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Abstract

Much of the research on cannabinoids (CBs) has focused on their effects at the molecular

and synaptic level. However, the effects of CBs on the dynamics of neural circuits remains

poorly understood. This study aims to disentangle the effects of CBs on the functional

dynamics of the hippocampal Schaffer collateral synapse by using data-driven nonparamet-

ric modeling. Multi-unit activity was recorded from rats doing an working memory task in

control sessions and under the influence of exogenously administered tetrahydrocannabinol

(THC), the primary CB found in marijuana. It was found that THC left firing rate unaltered

and only slightly reduced theta oscillations. Multivariate autoregressive models, estimated

from spontaneous spiking activity, were then used to describe the dynamical transformation

from CA3 to CA1. They revealed that THC served to functionally isolate CA1 from CA3 by

reducing feedforward excitation and theta information flow. The functional isolation was

compensated by increased feedback excitation within CA1, thus leading to unaltered firing

rates. Finally, both of these effects were shown to be correlated with memory impairments

in the working memory task. By elucidating the circuit mechanisms of CBs, these results

help close the gap in knowledge between the cellular and behavioral effects of CBs.

Author summary

Research into cannabinoids (CBs) over the last several decades has found that they induce

a large variety of oftentimes opposing effects on various neuronal receptors and processes.

Due to this plethora of effects, disentangling how CBs influence neuronal circuits has

proven challenging. This paper contributes to our understanding of the circuit level effects

of CBs by using data driven modeling to examine how THC affects the input-output rela-

tionship in the Schaffer collateral synapse in the hippocampus. It was found that THC

functionally isolated CA1 from CA3 by reducing feedforward excitation and theta infor-

mation flow while simultaneously increasing feedback excitation within CA1. By
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elucidating the circuit mechanisms of CBs, these results help close the gap in knowledge

between the cellular and behavioral effects of CBs.

Introduction

Recent years have seen a resurgence of interest in the therapeutic role of cannabinoids (CBs)

for several diseases and neurophyschiatric disorders such as psychosis, anxiety disorders,

PTSD, and multiple sclerosis [1, 2]. In particular, CB agonists have shown promising but

mixed results in the treatment of epilepsy, as various types of agonists at various doses have

been shown to be both pro- and anticonvulsant [3–8]. Parallel to increasing therapeutic

research, much work has been done on the chemical structure of various cannabinoids and

cannabinoid receptors, along with their cellular interactions and pharmacology [9].

Nonetheless, between the large bodies of literature on cannabinoids from chemical, disease,

and behavioral perspectives, much less work has been done to explore the effects of cannabi-

noids on the neural circuit level. This is particularly important since a wide range of complex

and often opposing effects have been attributed to cannabinoids on a molecular and cellular

level. For example, cannabinoid activation of CB1 receptors, which are found on both pyrami-

dal cells and interneurons, reduces the quantity of neurotransmitter released during an action

potential; consequently, increased extracellular cannabinoid levels reduce both excitatory (glu-

tamatergic) and inhibitory (GABAergic) transmission [10]. Furthermore, cannabinoids have

been shown to interact with astrocytes [11], mitochondria [12], glycine receptors [13], vanil-

loid receptors [14], potassium ion channels [15], and to reduce GABA and glutamate reuptake

[16, 17]. Consequently, it is very difficult to extrapolate the emergent network level changes

simply from a catalogue of effects cannabinoids have a cellular/molecular level.

Here, we studied the effects of Δ9-tetrahydrocannabinol (THC) on hippocampal networks

during memory encoding using spiking activity recorded in rodents in-vivo performing the

Delayed-NonMatch-to-Sample (DNMS) working memory task. Multivariate autoregressive

(MVAR) models were used in both control and THC sessions to estimate feedforward and

feedback dynamical filters, which are akin to the waveform shapes of the CA3!CA1 EPSP

and CA1 afterhyperpolarization, respectively [18]. MVAR models, which are a type of linear

nonparametric model, are ‘data-driven’ in the sense that they estimate model parameters

directly from recorded neural spiketrains and, unlike more biologically realistic models, make

very few a priori assumptions on the nature of the neural dynamics [19, 20]. This characteristic

makes them particularly well suited for this study, since as previously mentioned the emergent

effects of THC on neural circuits are highly complex and unclear. Overall our results suggest

that cannabinoids impair memory encoding by functionally isolating CA1 from CA3 via

reduced theta information flow and altered excitatory-inhibitory balance across the Schaffer

collateral synapse.

Results

Changes in rate and temporal coding under cannabinoids

To evaluate the effects of exogenous cannabinoids on the hippocampal network 1 mg/kg THC

was injected intraperitoneally into N = 6 rodents during certain sessions while they were per-

forming a DNMS task (S1 Fig). All data was previously used in a study on the effects of canna-

binoids on hippocampal multifractality [21, 22]. Briefly, in the sample phase, the rats were

presented one of two levers. After a variable length delay, both levers were presented in the
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match phase and the rat had to choose the opposite lever to receive a reward. On the behavioral

level, it was found that THC reduced rodent-performance on the DNMS task by about

12.2 ± .6% (Fig 1a, [23]). This corresponds to a 24.4% impairment relative to baseline perfor-

mance at 50%.

While performing the DNMS task, single-unit activity was recorded from the hippocampal

CA3 and CA1 regions using a multi-electrode array. There were no significant mean firing

rate (MFR) differences between THC sessions and control sessions in either CA3 or CA1 cells

(P = .502, Fig 1b). No MFR differences were seen whether considering the entire session or

only times around the DNMS sample phase, or whether considering all cells or only sample-

presentation cells (see below). The lack of any cannabinoid-induced changes in firing rates at

this dosage has been observed in previous studies [24, 25].

Two types of temporal coding were identified in the recorded spiketrains. First, on slower

timescales, several neurons fired preferentially in response to lever presentation in the sample

phase of the DNMS task [26]. It was found that THC reduced the proportion of sample-

presentation cells in both CA3 and CA1 by roughly equal amounts (Δ = 13 ± 4%, P< .001;

Fig 1c). Interestingly, some sample-presentation cells lost all of their preferential firing in THC

sessions (Fig 1d); this contrasts with place cells whose receptive field stays largely intact under

cannabinoids [27]. There was an insignificant trend connecting sample-presentation cell

reduction with behavioral deficits (R2 = .27, P = .052, S3a Fig).

On faster timescales, it was found that several CA3 and CA1 neurons had theta band rhyth-

micity (4–7 Hz). Hippocampal theta oscillations are known to be intimately related to cogni-

tive function [28–30] and have previously been linked to performance in the DNMS task [31];

furthermore, theta oscillations are known to be reduced by systemic injections of cannabinoids

on both the single unit [24] and network level [32]. It was found that CA1 theta power was

slightly but significantly reduced in THC sessions (Δ = 2.52%, CI: [.61, 4.4]%P = .004; Fig 1e).

A similar, albeit slightly weaker, theta power reduction was seen in CA3 cells (Δ = 1.94%,

P = .045; S2 Fig). Interestingly, in both cases, the significant reduction of theta power occurred

at 5–6Hz, which is lower than the observed theta peak. Unlike previous results in a different

task [24], the reduction in CA1 theta power was not found to be correlated with behavioral

deficits in the DNMS task (P = .674, S3b Fig).

Overall, these results show that THC has minor effects on the actual neuronal spiketimes:

quantity of spikes (MFR) was not affected and spike rhythmicity (theta oscillations) were only

slightly affected. Furthermore behavioral deficits induced by cannabinoids could not be

explained by any of these factors, which are the traditional markers of rate and temporal cod-

ing in the hippocampus.

Systems analysis

The remainder of the study will focus on systems analysis of the Schaffer collateral synapse

connecting CA3 to CA1, and how this synapse is affected by THC. Systems analysis aims to

identify the input-output “blackbox” by which the input spiketrains are transformed into the

output spiketrain. On a more abstract level, it aims to identify how the information encoded in

CA3 is propagated into CA1. This is distinct from the signal analysis done in the previous sec-

tion which only looks at features of individual spiketrains rather than the causal relationship

between multiple spiketrains as done in systems analysis.

The relationship between an arbitrary number of input CA3 spiketrains and the output

CA1 spiketrain was modeled using a multivariate autoregressive model described by Eq 1 and

an example of which is pictured in Fig 2a. Each system consists of N input CA3 neurons and N
feedforward filters describing the dynamical input-output relationship between the given CA3
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Fig 1. (A) Behavioral performance on Delayed-NonMatch-to-Sample (DNMS) task in both control and THC

sessions. Dashed lines show individual animal performance, while solid lines show mean performance over

all animals. Bars indicate SEM. Dashed red line indicates performance at chance level. (B) Individual neuron

mean firing rate (MFR). (C) Sample-presentation cell proportion in CA3 and CA1 cells in control & THC

sessions (*** = P < .001). (D) Example of a sample-presentation cell in a control session (top) which lost its
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and CA1 neurons (Fig 2b). Intuitively, these filters can be thought of as the EPSP elicited in the

output CA1 neuron in response to an action potential (AP) in the input CA3 neuron. How-

ever, unlike EPSPs which traditionally only encapsulate ion-conductances from neurotrans-

mitter-gated ion channels, the “blackbox” nature of the feedforward filters means they also

include more complex dynamical effects such as dendritic integration, spike generation, active

membrane conductances, and feedforward interneuronal inhibition (thereby allowing the fil-

ters between two pyramidal cells to be inhibitory). Each model also includes a feedback (auto-

regressive) filter which describes the effects of past output spikes onto the output present. This

filter, which can be intuitively thought of as the afterhyperpotential (AHP) [33] includes intra-

cellular processes such as the absolute and relative refractory periods, slow potassium conduc-

tances, and Ih conductances. It also includes more complex intercellular processes such as the

recurrent connections between CA1 pyramidal cells and interneurons [34]. Neuronal connec-

tivity was estimated using a stepwise input selection procedure. Filter parameters were esti-

mated with Laguerre basis regression using neuronal activity around the sample phase. Model

significance was verified using ROC plots and shuffling methods (see supplementary

methods).

A representative connectivity grid from a recorded THC session with 10 recorded neurons

(4 CA3, 6 CA1) is shown in Fig 2a. Fig 2b shows a sample system from this session between 3

CA3 pyramidal cells and 1 CA1 pyramidal cell. Note that two of the feedforward filters are

excitatory (above the x-axis) while the third has both excitatory and inhibitory components,

presumably arising through feedforward inhibition involving interneurons [35, 36]. The sys-

tem also involves a feedback filter which shows a relatively long refractory period (*40ms) fol-

lowed oscillatory bursting activity. Oscillations in the CA1 pyramidal cell AHP are a well

known phenomena caused by slow K+ and Ih conductances, and these oscillations are known

to lead to theta resonances [18, 37, 38]. In order to study the filter oscillations more closely, the

filter frequency spectra were plotted in Fig 2c. Both feedforward excitatory filters were found

firing specificity under THC (bottom). X-axis shows MFR (Hz) (E) Average CA1 spiketrain spectra (top).

Bottom shows mean difference in individual cell spectra (thus it is not simply the difference between the

signals in above which are averaged over whole population). Gray error bounds indicate 99% confidence

bounds. In (B) and (E), only neurons recorded in at least one control & THC session were included. Results for

neurons recorded in several control or THC sessions were averaged over those sessions.

https://doi.org/10.1371/journal.pcbi.1005624.g001

Fig 2. (A) Example connectivity grid of 4 CA3 neurons (orange) and 6 CA1 neurons (blue) recorded during a single session. Note that 1

CA1 neuron has no significant granger-causal inputs. Each line represents a causal connection between those neurons, as encapsulated by

a feedforward filter. (B) Example system of CA1 neuron enclosed by the red box in (A). Diagram shows 3 input CA3 spiketrains followed by

their respective feedforward filters which are summed with the feedback filter to generate the output CA1 spiketrain. All feedforward filter are

plotted with the same y-axis scale. Dashed red line in filter boxes indicates x-axis. (C) Normalized filter spectra computed of feedforward and

feedback filters from (B).

https://doi.org/10.1371/journal.pcbi.1005624.g002
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to have peaks in the high theta range (8–9 Hz). Intuitively, this can be understood to mean that

information encoded in the theta range in these input neurons is preferentially transmitted to

the output CA1 neuron. Furthermore, the feedback filter has a low theta resonance of 3.5 Hz.

Significance metrics for the displayed system is shown in S4 Fig, and additional systems are

shown in S5 Fig. All together 66% (707/1068) of all systems were found to be significant and

2139 feedforward and 707 feedback filters were obtained. THC was found to reduce the num-

ber of significant models per session (Δ = −7.4%, P = .011), but the predictive power of signifi-

cant models, as measured by AUC (see supplementary methods), was unaltered (P = .24).

To study how THC affects system dynamics on a population level, we examined how fea-

tures change in the entire sample of control and THC filters. The average filter frequency pro-

file for both control and THC sessions is shown in Fig 3a and 3b (top). Both feedforward and

feedback spectra are found to have clear theta band peaks, thus generalizing the trend seen in

the example system of Fig 2. This is consistent previous reports which show that CA3 propa-

gates strong theta rhythms to CA1 [39, 40] and also that CA1 is capable to generating endoge-

nous theta rhythms [41]. THC produced a significant decline in the theta power of the

feedback filters (Δ = 20.8%, P< .001; Fig 3b). Note that the feedback filter theta reduction is

about 10x stronger than the theta reduction found in the CA1 spiketrain signals (Fig 1e). No

reduction in theta power was found in the feedforward filters (P = .61, Fig 3a). This result

Fig 3. Average feedforward (A) and feedback (B) filter spectra in control and THC sessions (top), and their

differences (bottom). Same format and analysis as Fig 1a. (C) Correlation between feedforward filter

excitatory index (EI) reduction and behavioral deficits. Each point represents a specific THC session, with

points of the same color coming from the same animal. X-axis shows reduction in feedforward EI, while y-axis

shows reduction in behavioral performance. Both reductions were taken relative to control sessions (see

supplemental methods). (D) Same as (C) but for feedback EI increase.

https://doi.org/10.1371/journal.pcbi.1005624.g003
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suggests that cannabinoid-induced theta desynchronization results primarily from altered

feedback properties rather than changes in CA3!CA1 dynamics.

Cannabinoids have been reported to affect network excitation-inhibition balance (EIB)

[10, 42]. Particularly, there is much debate whether cannabinoids are pro- or anticonvulsants

[4, 6, 8, 43, 44]. In order to examine the effects cannabinoids have on network EIB, we quanti-

fied the excitation of the estimated filters using a metric called the excitatory index (EI),

which is the ratio between positive filter area and total filter area. It was found that THC had

no significant effect on feedforward EI (P = .14); however, there was an insignificant trend

showing that THC-induced decreases in feedforward EI were correlated with behavioral defi-

cits (R2 = .27, P = .063, Fig 3c). Additionally, THC reduced the number of casually connected

CA3-CA1 neuronal pairs (Δ = −8.9%, P< .001). These findings, together with the THC-

induced decrease of CA3!CA1 significant models, suggest that THC reduces the causal

influence CA3 neurons have on CA1 spiketimes. In other words, THC can be said to

functionally isolate CA1 from CA3. It was also found that THC significantly increased feed-

back EI (Δ = 3.5%, P = .022) and that the increased feedback EI was correlated with behavioral

deficits (R2 = .38, P = .007, Fig 3d).

PDM analysis

The large quantity (>2800) and variability of the obtained filters describing the CA3!CA1

dynamic transformation presents a challenge of interpretation. Namely, how could one iden-

tify features from the entire filter population which are representative of the CA3!CA1 trans-

formation rather than just the input-output relationship found in this or that particular pair of

neurons. In essence this is an unsupervised learning problem which aims to identify hidden

structure within the filter population for the purpose of knowledge discovery. Our group has

developed the concept of the global principal dynamic modes (gPDMs) towards this effort

[19, 45, 46]. The gPDMs are a system-specific and efficient basis set which contain the essential

dynamic components of the filter population and are meant to be amenable to biological inter-

pretation. One set of gPDMs were estimated from all (control and THC) obtained filters with

the hypothesis that THC would primarily change the expression strength of the gPDMs rather

than their specific shapes.

Fig 4a and 4b shows the obtained feedforward and feedback gPDMs in both the time and

frequency domain. Once again, the feedforward and feedback gPDMs represent the dominant

independent componenets of feedforward and feedback kernels, respectively. The first feedfor-

ward gPDM was found to have almost all its energy in the 1st time bin, with an immediate

decline thereafter. This gPDM represents near concurrent firing between CA3 and CA1 neu-

rons and presumably results from both direct CA3!CA1 connections via the Schaffer collat-

eral synapse [47, 48] and common inputs from the entorhinal cortex [49, 50]. The third

feedforward gPDM, which is characterized by an initial inhibitory phase, presumably repre-

sents feedforward interneuronal inhibition which is prevalent in the CA3!CA1 connection

[35, 36]. THC was not found to influence the strength of either of these gPDMs (P = .76,

P = .60; S6 Fig). The second feedforward gPDM which is characterized by sustained and oscil-

latory excitation was found to have a strong theta peak in the frequency domain. Furthermore,

it was found that THC-induced declines in the strength of this gPDM were correlated with

behavioral deficits (R2 = .30, P = .032; Fig 4c).

The three obtained feedback gPDMs are shown in Fig 4b. These gPDMs express the essen-

tial feedback dynamics found in CA1 neurons. As previously mentioned, these dynamics arise

through the combination of intracellular processes such as the AHP and extracellular processes

such as recurrent connections between CA1 pyramidal cells and interneurons. It was found

Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3
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that THC-induced increases in the third feedback gPDM were correlated with behavioral defi-

cits (R2 = .39, P = .005; Fig 4d). This correlation was not seen in either of the first two feedback

gPDMs (P = .32, P = .75; S6 Fig). Notably, the 3rd feedback gPDM was seen to be “theta-

blocking” in the frequency domain due to its trough at 8 Hz. This gPDM counteracts the 1st

“theta-promoting” feedback gPDM and disrupts theta oscillations in the CA1 neuron. The

THC-induced changes in the feedforward and feedback theta gPDMs paint a more complete

picture of the CA1 theta reductions seen in Fig 1e. Namely, they attribute the theta losses to

specific feedforward and feedback dynamical filters which may potentially be traced to specific

biophysical mechanisms. Furthermore, changes in these dynamical filters have been specifi-

cally correlated with behavioral deficits, which could not be done with theta reductions in the

CA1 signal (S3 Fig).

Discussion

The current study uses ‘data-driven’ nonparametric system dynamics modeling tools to study

the effects of THC on the Schaffer Collateral synapse in rodents. The chief findings of the

study can be summarized as: (1) THC induced little or no change in traditional rate and tem-

poral coding metrics such as MFR and theta power, (2) THC altered the CA1 excitatory-inhib-

itory balance by reducing feedforward influence from CA3 while increasing feedback

excitation from CA1, (3) THC reduced theta information flow through the Schaffer collateral

synapse, and (4) The magnitudes of both of the previous effects were directly correlated with

the severity of behavioral deficits induced by THC. Overall these results suggest the conclusion

that THC impairs memory encoding by functionally isolating CA1 from CA3.

From a computational perspective, the nonparamteric modeling methods used in this study

proved successful in studying the network level effects of cannabinoids since, unlike

Fig 4. Feedforward (A) and feedback (B) global principal dynamic modes (gPDMs) in both the time (left) and

frequency domain (right). Reductions in 2nd feedforward gPDM (C) and increases in 3rd feedback gPDM (D)

were found to be correlated with behavioral deficits. Same format as Fig 3.

https://doi.org/10.1371/journal.pcbi.1005624.g004
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biophysical models, all model parameters where estimated directly from recorded data and

very few a priori assumptions were made about the effects of THC [19, 20, 51]. The global prin-

cipal dynamic modes (gPDMs), which were derived from MVAR filters of the entire popula-

tion of neurons, further extracted hidden dynamical structure from ‘noisy’ neuron-neuron

variability. Importantly, THC-induced changes in the gPDMs were directly correlated with

behavioral impairments, thus justifying their utility. Furthermore, while most in-vivo studies

on THC analyze macro level signals such as ECoG and EEG, this work adds to a relatively

small body of literature which analyzes the effects of THC on neuronal population spiking

activity. Finally, to our knowledge, this is the first work which examines the effect of THC on

neuronal systems dynamics, or the causal interactions between signals, rather than on neuro-

nal signals themselves.

It was found that THC increased feedback excitatory index in CA1 and that the magnitude

of this effect was correlated with behavioral deficits. We hypothesize that this is due to reduced

feedback inhibition from CA1 cholecystokinin (CCK)-containing cells. While CCK cells only

make up only 13.9% of interneurons [52], they express significantly more CB1 receptors than

any other cell in the hippocampus [53], and their primary output is to CA1 pyramidal cells

[52]. Increased THC concentrations would reduce CCK interneuron output by (1) reducing

the amount of GABA they release per action potential (2) reducing their MFR due to reduced

glutamatergic input from principal cells in both CA3 and CA1 [54, 55].

It was also found that THC reduced the number of casually connected CA3-CA1 neuronal

pairs; furthermore there was an interesting but insignificant trend for THC-induced deficits in

feedforward excitation to lead to behavioral deficits. This trend may prove to be significant

given a higher sample size. We hypothesize that this reduced feedforward influence is caused

by decreased glutamate release from CA3 pyramidal cells due to CB1 receptor activation by

THC [56]. Even though pyramidal cells have much lower densities of CB1 receptors than inter-

neurons [53, 57], there is evidence that CB induced reduction of excitation is larger than these

relative densities suggest. Principal cells outnumber interneurons 20:1 in CA1 [50] and their

CB1 receptors were found to be several fold more efficacious than those of interneurons [58].

Further, lower baseline activation levels of CB1 receptors on principal cells than on interneu-

rons suggest they would be disproportionately activated by CB agonists [59]. Altogether, the

decreased feedback inhibition and feedforward excitation amount to a functional isolation, or

breakdown in information flow between CA3 and CA1. We suggest that this functional isola-

tion is responsible for the behavioral impairments seen in the DNMS task.

The ‘functional isolation’ hypothesis is further supported by previous work which showed

that the behavioral impairments caused by cannabinoids in the DNMS task were similar to

those seen with a full pharmacological lesion of the hippocampus [60] Given the centrality of

CA3!CA1 information flow to hippocampal function, a functional isolation of these areas

could indeed presumably lead to impairments similar to that of a full lesion. Relatedly, Goona-

wardena et al., 2010 [25] injected THC intraperitoneally at low 1 mg/kg doses as in this study

and in higher doses of 3 mg/kg. They found that while both doses disrupted hippocampal syn-

chrony, only the higher dose resulted in a reduction in pyramidal cell MFR. This suggests that

at the lower dose both previously described phenomena are at a net balance, while at the higher

dose, the decrease in feedforward excitation overpowers the increase in feedback excitation

and results in lower MFR. Finally, the hypothesis predicts a breakdown in the normal spike-

time coordination between pyramidal cells and interneurons in CA1 circuits. The breakdown

of this coordination, which has been extensively implicated in hippocampal oscillations [61, 62],

could be responsible for the observed decrease in theta oscillations and information flow.

Although the current results only suggest this hypothesis, several experiments could be

done to further substantiate it. Feedforward and feedback kernels and gPDMs could be
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estimated at different doses of THC; the hypothesis would predict that different doses would

effect the two processes independently, with one of the two processes potentially being more

dominant at different THC levels. Significant developments in in-vivo synaptic patch clamping

[63] and calcium imaging in recent years could be used to directly measure the drive of CCK

cells and CA3 pyramidal cells onto CA1 pyramidal cells under THC.

Much research has been done investigating the effects THC and other cannabinoids have

on seizures and epilepsy. Results so far have been mixed, with various studies showing that

THC is both pro- and anticonvulsant [3–8]. The results from this study and the presented

hypothesis suggest that THC inherently is not pro- or anti-convulsant but that its effects will

depend on the dosage and the unique circuitry of every epileptic focus. Interestingly, a study

by Rudenko et al., 2012 [6] has shown that indeed the effects of a CB1 agonist were dose

dependant, with lower doses being anticonvulsant and higher doses being proconvulsant.

Finally, this study suggests that in order to truly understand the effects of THC on epileptic cir-

cuits, one must study the systems level changes in circuit dynamics rather than taking a reduc-

tionist approach and studying the effects of THC on any particular receptor or cell type.

The present study analyzed the effects of THC from both a signals and systems

perspective—and found that systems analysis yielded much richer results. For example, while

analysis of CA1 spiketrain signals showed a slight (2%) reduction in theta frequency, analysis

of system kernels showed that the theta loss was primarily due to CA1 feedback dynamics

whose kernels lost over 20% of their theta power, while theta power in feedforward kernels was

unaffected. Furthermore, only systems analysis allows one to analyze predictive power, feed-

forward and feedback excitation, and EPSP and AHP waveform shape. Notably, the finding

that feedforward influence decreased while feedback excitation increased could not have been

observed using only signal analysis which would have only detected a constant MFR.

The present study also employed gPDMs as a means to extract the most significant

information from the kernel dynamics estimated from several animals over several sessions

[18, 19, 48, 64]. The utility of the gPDM method was justified by the finding that reductions

in theta related gPDMs in a given session were directly correlated with behavioral deficits,

showing that the gPDMs can isolate the particular dynamics which are most affected by THC.

Furthermore, THC-induced theta power losses in spiketrain signals were not found to be cor-

related with behavioral deficits. Although in the present study, kernels and gPDMs were

restricted to being linear in order to more easily quantify their overall strength and excitation

(via the EI), future work will aim to identify the effects of THC on hippocampal nonlinear

dynamics [51, 65].

Methods

Experimental procedures

N = 6 Male Long-Evans rats were trained to criterion on a two lever, spatial Delayed Non-

Match-to-Sample (DNMS) task (see S1 Fig). Briefly, during the sample phase the rat was pre-

sented one of two levers (left or right). After a delay phase ranging from 1–30 seconds, the rat

was presented both levers and had to choose the opposite level in order to attain a reward.

Each rodent underwent 16–25 sessions of the task, which were roughly evenly divided between

control and THC sessions, wherein the rodent was intraperitoneally administered 1 mg/kg of

body weight Δ9-tetrahydrocannabinol (THC), an exogenous cannabinoid found in marijuana.

During the task, spike trains were recorded in-vivo with multi-electrode arrays implanted in

the left and right CA3 and CA1 regions of the hippocampus. In an effort to acquire a consistent

cognitive state, only spiking activity around the sample phase of the task was used. Spikes from

multiple trials were sorted, time-stamped, and concatenated into a discretized binary time
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series using a 4ms bin. For more details on the experimental setup, see supplementary

methods.

Model configuration and estimation

Nonparametric multiple-input linear autoregressive models were used to model the dynamical

transformation between input and output spike trains (see Figs 2 and 5) [18, 51]. Each model

consisted of a feedforward component, reflecting the effect of the N input cells on the output

cell and a feedback (autoregressive) component reflecting the subthreshold and suprathreshold

effects the output cell has on itself. Thus, the output y(t) is calculated as:

yðtÞ ¼
XN

n¼1

XM

t¼0

knðtÞxnðt � tÞ þ
XMþ1

t¼1

kARðtÞyðt � tÞ ð1Þ

where kn reflects the feedforward filter of input xn(t), and kAR reflects the feedback filter. In

order to reduce the number of model parameters and thereby increase parameter stability, we

applied the Laguerre expansion technique to expand the feedforward and feedback filters over

L Laguerre basis functions (see supplementary methods).

Effective connectivity between neurons was assessed using a Granger causality-like

approach. For each output CA1 neuron, input CA3 neurons were selected in a forward step-

wise procedure whereby only neurons which help predict the output CA1 spike activity were

included in the model. After all input neurons were selected, a Monte Carlo approach was

used to assess model significance. A model was deemed significant if the CA3 inputs could

predict the output CA1 activity significantly better (P< .0001) than randomly permuted ver-

sions of the inputs. See supplementary methods for more details.

Principal dynamic modes

The global principal dynamic modes (gPDMs) were obtained in a two step process: first, all fil-

ters of each input from every animal were concatenated in a rectangular matrix. Then singular

value decomposition (SVD) was performed on the rectangular matrix to obtain all the signifi-

cant singular vectors, which are the gPDMs. It was found that 3 gPDMs were sufficient to

describe the linear dynamics both the population of feedforward and feedback filters. gPDM

Fig 5. Model configuration. Each model has N point-process inputs which each go through a linear filter, Ki.

These inputs are then summed with the output of the feedback filter, KAR to generate the final output, y(t),

which is a continuous signal.

https://doi.org/10.1371/journal.pcbi.1005624.g005
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strength in a given filter was computed by taking the dot product between the gPDM and the

filter. gPDM strength in a given session was computed by taking the average gPDM strength

in every filter of that session.

Supporting information

S1 Appendix. Supplementary methods.

(PDF)

S1 Fig. Schematic of the DNMS task. First the rat is presented with one of two levers (sample

presentation), which it presses (sample response). Then following a delay phase, the rat is pre-

sented with both levers (Nonmatch), of which it must press the opposite level from which it

was presented in order to successfully complete the task.

(TIF)

S2 Fig. CA3 spectra mean frequency and differences. Same format as Fig 1e. A weak but sig-

nificant trend was found for declining CA3 theta oscillations (Δ = 1.94%, P = .045).

(EPS)

S3 Fig. (A) A suggestive but insignificant relationship was found between the THC-

induced decrease in the mean number of sample-presentation cells and behavioral perfor-

mance (R2 = .265, P = .052). (B) No relationship was found between reductions in CA1 theta

power and behavioral impairment (P = .67). Format is same as Fig 3.

(EPS)

S4 Fig. (A) ROC plot (see supplementary methods) for model shown in Fig 2 showing

model predictive power. The light blue line (TPR = FPR) indicates a model with no predictive

power. (B, C) Examples of Monte Carlo simulations: For each model, 40 surrogate models

with shuffled inputs were generated. The Fisher z-scores of these models, which are derived

from ρ, were plotted as a histogram, while the true ρ value is the plotted dashed red line. The P

value for the hypothesis that the true ρ value is greater than the simulated ρ values is printed

above the graphs. Models were deemed significant if P< .0001. (B) shows the results for the

model in Fig 2, which was deemed significant. (C) shows an insignificant model.

(EPS)

S5 Fig. 4 additional systems are presented. Left column shows all system filters, including

feedback filter (dashed line) in the time domain. Middle column shows the filters in the fre-

quency domain and right column shows the ROC plots of the models. All these models were

found to have significant predictive power in Monte Carlo tests.

(EPS)

S6 Fig. Top Row: neither the first (middle column) nor third feedforward gPDM were

found to be significantly correlated with THC induced behavioral deficits. Bottom Row:

neither the first (middle column) nor second feedback gPDM were found to be significantly

correlated with THC induced behavioral deficits. Format is same as Fig 3.

(EPS)
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55. Lee SH, Földy C, Soltesz I. Distinct endocannabinoid control of GABA release at perisomatic and den-

dritic synapses in the hippocampus. Journal of Neuroscience. 2010; 30(23):7993–8000. https://doi.org/

10.1523/JNEUROSCI.6238-09.2010 PMID: 20534847

56. Shen M, Piser TM, Seybold VS, Thayer SA. Cannabinoid receptor agonists inhibit glutamatergic synap-

tic transmission in rat hippocampal cultures. The Journal of Neuroscience. 1996; 16(14):4322–4334.

PMID: 8699243

Cannabinoids disrupt memory encoding by functionally isolating hippocampal CA1 from CA3

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005624 July 7, 2017 15 / 16

https://doi.org/10.1523/JNEUROSCI.3680-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23884940
http://www.ncbi.nlm.nih.gov/pubmed/9497437
https://doi.org/10.1016/S0166-2236(00)01547-2
http://www.ncbi.nlm.nih.gov/pubmed/10782127
http://www.ncbi.nlm.nih.gov/pubmed/10407056
https://doi.org/10.1016/S0896-6273(02)00586-X
https://doi.org/10.1016/S0896-6273(02)00586-X
http://www.ncbi.nlm.nih.gov/pubmed/11832222
https://doi.org/10.1038/nn.2440
http://www.ncbi.nlm.nih.gov/pubmed/19881503
https://doi.org/10.1523/JNEUROSCI.3167-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25740514
https://doi.org/10.1016/0028-3908(82)90204-0
https://doi.org/10.1016/0028-3908(82)90204-0
http://www.ncbi.nlm.nih.gov/pubmed/6278353
http://www.ncbi.nlm.nih.gov/pubmed/12736361
https://doi.org/10.1007/s10827-012-0407-7
http://www.ncbi.nlm.nih.gov/pubmed/23011343
https://doi.org/10.1167/15.9.16
http://www.ncbi.nlm.nih.gov/pubmed/26230978
https://doi.org/10.1016/0014-4886(75)90194-6
https://doi.org/10.1016/0014-4886(75)90194-6
http://www.ncbi.nlm.nih.gov/pubmed/171171
https://doi.org/10.1016/0166-2236(93)90018-H
http://www.ncbi.nlm.nih.gov/pubmed/7680501
https://doi.org/10.1016/j.tins.2009.01.009
http://www.ncbi.nlm.nih.gov/pubmed/19406485
https://doi.org/10.1016/j.jneumeth.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/25479231
https://doi.org/10.1002/hipo.22141
http://www.ncbi.nlm.nih.gov/pubmed/23674373
https://doi.org/10.1016/S0306-4522(00)00286-4
http://www.ncbi.nlm.nih.gov/pubmed/11036213
https://doi.org/10.1111/j.1460-9568.2004.03225.x
http://www.ncbi.nlm.nih.gov/pubmed/15016082
https://doi.org/10.1523/JNEUROSCI.6238-09.2010
https://doi.org/10.1523/JNEUROSCI.6238-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20534847
http://www.ncbi.nlm.nih.gov/pubmed/8699243
https://doi.org/10.1371/journal.pcbi.1005624


57. Ohno-Shosaku T, Tsubokawa H, Mizushima I, Yoneda N, Zimmer A, Kano M. Presynaptic cannabinoid

sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal syn-

apses. Journal of Neuroscience. 2002; 22(10):3864–3872. PMID: 12019305
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