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Abstract: At the end of fermentation, wine contains approximately 20% (w/v) of solid material,
known as grape marc (GM), produced at a yield of 2 t/ha. Cheese manufacture produces cheese
whey (CW), which is over 80% of the processed milk, per unit volume. Both waste types represent
an important fraction of the organic waste being disposed of by the wine and dairy industries.
The objective of this study was to investigate the bioenergy potential through anaerobic codigestion
of these waste streams. The best bioenergy profile was obtained from the digestion setups of mixing
ratio 3/1 GM/CW (wet weight/wet weight). At this ratio, the inhibitory salinity of CW was sufficiently
diluted, resulting in 23.73% conversion of the organic material to methane. On average, 64 days of
steady bioenergy productivity was achieved, reaching a maximum of 85 ± 0.4% CH4 purity with a
maximum cumulative methane yield of 24.4 ± 0.11 L CH4 kg−1 VS. During the fermentation there
was 18.63% CODt removal, 21.18% reduction of conductivity whilst salinity rose by 36.19%. It can be
concluded that wine and dairy industries could utilise these waste streams for enhanced treatment
and energy recovery, thereby developing a circular economy.

Keywords: anaerobic digestion; cheese whey; electrical conductivity; grape marc; methane
production; salinity

1. Introduction

Traditionally, lignocellulosic-rich biomass is resistant to natural degradation and therefore difficult
to utilise. For example, grape marc (GM), a residue consisting of grape seeds, skins, and stalks,
often represents a disposal problem for wineries [1–3]. The Australian wine industry has a 4% market
share of the global wine industry, and the 5th largest wine exporter, crushing 1.73 million tonnes of
wine grapes in 2019 alone [4]. Depending on the grape variety, moisture content, and juice extraction
method used, the subsequent byproduct wastes can reach as much as 27% average of the initial fresh
weight [5]. This poses a secondary treatment concern and waste removal challenge among large wine
producers. Consequently, this business segment has been outsourced to industry players specialising in
value-creation from such wastes. In Australia, Tarac Technologies oversees operations for the collection
of grape marc from at least 90% of the wine industry [6].

To address this environmental issue, various treatment strategies utilising winery wastes
as feedstock have been trialled. These include extraction of commercially relevant chemicals
such as ethanol, phenol, and tannin, the composting of GM and its application in animal feeds,
and the use of GM as a substrate in energy-conversion technologies including pyrolysis, gasification,
and combustion [7–10]. In the biological treatment of GM, Javier et al. [11] achieved mono-digestion in
“wet” reactor setups through progressive activation and acclimatisation. Previously, Makadia et al. [12]
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proceeded through the codigestion of grape marc with other organics in “wet” anaerobic digestion
(AD) systems for methane generation. There are indications that the optimisation of energy recovery
utilising GM as a substrate in anaerobic systems holds the potential for valorisation of this abundant
sustainable resource [13]. However, energy recovery through any of the thermal conversion processes
mentioned above (viz. gasification) are highly endergonic reactions and polluting [10]. In contrast,
microbial-mediated processes for bioenergy extraction exhibit greater efficiencies, although cumulative
energy outputs vary among studies due to differences in biocatalysts, organic substrate, pretreatment,
and digestion conditions used [14]. Therefore, continued research aimed at technology improvements
is warranted.

The industrial production of cheese from milk processing results in over 80% of watery waste
cheese whey [15,16]. In 2018, Australia had 6% of the worldwide dairy marketplace, with cheese
exports of 2.4 million tonnes [17]. Considering the average cheese/whey ratio of 20/80 per cubic volume
of fresh milk in the cheese-making operations, the dairy industry is thus confronted with a major
problem area for waste management. This liquid fraction is highly polluting due to its high chemical
oxygen demand [18]; in addition, high ammonia concentration may result in biological treatment
failure [19]. Initial efforts for the valorisation of CW often include the isolation of important building
blocks such as lactose, proteins, and minerals [20]. Downstream energy-geared technologies often
digest CW in conjunction with other substrates for optimally combined waste biodegradation [21–23].
There is a vast array of organic substrates that can be codigested with CW in the determination of the
most promising prospective bioenergy application. For conventional thermal conversion methods
production feedstock with less than 10% moisture are required [24]. Therefore, CW would require
significant pretreatment before use in such thermal applications, considering the water content is
generally above 90% [25]. Consequently, anaerobic digestion utilising biocatalysts has consistently
been implemented to utilize these problematic wastes [9,14].

Anaerobic treatment processes are broadly divided into two types depending on the solids load
contained in the reactor. Solid-state anaerobic digestion (SS-AD) with a total solids loading ≥10% of
working volume contrasts with bubbled liquid AD operated at ≤10% total solids [26]. SS-AD essentially
offers greater feedstock utilisation, lower water addition, and higher biodegradation levels. Despite
these advances, SS-AD reactors have faced operational issues related to a lack of digestate homogeneity,
rapid acidification, and inadequate heat and mass transfers [8,27,28]. In contrast, liquid (“wet”)
reactor systems have enjoyed extensive detailed studies, mathematical model development and routine
full-scale implementation. To illustrate, a waste-to-energy plant built by Yarra Valley Water north of
Melbourne, Australia, was commissioned for a treatment capacity of 33,000 tonnes of organic wastes
in 2017 [29]. This energy-generation facility fully meets the energy requirements for the nearby sewage
treatment plant; surplus electricity is exported to the grid.

However, liquid digestions require substantial reactor sizes, large volumes of water and additional
financial costs for continual sludge heating and mixing [29,30]. In contrast, SS-AD systems have proven
more effective in the treatment of lignocellulosic material than their liquid-based counterparts [31–33].
One explanation is that the characteristic solid organic matrices of SS-AD systems, including humidity
content, closely mimic the natural habitat of microorganisms for growth and metabolism [34].
In addition to providing adhesion surfaces, lignocellulosic matrices achieve higher contact of
microorganisms with substrates during dry fermentation.

When investigating the impact of temperature on reactor performance, Shi et al. [35] concluded
that thermophilic temperatures are better suited for the treatment of lignocellulosic biomass than
the mesophilic temperature range; faster reaction kinetics and greater waste reduction occurred at
higher temperatures. Forster-Carneiro et al. [36] also established that thermophilic temperatures were
appropriate for the biodegradability of solid organic wastes.

To ameliorate the negative environmental impact of untreated wastes from wine- and
cheese-making processes, one sustainable remediation strategy would be the establishment of a
biodegradable codigestion using lignocellulosic GM with CW wastes. Previously, both Kassongo et al.
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and Togo et al. [37,38] concluded that CW was a promising substrate in submerged fermentation for
electricity generation through microbial fuel cell technology. However, to the best of the authors’
knowledge, the direct codigestion of GM and CW in SS-AD systems for bioenergy production has not
been previously reported.

In this context, this study aimed to investigate the potential for methane production at thermophilic
temperature by codigesting GM and CW in defined ratios, resulting in differential dilutions while
simultaneously varying the total solids (TS) content. Anaerobic monodigestion of GM was also
evaluated to assess the impacts of codigestion in terms of enhanced methane production.

2. Results and Discussion

2.1. Biogas Production

2.1.1. Cumulative Biogas Yield with Various Mixing Ratios

After a 10-day lag period, digesters containing 3/1 GM/CW (w/w) produced cumulative biogas of
34.24 ± 0.1 L gas kg−1 VS, exhibiting a predominantly monophasic curve (Figure 1).
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Figure 1. Cumulative biogas yield (L gas kg−1 VS) in dry-thermophilic digesters (55 °C). Triplicate 

digesters were averaged and reported as mean ± standard error. The separate feedstock mixing ratios 

were 1/3 GM/CW (w/w; green); 2/2 GM/CW (w/w; orange); 3/1 GM/CW (w/w; red); and 4/0 GM/CW 
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Figure 1. Cumulative biogas yield (L gas kg−1 VS) in dry-thermophilic digesters (55 ◦C). Triplicate
digesters were averaged and reported as mean ± standard error. The separate feedstock mixing ratios
were 1/3 GM/CW (w/w; green); 2/2 GM/CW (w/w; orange); 3/1 GM/CW (w/w; red); and 4/0 GM/CW
(w/w; blue).

Replicate digesters containing 1/3 GM/CW (w/w) were characterised by a cumulative 6.60 L gas
kg−1 VS. Biogas production peaked on day 2 before slowing down, with production remaining low
for most of the fermentation. Biogas production reached a cumulative 16.31 ± 0.2 L gas kg−1 VS in
digesters containing 2/2 GM/CW (w/w) following a lag of 54 days (Figure 1). This low biogas production
was likely due to inhibitory effects of protein-rich CW, which is known to result in the build-up of
ammonia when used as a predominant component of a codigestion [39].

Cumulative biogas yield in the GM monodigestion digesters containing 4/0 GM/CW (w/w)
were initially the lowest; performance later improved, reaching a cumulative 13.66 ± 0.1 L gas kg−1 VS
(Figure 1).

2.1.2. Cumulative Specific Methane Yield (SMY)

The experimental SMY in digesters containing 3/1 GM/CW (w/w) reached 24.43 ± 0.11 L
CH4 kg−1 VS, the highest yield obtained (Figure 2). The calculated theoretical SMY was 103 L
CH4 kg−1 VS, i.e., 23.73% of the organic C was converted to CH4. In contrast, the cumulative SMY
reached only 9.08 ± 0.1 L CH4 kg−1 VS in digesters containing 4/0 GM/CW (w/w), corresponding
to 12.87% bioconversion of organic C to CH4. When compared to other GM-based studies,
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higher digestibility has been reported, depending on the wine production methods employed and the
grapevine cultivars used. Javier et al. [11] using GM wastes as a sole substrate achieved an average
biodegradability of 51%, whilst Fabbri et al. [40] reported that the GM biodegradation index could
reach 71%.
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Figure 2. Cumulative methane production (L CH4 kg−1 VS) in digesters containing 1/3 GM/CW (w/w)
[green]; 2/2 GM/CW (w/w; orange); 3/1 GM/CW (w/w; red); and 4/0 GM/CW (w/w; blue) at 55 ◦C.
Values reported as mean ± standard error.

The lag phase is an important parameter of the efficiency of AD [13]. In digesters containing 3/1
GM/CW (w/w) both cumulative gas yield and methane production rate were the greatest. In these
digestions, the lag to methane production was 10 days preceded by an overproduction of CO2,
which gradually decreased. The digesters produced increasingly greater daily volumes of methane
during steady-state biogas production over 64 days before declining (Figure 2).

Methanogenesis inhibition occurs when there is accumulation of volatile fatty acids (VFAs)
during acidogenesis, coupled to subsequently slower downstream consumption of the metabolites
by microorganisms [41]. While evaluating the effect of substrate concentration on dry mesophilic
anaerobic digestion of the organic fraction of municipal solid waste (OFMSW), Fernandez et al. [42]
found that an increase in solids content to 30% TS for digestion required 0–35 days for hydrolysis and
acidogenesis to occur, resulting in a high concentration of fatty acids (up to 1.254 g L−1 for acetate).
Acetate is the primary precursor for acetoclastic methanogenesis in AD. The balance of metabolite
production and removal rates will thus result in either activation or inhibition of downstream catalytic
reactions in the digestate. In another study that dealt with OFMSW, methane production was observed
only from day 63 [43].

The cumulative SMY in digesters containing1/3 GM/CW (w/w) was 0.13 L CH4 kg−1 VS (Figure 2).
Based on the experimental CODt removed, the theoretical methane production was 23.33 L CH4 kg−1

VS; only 0.56% of organic carbon was converted to methane gas. The initially poor digestibility of the
organic fraction in digesters containing 1/3 GM/CW (w/w) may be a contributory factor to the relatively
low SMY obtained.

The addition of comparable amounts of GM to CW to lower the dilution of digesters containing
2/2 GM/CW (w/w), potentially mitigating the inhibitory effects of protein-rich CW resulted in improved
process stability, with SMY that accrued to 10.27 ± 0.2 L CH4 kg−1 VS with an associated 30-day
steady-state. The theoretical SMY, based on CODt removal was 159 L CH4 kg−1 VS, with the conversion
of 12.58% of organic C to methane. Similarly, Dinuccio et al. [44] concluded that considerable
lignocellulosic material was undegraded during AD because of its crystalline structure.

Makadia et al. [12] only achieved a total SMY of 31 L CH4 kg−1 VS in the codigestion of milled GM
and winery wastewater at 35 ◦C over 15 weeks despite the application of a liquid-based digester system
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with regular mixing. In addition, Rebecchi et al. [45] monodigested GM in 0.05 L “wet” systems at
55 ◦C over 12 weeks, resulting in a cumulative SMY of 40 L CH4 kg−1 VS. Taken together, irrespective
of GM composition, digestion temperatures and digester configurations, the application of GM in
batch systems had similar bioenergy outputs. However, SS-AD in our study, especially the ratio of
3/1 GM/CW (w/w) had greater organic load per cubic volume of the reactor because of the high TS,
allowing for more feedstock treatment. In addition, the lack of mixing was an additional cost-saving
step, whilst still achieving competitive calorific productivity within the same feedstock type.

Da Ros et al. [13] demonstrated that GM as feedstock for larger treatment capacity in 5-L
continuously stirred systems were capable of exceeding 300 L CH4 kg−1 VS and that temperature
increase did not enhance digestion. However, there would be additional costs in continuously mixing
and heating such “wet” systems [29]. Therefore, the increased experimental SMY values reported by Da
Ros et al. [13] is not necessarily a guarantee of a system’s economic viability as the bioenergy recovered
must be considered alongside the combined specific energy requirements for methane production [41].
To bridge this gap, energy balance analyses allow for adequate appraisal across studies.

2.2. Physicochemical Characteristics of Effluent

2.2.1. pH

The inhibition of methanogenesis observed in codigestion experiments was accentuated by a
pH reduction, likely due to the release of phenolic compounds and organic acids causing a gradual
acidification of the digestate [11,46–48]. The initial pH, 7.20 decreased to 5.79 and 6.44 in digesters
containing 1/3 GM/CW (w/w) and 2/2 GM/CW (w/w), respectively (Table 1).

Table 1. Effluent characteristics at the completion of the anaerobic treatment. Replicates were configured
in a parallel arrangement of grape marc (GM) and cheese whey (CW), on wet weight basis, of ratios
1/3 GM/CW; 2/2 GM/CW; 3/1 GM/CW; and 4/0 GM/CW. Values recorded as mean ± standard error.

Parameter Unit 1/3 GM/CW 2/2 GM/CW 3/1 GM/CW 4/0 GM/CW

TS % 1.60 ± 0.3 3.17 ± 3.3 10.5 ± 3.4 19.4 ± 1.7
VS % 0.91 ± 0.2 1.38 ± 0.3 7.58 ± 2.6 12.1 ± 0.5

CODt g L−1 90.0 ± 10 191 ± 22 214 ± 5.0 219 ± 25
CODs g L−1 27.0 ± 3.0 29.5 ± 3.5 22.0 ± 4.0 20.0 ± 3.0
TKN g L−1 4.60 ± 0.1 8.29 ± 0.2 4.23 ± 0.5 12.8 ± 0.1

COD/N — 19.57 23.03 50.58 17.05
pH — 5.79 ± 0.0 6.44 ± 1.0 7.64 ± 0.1 8.21 ± 0.1
EC mS cm−1 9.38 ± 0.0 12.9 ± 0.6 13.4 ± 2.5 10.6 ± 0.3

Salinity % 6.15 ± 2.3 8.70 ± 2.7 7.15 ± 1.4 3.65 ± 0.1

In addition, methanogens are known to be sensitive to H+ levels in the digestate and thus possess
a narrow optimal pH range, 6.6–7.2 [49]. Digesters containing 3/1 GM/CW (w/w) had an alkaline
starting pH (8.52) that slowly increased over time with methane production over a prolonged operation,
in contrast to digesters that were already near pH 7 at the start.

Moreover, the optimal pH for ammonification is between pH 6.5 and 8.5 [50]. Digesters with an
initial pH of 7.2, containing diluted CW setups did not hold sufficient buffering strength for prolonged
digestion. This may explain the pH reduction to as low as pH 5.79 in these digesters. However, at lower
CW-based dilution (e.g., 3/1 GM/CW and 4/0 GM/CW), effluent pH was within the optimal range
(Table 1).

The pH was stable at 8.21 ± 0.1 in GM monodigestion digesters, aided by a lack of exogenous
CW-related proteins. Moreover, nitrate ammonification may have outcompeted denitrification because
of the initially high carbon (i.e., electron donor) and low NO3

− (i.e., electron acceptor) concentrations
together with thermophilic conditions [51,52].
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2.2.2. Electrical Conductivity

Hydrolysis of polymers such as carbohydrates, proteins, and lipids into their respective monomers
lowers electrical conductivity in the extracellular medium, thus diluting conductive ionic species,
which shuttle electrons, which are required for microbial metabolism and growth (Table 1; [53]).
Klein et al. [54] monitored the intrinsic conductivity of grapevine residues in anaerobic digesters over
26 weeks; an initial conductivity of 15 mS cm−1 yielded 0.11 m3 CH4 kg−1 VS; this declined to 0.04 m3

CH4 kg−1 VS when conductivity reduced to 10.1 mS cm−1. Changes in conductivity were shown to
approximate methane yield up to 2 days ahead of biogas production. Therefore, the magnitude of
variation in the electro potential parameter can be related to the rate of hydrolysis. This was confirmed
in the results from the digesters containing 3/1 GM/CW (w/w), which showed the least reduction in
conductivity (21.18%) and the highest SMY; this contrasted with digesters containing 1/3 GM/CW
(w/w), which had the highest change in conductivity (89.84%) and the lowest SMY.

Through an understanding of the benefits of conductivity for AD, various studies have improved
bioenergy profiles through supplementation with exogenous conductive materials such as granular
activated carbon, stainless steel, magnetite, and iron powder, among others [55–58]. However, synthetic
conductive materials are expensive to produce and are confirmed environmental hazards, thus limiting
their widespread applications [59]. Therefore, enhancement of microbe-driven conductivity control
would be better suited for sustainable biogas productivity.

2.2.3. Salinity

Salinity is an important factor in anaerobic digestion. As shown in Table 1, digesters containing
mostly CW had high salinity, which could be detrimental to adequate biogas production. However,
the codigestion ratio 3/1 GM/CW (w/w) provided a favourable initial salinity of 5.25% ± 0.4%,
which increased to 7.15% ± 1.4% by the end of the treatment (Table 1). Low salinity may trigger
increased hydrolysis and acidification, which may ultimately lower methane production [60]. This was
evidenced by the monodigestion of 4/0 GM/CW (w/w), which exhibited an inhibited SMY profile,
despite an initial low salinity of 7.00% ± 0.1%. In contrast, methane production was mostly hindered
in digesters at higher dilutions (1/3 GM/CW and 2/2 GM/CW) where salinity was initially elevated.
Previous studies concluded that feedstock codigestion was a cost-effective strategy in the control of
salinity to improve SMY [61,62].

Polymers such as carbohydrates and proteins are generally bound in granular states before AD.
An optimal Na+ concentration of 0.23–0.35 g L−1 for microbial metabolism leads to solubilisation
of polymers, stimulating the production of short-chain fatty acids, which in turn promote acetate
production for subsequent methanogenesis. However, excessive salinity reduces the biodegradability
of acetate and alters the osmotic pressure of the digestate, causing loss of cellular integrity and reduction
in enzymatic activities among methanogens [60]. In addition, methane production can be negatively
impacted by the high concentration of sodium chloride, which inhibits the rate-limiting hydrolysis step
and acidification stage [62,63]. In exploring the effect of 0–15.0 g L−1 salinity on anaerobic mono- and
codigestion of food wastes, Zhao et al. [60] established a strong correlation between increasing Na+

concentration and inhibition of methane production resulting in extended digestion times. Similarly,
Rinzema et al. [64] noted gradual to complete inhibition of SMY with Na+ 5–14 g L−1 in granular
UASB reactors.

Taken together, interspecies electron transfer conducive to an optimal biogas profile requires the
least possible disturbance in the electrodynamics of the digestate. Noteworthy, only setups 3/1 GM/CW
(w/w) had a salinity rise of 36.19% (Table 1). The initial salt concentration (5.25%) was adequate to
promote solubilisation of polymers with resulting metabolite intermediates utilised by downstream
methanogens. The increased hydrolysis continually released ionic species and soluble minerals,
which were initially in the granular state before digestion, biochemically controlling the loss of specific
conductance and further raising salinity in a positive feedback loop [60].
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2.3. Nutrition

Biochemical pathways naturally convert organically bound nitrogen into ammonia, which is
readily assimilated by the growing microbial population. Total Kjeldahl nitrogen (TKN) represents the
sum of ammonia-nitrogen with organic-bound nitrogen [13,65]. The COD/N ratio in the effluent was
thus used to approximate the nutritional quality of the digestate during reactor cycles. The COD/N
ratios ranged between 17.05/1 and 50.58/1 in the digesters (Table 1). A low COD/N usually results in
free ammonia inhibition due to the overabundance of nitrogen. Taken together, the highest COD/N
ratio was observed in digesters containing 3/1 GM/CW (w/w); this resulted in an increased methane
yield [66].

A 12.82% increase in soluble COD (CODs) was observed in digesters containing 3/1 GM/CW (w/w),
attributable to an increase in particulate COD being digested and thus raising the soluble fraction.
However, plant cell walls, especially those from the stalks and seeds of GM are composed of lignin and
cellulose, which are resistant to degradation [44]. However, CODs, composed of readily biodegradable
sugars and alcohols were removed from the digestate, resulting in the reduction of CODs in most
digesters. Irrespective of codigestion set up, the total COD (CODt) removed during the treatment of the
winery residues was low in comparison to treatment efficiencies generally achieved in the literature for
other waste types such as organic fraction municipal solid waste (OFMSW), which can reach as high as
83% CODt removal under thermophilic conditions [67]; this difference, confirms to the recalcitrance of
GM [40]. After anaerobic treatment, solid wastes can be used as an agricultural soil amendment due to
the improved agronomic potential of the digestate [29]. As evidenced in Table 1, digesters containing
3/1 GM/CW (w/w) had an enriched physicochemical composition for microbial growth. Nevertheless,
additional phytotoxic studies may be required before land applications [68].

Suitably mixed feedstocks are known to exhibit higher bacterial enzyme activities and higher
gas production efficiencies than monodigestion setups alone due to improved nutritional balance
along with additional microbial symbioses [60]. This behaviour was supported by an increased rate
of methanogenesis whilst biogas production remained relatively stable (Figure 2, slope of digesters
containing 3/1 GM/CW (w/w)). Furthermore, monodigestion digesters containing 4/0 GM/CW (w/w)
offered a baseline reactor performance in order to determine the effect of CW addition. Following
wine production and further distillation of solid residues for secondary alcohol extraction, discarded
winery wastes can be diverted to anaerobic treatment. An intercalated step for watery CW addition to
achieve bioaugmentation, moisture control, and nutritional improvement would fulfil the formation of
a circular economy jointly backed by the wine and dairy industries in the framework of the Millennium
Development Goals [29].

The substantial reduction in TS and VS concentrations within treatment setups did not result
in methane production (Table 1). This behaviour may be governed by the recalcitrant nature of
lignocellulosic material of large organic particle sizes conducive to slow hydrolysis, followed by slow
metabolite utilisation [69]. Kim et al. [47] established that during AD, CODt removal is repressed due
to the hydrolysates not readily converted to VFAs, indicating that the acidogenesis was rate-limiting.
Our study exhibited CODt trends that were generally stable between the start and the termination
(p > 0.05) of the respective digestions, thus confirming inhibition of the fermentation stage.

2.4. Regression Models for Data Fit

A kinetic study was carried out by fitting both the first-order and the modified Gompertz models
to the experimental data. The predictive parameters and corresponding values of the simulations are
shown in Table 2. Comparative analyses of models fitted using experimental SMY values showed that
the modified Gompertz better described the data in all instances (Figure 3). In addition, the critical test
statistic sum of squared deviations (SSDs) showed lower fluctuation in the modified Gompertz model
than in the first-order kinetic model within digesters containing the same mixing ratio, indicating
the robustness of the model fit for the particular digestion setups (Table 2). For example, SSD values
were 287.68 and 6.69 in the first-order and the modified Gompertz models, respectively, in digesters
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containing 3/1 GM/CW (w/w) confirming that the modified Gompertz model was more applicable for
the description of reaction kinetics in digesters containing 3/1 GM/CW (w/w; Figure 3C).

The modified Gompertz model is generally applicable in scenarios where methane production
requires an acclimation period characterised by a lag phase. Compounds such as alcohol and phenol,
present in winery residues require longer incubation periods before digestibility, thus explaining the
regularity of lag phase in the setups (Figure 3; [70]). Additionally, poor waste digestibility with an
associated protracted lag time often results from the anaerobic treatment of grape seeds commonly
found in winery wastes [71].

Table 2. Kinetic parameters calculated by the predictive non-linear regression models: first-order
kinetic and the modified Gompertz for digesters containing: 1/3 GM/CW (w/w); 2/2 GM/CW (w/w);
3/1 GM/CW (w/w); and 4/0 GM/CW (w/w).

Simulation Unit 1/3 GM/CW 2/2 GM/CW 3/1 GM/CW 4/0 GM/CW

First-order kinetic model

B0 L CH4 kg−1 VS 0.118993172 3663.316604 29.88610485 16.04597425
k d−1 0.721169765 1.90423 × 10−5 0.015248799 0.006743193

Sum of squared deviations (SSD) — 0.003090119 188.8049528 287.6845951 33.82613142
Measured methane yield—day 144 L CH4 kg−1 VS 0.129553030 10.27407727 24.42713824 9.079883333
Predicted methane yield—day 144 L CH4 kg−1 VS 0.118993172 10.03137155 26.56078267 9.969417616
Difference between measured and

predictive methane yield
(in absolute value)

% 8.150993042 2.362311641 8.734729456 9.796758942

Modified Gompertz model

B0 L CH4 kg−1 VS 1.565811821 9.784578865 24.03266289 9.011026908
λ d 0.000000000 53.17945245 14.84340725 18.32337505

Rm L CH4 kg−1 VS d−1 0.000423702 0.292288763 0.550764399 0.148677144
Sum of squared deviations (SSD) — 0.002618254 2.713528645 6.691658696 2.748511505

Measured methane yield—day 144 L CH4 kg−1 VS 0.129553030 10.27407727 24.42713824 9.079883333
Predicted methane yield—day 144 L CH4 kg−1 VS 0.135785248 9.767920054 24.01174037 8.924128388
Difference between measured and

predicted methane yield
(in absolute value)

% 4.810553244 4.926546741 1.700558883 1.715384878
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Figure 3. Plot of simulated predictive cumulative methane yield (L CH4 kg−1 VS) against experimental
values obtained using first-order linear model (blue) and the modified Gompertz model (orange)
for digesters containing: 1/3 GM/CW (w/w) (A); 2/2 GM/CW (w/w) (B); 3/1 GM/CW (w/w) (C); and 4/0
GM/CW (w/w) (D).

3. Materials and Methods

3.1. Pretreatment and Analytical Methods

Spent GM that had undergone prior distillation for alcohol recovery was sourced from Tarac
Technologies, Nuriootpa, Australia. The sludge inoculum was sampled from Melbourne Water,
Melbourne, Australia. Reactants were stored at 4 ◦C until use. The characterisation parameters reported
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were conducted in triplicate on samples before (Table 3) and after digestion (Table 4). Solids, COD and
the total Kjeldahl nitrogen (TKN) were determined according to standard methods [72]. Conductivity
and salinity were determined with the use of a compact conductivity meter (LAQUAtwin-CC-11,
HORIBA Scientific) and a compact salt meter (LAQUAtwin-Salt-11, HORIBA Scientific, Kyoto,
Japan), respectively.

Table 3. Physicochemical composition of unmixed substrates and inoculum before digestion.
Values recorded as mean ± standard error.

Parameter Unit Grape Marc Cheese Whey Inoculum

TS % 38.7 ± 1.51 7.87 ± 1.02 2.80 ± 0.28
VS % 24.1 ± 0.54 3.80 ± 0.88 1.93 ± 0.22

CODt g L−1 223 ± 16.3 67.1 ± 0.42 50.9 ± 1.91
CODs g L−1 47.5 ± 12.0 48.0 ± 5.79 30.5 ± 0.35
TKN g L−1 51.8 ± 0.76 11.5 ± 0.16 13.3 ± 0.72
pH — 9.19 ± 0.01 5.41 ± 0.01 8.47 ± 0.01
EC mS cm−1 15.0 ± 0.20 14.0 ± 0.34 9.25 ± 0.17

Salinity % 5.20 ± 0.32 13.9 ± 0.11 2.30 ± 0.20

TS, total solids; VS, volatile solids; CODt, total COD; CODs, soluble COD; TKN, total Kjeldahl nitrogen;
EC, electrical conductivity.

Table 4. Physicochemical characteristics of digester nutrient at start-up. Codigestion setups of grape
marc (GM) and cheese whey (CW), on wet weight basis, were of ratios 1/3 GM/CW; 2/2 GM/CW;
3/1 GM/CW; and 4/0 GM/CW. Values recorded as mean ± standard error.

Parameter Unit 1/3 GM/CW 2/2 GM/CW 3/1 GM/CW 4/0 GM/CW

TS % 11.3 ± 1.1 17.3 ± 3.3 28.5 ± 1.1 38.7 ± 1.2
VS % 6.60 ± 1.1 11.0 ± 2.1 17.1 ± 0.2 12.1 ± 0.5

CODt g L−1 94.0 ± 1.5 241 ± 10 263 ± 20 223 ± 12
CODs g L−1 54.5 ± 2.5 58.5 ± 4.5 19.5 ± 5.5 22.0 ± 2.0
TKN g L−1 15.0 ± 0.0 8.03 ± 0.1 2.56 ± 0.5 12.6 ± 1.5
pH — 7.20 ± 0.0 7.20 ± 0.0 8.52 ± 0.0 9.03 ± 0.1
EC mS cm−1 92.3 ± 2.3 17.3 ± 0.1 17.0 ± 1.0 31.0 ± 0.4

Salinity % 15.6 ± 0.0 11.9 ± 0.9 5.25 ± 0.4 7.00 ± 0.1

TS, total solids; VS, volatile solids; CODt, total COD; CODs, soluble COD; TKN, total Kjeldahl nitrogen;
EC, electrical conductivity.

Grape marc and cheese whey were mixed in the following ratios: 1/3 GM/CW (w/w); 2/2 GM/CW
(w/w); 3/1 GM/CW (w/w); and 4/0 GM/CW (w/w) before digestion over 144 days (Table 4).

3.2. Reactor Configuration

Two batch replicate setups of GM and CW of variable mixing ratios were operated in parallel.
The substrate-to-inoculum ratio (SIR) was 10:1 for a working volume of 110 mL incubated at 55 ◦C;
the mixing ratios of feedstock were 1/3 GM/CW (w/w), 2/2 GM/CW (w/w), 3/1 GM/CW (w/w), and 4/0
GM/CW (w/w). The headspace volume within the standard 250 mL Pyrex® glass reaction bottles
(SciLabware Limited, Staffordshire, UK) was 200 mL. The pH was adjusted to 7.2, with use of H2SO4

and NaOH stock solutions, in mixing ratios 1/3 and 2/2 GM/CW (w/w) to strengthen long-term buffering.
A HANNA Instruments edgepH was used to measure pH. Daily biogas volumetric production was
measured using water displacement [13,73]. The biogas composition was measured in a GEM2000
Landfill Gas Analyser (Geotech, Coventry, UK).
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3.3. Biogas Study

3.3.1. Specific Methane Yield

The specific methane yield (SMY) of each digestion setup corresponded to the cumulative methane
fraction of the cumulative biogas expressed as a function of the VSfed, as digestion progressed.
Replicate setups of corresponding mixing ratios were averaged and reported as mean ± standard error
values. SMY is expressed as L CH4 kg−1 VS [74,75].

3.3.2. COD-Equivalents

The biodegradability or biodegradation degree for samples corresponds to the amount of COD
removed through methane production. The COD equivalence was calculated on the basis that 350 mL
of methane production corresponds to 1 g of COD removed from digestion. COD-equivalents can
thus be expressed in kg COD kg−1 VS [74,75]. The theoretical assumption is that COD is completely
digested for methane production without accounting for microbial metabolism [13].

3.4. Statistical Treatment

One-way analyses of variance (ANOVA) of methane production for digestion setups at the 0.05
significance level was conducted. Mean values were separated using Tukey’s HSD test, where the
F-value was significant for the difference between the means of physicochemical indicators for treatment
setups (Mini version s33d25, http://www.statskingdom.com, Statistics Kingdom).

3.5. Kinetic Simulations

To describe the methanation process, non-linear regressions were utilised [40,76]. The degradation
of organics were assumed to be patterned along a first-order rate of decay due to the microbial role in
the fermentation process, thus the first-order Equation (1):

B(t) = B0 (1 − exp(−kt)) (1)

where B(t) is the cumulative methane volume (L CH4 kg−1 VS) at a digestion time t(d); B0 is the
methane potential of the substrate material (L CH4 kg−1 VS); k is the first-order disintegration rate
constant (d−1); and t is the digestion time (d).

In order to estimate the lag phase, the modified Gompertz model was simulated Equation (2):

B(t) = B0 exp{−exp[(Rm exp/B0) (λ − t) + 1]} (2)

where Rm is the maximal methane production rate (L CH4 kg−1 VS d−1) and λ is the lag phase (d);
all mathematical models were simulated with the Solver tool of Microsoft Office Excel.

4. Conclusions

In this study, we demonstrated the bioenergy potential of grape marc, a dense lignocellulosic
feedstock routinely retrieved from winery-related activities. Both the monodigestion of grape marc
and the codigestion of grape marc along with cheese whey resulted in detectable biogas production,
albeit at different levels. The sustained methane production at high total solids in unmixed conditions
benefited from sufficient buffering of grape marc without requirements for pH adjustment. However,
methanogenesis inhibition was observed in setups with predominant protein-rich cheese whey.

The results of this study enhanced the understanding of the feasibility of successful anaerobic
treatment and bioenergy generation using recalcitrant agro-industrial wastes at elevated solids
concentration without expensive waste amendment. We established that the codigestion of grape
marc and cheese whey in 3/1 ratio (w/w), respectively, was optimal for solid-state anaerobic digestion.
Methane production reached 24.43± 0.11 L CH4 kg−1 VS in unmixed conditions during dry-fermentation.

http://www.statskingdom.com
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There was a syntrophic relationship between electron donors and downstream electron-accepting
methanogens in the digestate, which behaved as an effective conductive material resulting in optimised
methane production. A rise in salinity was identified as a necessary outcome to optimise the
biodegradability of organics and methane production.

This study digested unaltered waste materials without requirements for clean water for dilution
or hazardous artificial conductive materials, routinely employed in parallel studies. The experimental
approach aligns with the concept of self-sustainable digestion while improving the energy balance
required for methane production. The codigestion of grape marc and cheese whey improved overall
feedstock treatment, increased methane output, and compounded the valorisation of individual wastes.
This experiment represents the first report documenting the bioenergy potential of fermentation of
grape marc and cheese whey in solid-sate anaerobic digestion systems.

Future efforts will explore the impact of treatment capacity on methane yield and the effect of
lowering the energy requirements for digestion. These strategies will provide important information
regarding how these operational factors affect biogas production during the codigestion of grape marc
and cheese whey.
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