found that CEBPA on chromosome
19q played a leading role in the transcriptional regulation of
Galectin-9 in gliomas. Moreover, t-SNE analysis in single-cell
RNA sequencing data indicated that the loss of chromosome 19q
rather than chromosome 1p caused decreased Galectin-9
expression and abnormal TIM-3 function. CEBPA’s regulation
of Galectin-9’s transcription and protein has been verified by
experimental and clinical samples. Importantly, the killing effect
of T cells on CEBPA-decreased tumor cells was significantly
A

B

FIGURE 6 | TIM-3, Galectin-9, and CEBPA expression levels evaluated by IHC protein staining in glioma samples stratified by WHO grade and 1p/19q codeletion status.
(A) IHC staining of CEBPA, Galectin-9 and TIM-3 in glioma samples stratified by WHO grade and 1p/19q codeletion status. (B) Differential analysis of HScore of IHC
staining of CEBPA, Galectin-9 and TIM-3 in glioma samples. The significance of the difference between the two groups was verified by Student’s t-test. ****p < 0.0001.
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increased in vivo. This result suggests that patients with 19q
deletion may be insensitive to immune checkpoint inhibitors due
to TIM-3 and Galectin-9 dysfunction. In contrast, patients with
intact chromosome 19q could benefit from cytotherapy.

In addition to TMZ, limited breakthroughs in recent decades
have been reported to improve the outcome in the conventional
treatment of gliomas (33–36). To change this situation, many
efforts have been made to identify novel molecular markers and
therapeutic methods for managing gliomas (5, 6, 8, 37–39).
However, limited studies have focused on the effect of 1p/19q
codeletion on the biological processes and tumor immune
microenvironment of gliomas.

Gliomas with 1p/19q codeletion tend to show characteristics of
weaker invasive ability and higher therapy sensitivity (40–42). This
is one of the main reasons that oligodendrogliomas characterized
by 1p/19q codeletion show a clear boundary on magnetic
resonance imaging and better clinical prognosis (43). Recently,
Chai et al. reported a significant correlation between 1p/19q
codeletion and genes involved in cell proliferation, the
extracellular matrix, angiogenesis, and DNA injury response (13).
Moreover, the oligodendroglioma cells are deficient in microtube-
associated gap junction-mediated tumor cell interactions essential
for astrocyte invasion, proliferation, and radioresistance (44).
However, these studies failed to provide treatment guidance for
Frontiers in Immunology | www.frontiersin.org 10
patients with 1p/19q codeletion, especially immunotherapy. The
tumor immune microenvironmental status in many malignant
tumors significantly impacts immunotherapy sensitivity (45–47).
Our previous studies showed that immune checkpoints such as
PD-LI and TIM-3 could suppress T cell function and macrophage-
related immune response in gliomas and lead to worse patient
prognosis (18, 20). Thus, the negative correlation between TIM-3
and 1p/19q codeletion indicated that gliomas with the loss of
chromosome 1p or/and 19q may benefit more from
immunotherapy due to the altered immune microenvironment.
Our study initially confirmed the above viewpoint and could be
applied to guide the immunotherapy of patients with glioma.

This study has several limitations. First, although only patients
with IDH mutation and WHO II glioma were included in this
study, the bias caused by other genetic differences in the results still
cannot be eliminated. Second, the directionality of most biological
functions cannot be reflected by the corresponding enrichment
scores. Therefore, the difference analysis of enrichment scores in
different 1p/19q status in this study only indicated the strength of
the correlation. The directionality of the correlation still needs
further experimental verification. Third, since 1p/19q co-deleted
glioma cell lines cannot be established in vitro, the results of in vivo
and in vitro experiments in this study need to be further verified in
transgenic mice or patients.
A C

B D

FIGURE 7 | Decreased CEBPA expression leads to a decrease in Galectin-9 expression and an increase in the efficacy of cytotherapy. (A) Results of RT-PCR
showed that the decrease of CEBPA leads to a significant decrease in the mRNA expression of Galectin-9 in U87. (B) Results of western blot showed that the
decrease of CEBPA leads to a significant decrease in protein expression of Galectin-9 in U87. (C) Results of flow cytometry showed that the proportion of Galectin-9
and TIM-3 positive cells in patients with 1p/19q codel LGGs was significantly lower than that in patients with 1p/19q non-codel LGGs. There was no significant
difference in the proportion of CD3 positive cells between the two groups. (D) Results of in vivo fluorescence imaging showed that the decrease of CEBPA can
enhance the killing effect of T cells on tumor cells. The significance of the difference between the two groups was verified by Student’s t-test. nsp > 0.05, *p < 0.05,
**p < 0.01, ***p < 0.001.
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In conclusion, to the best of our knowledge, this was the first
study to investigate the association between 1p/19q codeletion
and glioma tumor immune microenvironment. Comprehensive
analysis of RNA sequencing data from the CGGA and TCGA
databases and single-cell sequencing data from the GSE70630
and GSE89567 databases showed that the loss of chromosome
19q altered the tumor immune microenvironment by
downregulating the immunosuppressive function of TIM-3 and
its ligand Galectin-9 in glioma patients with 1p/19q codeletion,
which may further affect the tumor sensitivity to chemotherapy
and immunotherapy. These conclusions provided new insight
into the biological functions of 1p/19q codeletion in glioma
and might be an important reference for individualized
immunotherapy in glioma patients.
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