
RESEARCH ARTICLE

Model Vestibular Nuclei Neurons Can Exhibit
a Boosting Nonlinearity Due to an
Adaptation Current Regulated by Spike-
Triggered Calcium and Calcium-Activated
Potassium Channels
Adam D. Schneider*

Physics, McGill University, Montreal, Quebec, Canada

* adam.schneider@mail.mcgill.ca

Abstract
In vitro studies have previously found a class of vestibular nuclei neurons to exhibit a bidi-

rectional afterhyperpolarization (AHP) in their membrane potential, due to calcium and cal-

cium-activated potassium conductances. More recently in vivo studies of such vestibular

neurons were found to exhibit a boosting nonlinearity in their input-output tuning curves. In

this paper, a Hodgkin-Huxley (HH) type neuron model, originally developed to reproduce

the in vitro AHP, is shown to produce a boosting nonlinearity similar to that seen in vivo for

increased the calcium conductance. Indicative of a bifurcation, the HH model is reduced to

a generalized integrate-and-fire (IF) model that preserves the bifurcation structure and

boosting nonliearity. By then projecting the neuron model’s phase space trajectories into

2D, the underlying geometric mechanism relating the AHP and boosting nonlinearity is

revealed. Further simplifications and approximations are made to derive analytic expres-

sions for the steady steady state firing rate as a function of bias current, μ, as well as the

gain (i.e. its slope) and the position of its peak at μ = μ*. Finally, although the boosting non-

linearity has not yet been experimentally observed in vitro, testable predictions indicate how

it might be found.

Introduction
A primary goal of computational neuroscience is to understand the nature of the “neural code”
with which sensory information is represented and processed by successive stages of neurons
in the nervous system. Sensory neurons were first shown to encode stimulus features such as
intensity, in the rate at which they fire action potentials. Accordingly, sensory neurons are
often characterized by “tuning curves”, which provide a map from a particular stimulus param-
eter (such as intensity) to the neurons output firing rate [1]. Although linear transformations
are known to preserve information, nonlinear transformations are essential for the selective
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coding of particular stimulus features, as well as using a neurons full information transmission
capacity [2]. In the vestibular system, for example, semicircular canal afferents have long been
known to primarily encode angular head velocity through firing rate modulations that vary lin-
early with increasing stimulus amplitude until saturation or rectification occurs [3], whereupon
the neuron has reached its maximum or minimum firing rate, respectively. More recently how-
ever, in vivo studies have shown that neurons in the medial vestibular nuclei (VN) exhibit a
boosting nonlinearity in their input-output tuning curves (i.e. firing rate output, versus stimu-
lus, afferent, or bias current input; a.k.a. tuning or f-I curve) [4]. This boosting nonlinearity is
characterized by a linear region with a small positive slope for low afferent input currents, and
a linear region with higher positive slope for larger afferent inputs, rather than the more com-
mon occurrence of a higher slope at low bias currents. In vitro studies, on the other hand, mea-
sure the membrane potential time course and have developed a conductance based Hodgkin-
Huxley-type VN model, with voltage-activated calcium and calcium-activated potassium chan-
nels that produce a specific bidirectional afterhyperpolarization (AHP) [5, 6]. In this paper, a
simpler version of this model is shown to produce a boosting nonlinearity similar to that
observed experimentally in vivo [4], for increased calcium conductances, gCa, which acts as a
bifurcation parameter. In order to shed some light on the underlying mechanisms responsible,
a simplified integrate-and-fire (IF) type model is created that is more analytically tractable but
preserves the bifurcation structure and boosting nonlinearity under investigation.

It requires a system with at least two variables with nonlinear dynamics to produce action
potentials with sodium and potassium currents; the simplicity of IF models is that they replace
these spike generating ion channels, with a simpler boundary condition that takes the voltage
from threshold back to a reset value [7]. Single variable (i.e. membrane voltage, V) IF models
can then be made to have more realistic subthreshold dynamics (which will be required to pro-
duce the AHP) by adding back a voltage dependent function, ψ(V). A linear “leak” term (giving
an LIF) allows the membrane to return to a given resting potential in the absence of stimula-
tion, and a quadratic term (giving a QIF) will also add a depolarizing up stroke in the voltage
preceding action potentials to better match their shape. A combined linear and exponential
function (giving an EIF), has been shown to better fit experimental data [8–10], at a sacrifice to
its analytic tractability. Such IF models can be further generalized to include any extra currents,
which may require additional dynamic gating variables, such as spike-triggered adaptation cur-
rents (often denoted by W) which serve to decrease V. However, such additional variables also
require additional reset conditions, for the change in W upon spiking. The spiking dynamics of
such 2-variable (i.e. V,W) adaptive IF models have been extensively studied [11–13], showing
that they can produce a variety of spiking behaviors including a similar boosting nonlinearity
and a unidirectional AHP [14], for certain parameter combinations.

In this paper, a Hodgkin Huxley (HH) type spiking VN neuron model is reduced to a QIF
model generalized to include the calcium and calcium-activated potassium currents, which
preserves the bifurcation structureand the boosting nonlinearity observed in the original HH
model. The spiking trajectories of the resulting 3-variable adaptive QIF model are then pro-
jected into the 2D V-W phase space, revealing an intuitive geometrical picture linking the AHP
phase space trajectories with the low gain region of the boosting nonlinearity. Simplifying the
models reset conditions and making some additional assumptions, allows for an analytic
approximation for the steady state firing rate and its gain (i.e. f-I curve slope) across a similar
boosting nonlinearity, as well as the bias current at which the gain is peaked, μ = μ�. Although
this boosting nonlinearity in the f-I curve of VN neurons has not be experimentally observed
in vitro, the link with the AHP generation provides the testable prediction that it should be
found in the transition to increased bias currents where the AHP no longer occurs.
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Results

HHmodel produces boosting nonlinearity with AHP and bifurcation
through bursting separating low and high gain regions
Fig 1A shows a schematic of the conductance based Hodgkin-Huxley (HH) type model
(defined by Eqs (4) and (5) in Models and Methods), which was simulated with different cal-
cium conductance strengths, gCa, over a range of constant bias current injections, μ. Although
the full HH model has 4 dynamical variables, example traces of the voltage, V, as well as the
gating variable, x, and calcium concentration, C, are shown for different bias currents, and a
specific calcium conductance in Fig 1B–1D. The dashed green lines indicate a voltage thresh-
old, crossings of which are defined to be spike times, which in turn define a sequence of inter-
spike-intervals (ISIs). In panels B and D, red circles indicate regions immediately after spiking
that are shown in insets, indicating that the specific AHP in which the voltage changes direc-
tions twice, occurs at low bias but not high bias currents. At each bias current value, 1/ISI can
be used to give the firing rate, which can be averaged over possibly different ISIs in the case of
bursting solutions, such as shown in Fig 1C. These average firing rates are plotted as a function
of bias current (known as an f-I curve) in Fig 1E, also with the individual 1/ISIs of the bursts as
dots. A boosting nonlinearity (i.e. an increase in gain with an increase in bias current) can be
seen to occur for the two highest gCa vales (cyan and magenta curves), while for the intermedi-
ate gCa value (red curve) the effect is to linearize the f-I curve by reducing the gain at the onset
of spiking near μ = 0.

It can also be seen that when the boosting nonlinearity occurs, stable limit cycles of a single
ISI are present for sufficiently low or high bias currents, while stable bursting limit cycles (i.e.
2-spk burst, 3-spk burst) appear for intermediate bias current values where the gain (i.e. f-I
slope) changes across the boosting nonlinearity. This bifurcation through bursting is character-
ized by plotting ISI return maps at various bias currents across the bursting region, as are
shown in Fig 1F for gCa = 0.6. From the top right panel stable 2-spk bursting can be seen to
transition to stable 3-spk bursting in the lower left panel, before returning to a stable 1-spk
limit cycle at higher biases. This appears to be a global “period adding” bifurcation through
bursting, however, analysis of the bursting mechanism is beyond the scope of this paper which
aims to understand the change in gain across the boosting nonlinearity. In order to simplify
the model and isolate the mechanism underlying this boosting nonlinearity, this HH model
was reduced to an analytically tractable integrate-and-fire (IF) type model, which preserves
both the boosting nonlinearity and period adding bifurcation.

QIF reduction of HHmodel can preserve subthreshold bifurcation
structure, boosting nonlinearity, and bifurcation through bursting
To understand the mechanism underlying the HHmodel’s boosting nonlinearity, a reduced
integrate-and-fire (IF) type model is generated, that is analytically tractable yet preserves the
boosting nonlinearity and underlying bifurcation structure. This was done by replacing the gat-
ing variable, n, and related spike generating currents by a nonlinear function, ψ(V), with an
additional voltage threshold and reset mechanism, as described in Models and Methods. The
model’s bifurcation structure can be found by calculating the fixed points at each different bias
current, which are defined by the zeros of the function H1(V, n�, x�, C�) (see Models and Meth-
ods Eq (6)). This function is plotted in Fig 2A for gCa = 0 and gCa = 0.6, at an example bias cur-
rent μ = 5. The green dashed line indicates the voltage threshold used in Fig 1B–1D to define
the spike times, and the red dashed line indicates the voltage reset value that will be used,
which roughly corresponds to the minimum voltage during the action potential in the voltage
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time series in Fig 1B–1D. These curves are shifted up and down with μ and the zero crossings
correspond to the HHmodel’s fixed points, with their stability calculated via Eq (7). For suffi-
ciently low bias currents, there are three fixed points and the system does not spike spontane-
ously. As μ is increased the curve is shifted upwards and eventually the two lower fixed points
annihilate, generally resulting in the onset of spiking via a saddle-node bifurcation. However,
its is possible for spiking to begin via a Hopf bifurcation, before the two subthreshold fixed
points have been annihilated. The fixed point bifurcation diagrams are plotted as a function of
bias current for each of the non-zero calcium conductances in Fig 2B, with red dots indicating
stable fixed points, and black dots indicating unstable fixed points. The blue lines indicate the
maximum and minimum values of the spiking limit cycles, and the onset bifurcation is indi-
cated by a green star for a saddle-node and a green x for an Hopf bifurcation. In the case of the
Hopf, the point at which the two remaining unstable subthreshold fixed points annihilate is
indicated by cyan stars, which can also be seen to roughly coincide with the region of the burst-
ing solutions. It would appear that the bursting and boosting nonlinearity are closely related to
the subthreshold fixed point bifurcation structure, which should be preserved in a reduced IF
model.

Although and exponential-IF (EIF) model could provide a better fit toH1(V, n�, x�, C�) in
the subthreshold region indicated in Fig 2A, a quadratic-IF (QIF) captures the essential local
minimum between threshold and reset necessary to reproduce the two subthreshold fixed
points, and has the advantage of being analytically tractable. Although a cubic term could
reproduce the entire ‘S’ shape and high voltage FP, it lies above the voltage threshold and can
be ignored for our purposes. The two QIF model parameters, g2 and V2, can be related to the
HHmodel parameters by linearizing the nonlinear functions in Eq (6) and keeping only terms
to second order in V, as in Eq (12). However, simply choosing values of g2 = 0.1 and V2 = −50
provides a sufficiently good approximation to reproduce the desired phenomena, as can be
seen from the resulting function F1(V, x�, C�) Eq (10) plotted in Fig 2C, and bifurcation dia-
grams in Fig 2D.

The QIF model, defined by Eq (8) in Models and Methods, additionally requires an artificial
spike waveform to activate the calcium current gating variable, x, as described by Eq (9). The
resulting f-I curves for this QIF model are shown in Fig 2E, and can be seen to exhibit the
desired boosting nonlinearities, as well as the bursting, similarly to the HH model (although
for slightly different values of gCa). In addition, this QIF model exhibits the same period adding
bifurcation through bursting as the HHmodel, as shown by the QIF models ISI return maps
(compare Figs 2F and 1F). Although the QIF model reproduces the boosting nonlinearity, it
also reproduces the same bursting patterns; does this mean that the bursting is necessary to cre-
ate a boosting nonlinearity?

Fig 1. Calium and calcium-activated potassium currents induce boosting nonlinearity, AHP, and bifurcation through bursting. (A) A
schematic indicating that the neuron model of a vestibular nuclei neuron with conductance based ion channels as described in Models and Methods
Eq (5), as well as a constant current injection, which drive the membrane voltage, the “recorded”model output, to generate action potentials. (B-D)
Example time series of the simulated membrane voltage, with calcium gating variable, x, and calcium concentration, C, below. Insets show zoom of
region preceding spikes either with or without an AHP. Dashed green lines indicate the voltage threshold at which spike times are said to occur.
Examples correspond to gCa = 0.6, for the bias current values indicated by the numbered yellow circles in panel E. (E) The firing rate as a function of
constant bias current injection, or “f-I curve”. Colored lines correspond to the average 1/ISIs for the calcium conductance values indicated, with the
colored dots indicating each 1/ISI value of the bursting solutions (i.e. panel C). (F) ISI return maps for four example bias currents with gCa = 0.6,
showing how the stable limit cycle (μ = 18) destabilizes into stable 2-spk bursting (μ = 19), and then 3-spk bursting (μ = 22), and back to a stable
single spike limit cycle (μ = 22.5). Red dots indicate the mean ISI.

doi:10.1371/journal.pone.0159300.g001
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Does boosting require bursting?
It would appear the the boosting nonlinearity and bursting, depend intimately on the underly-
ing subthreshold bifurcation which occurs near the onset of bursting (see Fig 3A, red Xs). How-
ever, these results actually depend significantly on the artificial spike shape used, which defines
the reset conditions but does not effect the subthreshold bifurcation structure shown in Fig 2D.
The resulting reset condition can be thought of as the amount by which the gating variables
change, Δx and ΔC, plotted in Fig 3B, or the reset values themselves, xreset and Creset, plotted in
Fig 3C. Are the changes in these reset values with bias current in fact necessary for the model
to produce the boosting nonlinearity or bursting? This question can be answered by simplify-
ing the QIF model in these two different ways, choosing fixed values for Δx and ΔC, or for xreset
and Creset. The resulting f-I curves for each case are shown in Fig 3D and 3E. In both cases
some degree of the boosting nonlinearity can be seen, with a similar bursting occurring in D,
but not in E, confirming that one can in fact achieve boosting without bursting.

To understand what is going on, one can think of the QIF model’s 3D phase space in V, x,
and C. The voltage is bound by the reset and threshold, starting at Vreset with particular xreset
and Creset values, and evolving in time until it reaches Vth. The possible trajectories through this
3D phase space cannot intersect, and are all defined by the system of Eq (8), which also defines
the subthreshold bifurcation structure. It is how the gating variables are reset that regulates
bursting; if the gating variables are changed by a fixed amount at reset, then they must also
change by an equal and opposite amount during their phase space trajectory in order to be
reset back onto the same trajectory. Otherwise, if the gating variables change by a different
amount than the reset, a different trajectory through phase space will be selected, resulting in a
different ISI. For fixed gating variable resets, however, the phase space trajectory doesn’t mat-
ter, the gating variables are always reset to the same values, resulting in the same phase space
trajectory and ISI, making bursting impossible.

Although neither of these simplified QIF models capture the physiological realism of the
QIF with the artificial spike, they do disentangle the relationship between the boosting nonline-
arity, subthreshold bifurcation structure, and bifurcation through bursting. Furthermore, the
simplified model in Fig 3E is analytically tractable and will provide a basis for later understand-
ing the model with spike generated reset conditions.

Analytic firing rate and gain curves for the QIF model, with fixed gating
variable reset
To get an analytic expression for the f-I curve and its gain across the boosting nonlinearity, the
simplified QIF model with fixed gating variable reset conditions shown in Fig 3E was first

Fig 2. Reduced QIFmodel captures subthreshold bifurcation structure, boosting nonlinearity, and bursting bifurcation of HHmodel.
(A)H1(V, n*, x*,C*) is plotted for μ = 5, showing how there are either 0 or 2 subthreshold (between the green and red dashed lines) fixed points
(i.e. zero crossings), for the gCa = 0 and gCa = 0.6 cases, respectively. (B) Bifurcation diagram for HHmodel at four different values of gCa as
indicated. Fixed points at each bias current value correspond to zeros ofH1(V, n*, x*,C*), with red indicating stable and black indicating
unstable. A green star indicates a saddle-node bifurcation, while a green x indicates an Hopf bifurcation, and a cyan star indicates the annihilation
point of the two remaining unstable fixed points. Dashed blue lines indicate the mean voltage, while solid blue lines indicate its maximum and
minimum. (C) shows the equivalent F1(V, x*,C*) for the reduced QIF model, for the gCa = 0 and gCa = 0.6 cases, also indicating the two
subthreshold fixed points. Green and red dashed lines indicate the voltage threshold and reset, respectively, indicating that the two functions
have the same concave shape needed to generate the same subthreshold bifurcation structure. (D) Bifurcation diagram for QIF model at four
different values of gCa as indicated, with fixed points now corresponding to the zeros of F1(V, x*,C*), and additional dashed green lines indicating
the voltage threshold. (E) The QIF model f-I curve, with colored lines and dots as in Fig 1E. Inset shows artificial piecewise linear action potential
used to simulate refractory period (black), with an example HHmodel action potential superimposed (red) for comparison. (F) ISI return maps for
four example bias currents with gCa = 0.2, showing how the stable limit cycle undergoes the same period adding bifurcations through bursting as
the HHmodel (see Fig 1F), in the region which separates the low and high gain regions of stable 1-spk firing.

doi:10.1371/journal.pone.0159300.g002
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considered. As the QIF model is still nonlinear with three dynamic variables, some additional
assumptions are needed. Since the original spike generating sodium and potassium channels’
gating variable, n, has an average time scale much faster than the additional calcium-related
gating variables, x and C, (τn � 1.5ms< τx = 10ms, τC = 20ms) it can be assumed that the addi-
tional gating variables, x and C, are slow compared to the membrane voltage, V. From this they
can be set to their mean values which must equal their reset values: x = hxi = xreset, and C = hCi
= Creset, with _x ¼ _C ¼ 0. Although this cannot be true during an AHP in which the voltage

changes directions and _V ¼ 0momentarily, it does provide a useful starting place: it reduces
the model to a single differential equation in V that can be solved analytically Eq (14), where
the additional calcium and calcium-activated potassium currents have been redefined as a sin-
gle mean adaptation current, �WðVÞ, defined by Eq (13).

For this slow gating variable assumption to hold requires that _V > _x ¼ _C � 0, which is
true as long as the depolarizing “spike generating” current, ψ(V) is greater than the hyperpolar-
izing adaptation current, �WðVÞ (i.e. mþ cðVÞ > �WðVÞ, which must be true for sufficiently
large μ). This results in a 2D VW phase space, in which the depolarizing current, μ + ψ(V) is
parabolic, and the hyperpolarizing adaptation current, �WðVÞ is linear. As such, μ� can be
defined Eq (15) so that if μ< μ� then ψ and �W intersect, while if μ> μ� they do not (see Figs
4A and 1B). The simulated trajectories through phase space are superimposed in blue, with
blue arrows indicating the direction of the flow from reset to threshold. As long as μ> μ� the
slow gating variable approximation holds and Eq (14) can be integrated from Vr to Vth, result-
ing in the time interval I 0 Eq (17). The approximate trajectory from Vr to Vth is superimposed
(red curve, �WðVÞ) in Fig 4B.

For μ< μ�, on the other hand, the linear trajectory starting at Vr can be seen to intersect the
parabola at a point denoted V�, defined by Eq (18). The � ensures that F(V)> 0 between Vr and
V� and can be integrated to give I 1 Eq (19). At V

�, then F(V)! 0 and the voltage would come to
rest at a fixed point if the slow gating variable assumption was not violated; instead the trajectory
is now driven by the gating variable dynamics defined by Eq (8b) and (8c). If the trajectory were
to cross above the parabola, μ + ψ(V), then F(V)< 0 and the voltage would have to decrease until
it crosses back; so the only way for the voltage to increase up to threshold, is ultimately by follow-
ing along under the parabola until it reaches the bottom (located at V = V2,W = μ − �) where it is
free to increase to threshold. The time interval, I �, for the voltage to travel from V� to V2, is cal-
culated in Models andMethods by allowing the gating variables to change and estimating the
time forW� to decay down to μ + ψ(V) (see Eqs (20)–(25)). In the final segment from V2 to Vth

the gating variables are again fixed to their new values, which result in a new �W 2 value and the
green linear trajectory shown in Fig 4A, resulting in the interval I 2 Eq (27).

Each of these times is calculated for all values of μ and are plotted in Fig 4C. The summed
times then give the total ISI, which was compared to the simulated ISIs in Fig 4D. It is clear

Fig 3. Boosting nonlinearity and bursting depend on reset boundary conditions, not only subthreshold bifurcation structure. (A)
Firing rate versus μ for the QIF model used in Fig 2E, again with the inset indicating the piecewise linear spike waveform used (black),
superimposed with an actual HHmodel spike (red). Red Xs indicate the bifurcation point of the two subthreshold fixed points which appear to
correspond with the onset of bursting. (B) The average Δx and ΔC values generated by the spike shape in A, which change significantly with
bias current, μ. (C) The average xreset andCreset values generated by the spike shape in A, also change significantly with bias current. (D) QIF
model simulated f-I with fixed Δx and ΔC values for all μ. (E) QIF model simulated f-I with fixed xreset andCreset values, indicates that the
boosting nonlinearity can still occur, without any bursting, seemingly independently of the subthreshold bifurcation points, which are the same
as in A. Numbered yellow dots indicate examples of low and high gain regions of interest due to boosting nonlinearity most similar in shape to
purple f-I curve in panel A.

doi:10.1371/journal.pone.0159300.g003
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that at low bias current values the intervals are dominated by I � which also has the most signif-
icantly nonzero slope. When inverted, the combined intervals defined by Eqs (17), (19), (25)
and (27), give an approximation to the steady state firing rate as a function of bias current:

RðmÞ ¼ 1

I 1 þ I � þ I 2 þ tr
; for m < m�

1

I 0 þ tr
; for m > m�

ð1Þ

Eq (1) is plotted in Fig 5, for both τr = 3 ms (solid green and red) as well as τr = 0 ms (dashed
green and red), superimposed with the firing rate calculated by numerically simulating model
Eq (8) directly (black). The solid red dots indicate μ� which can be seen to clearly match the
region where the slope of the f-I curves are greatest. For μ> μ� the solid red curves are in very
good agreement with the black curve, and the saturation (or reduction in slope) can be seen to

Fig 4. WV phase space projection of trajectories at low and high gain μ values, for QIF with Xr = 0.1 andCr =C1(Vr, Xr)(see Fig 3E) (A) Example
phase space trajectory at bias current, μ < μ*, for gCa = 0.2. Simulated trajectory projected into VW phase space (blue) has blue arrows indicating
direction of motion in time. The theoretically predicted trajectory starts at the reset voltage, Vreset (red dot), and travels along �W ðVÞ (red line) until it intersects
μ + ψ(V*) (black line) at V* (cyan dot). The grey band indicates the region of j _V j < �. At this point, the x andC variable are free to decay (cyan curve) untilW
reaches V2. Then x andC are again fixed and give rise to a new mean adaptation current �W �ðVÞ (see Eq (26), green line) connecting the point V2 (green dot)
and the threshold voltage (yellow dot). Furthermore, the change inW between V* and V2 is assumed to be DW ¼ �W ðV �Þ � ðm� �Þ as indicated (and
assumed by Eq (23)). Insets show V(t) andW(t) as time series. (B) Example trajectory at bias current, μ > μ*, for gCa = 0.2. Now �W ðVÞ (red line) does not
intersect μ + ψ(V), and directly connects Vr (red dot) and Vth (yellow dot). (C) The time intervals for the different trajectory components are plotted as a
function of bias current (for gCa = 0.2), using colors that match the trajectory components color in (A) and (B). The vertical dashed line indicates μ*. (D) The
sum of all the predicted intervals shown in (C) results in the predicted ISI (black), and the average ISI of the simulated data (blue) show how the total interval
is dominated by I � when μ < μ*.

doi:10.1371/journal.pone.0159300.g004
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be due primarily to the refractory period, τr (compare solid and dashed red). μ< μ� the solid
green curves are in reasonable agreement with the black curves (considering the additional
approximations needed) at least exhibiting the boosting nonlinearity effect, which does not
change significantly with τr.

The gain, or slope of the f-I curves, can next be calculated by simply differentiating Eq (1)
with respect to bias current, G(μ) = @R(μ)/@μ, which is plotted in Fig 6 (green and red solid
and dashed curves) for comparison with that calculated from the simulated f-I curves (blue).
To derive a more intuitive approximate equation for the gain, the refractory period can be set
to zero, τr = 0:

G�ðmÞ � �1

ð I 1|{z}
�0

þ I � þ I 2|{z}
�2p

Þ2
@I �

@m

� jBj
½m� ð2pB� AÞ�2

� jBj
ðm� m�Þ2 ; for m < m�

ð2Þ

GþðmÞ ¼ �1

I 2
0

@I 0

@m

� 1

2p

ffiffiffiffi
g2
�m

r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=4p2

p
½m� ðW0 þWmðV2 �WmÞÞ�1=2

; for m > m�:

ð3Þ

Fig 5. Steady state firing rate, simulations and theory: QIF with Xreset = 0.1 andCreset =C1(Vreset,
Xreset). The firing rate is plotted for the numerical simulations in black, with analytic Eq (1) in green and red,
with solid for τr = 3 ms, and dashed for τr = 0 ms.

doi:10.1371/journal.pone.0159300.g005
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For μ< μ�, the change in ISI is dominated by the change in I � (the segment from V� to V2),
and I 1 and I 2 are roughly constant by comparison (see Fig 4C). This allows G− to be reduced
to Eq (2b), which diverges as μ! 2πB − A. Although A and B depend on μ, plugging in numer-
ical values reveals that 2πB − A! μ� as μ! μ�. For μ> μ� the gain depends only on I 0 and is
found to scale as 1=

ffiffiffi
�m

p
from above, similarly to results for the simple QIF model [14], with a

rescaled �m. In this case the gain diverges when �m ! 0 which occurs when μ =W0 +Wm(V2 −
Wm)’μ�, which is also very close to μ�. This shows that the gain scales as 1/(μ − μ�)2 from bel-
low and as 1/(μ − μ�)1/2 from above, and explains why the peak gain should be near μ = μ�.

Eqs (2) and (3) are also superimposed in Fig 6, where the dashed yellow and cyan curves are
approximations to the dashed green and red curves, and the solid green and red curves are
approximations to the blue curve. The dashed yellow and green curves are in reasonable close
agreement, and the solid green does capture the main effect of the boosting nonlinearity (i.e.
increase in gain with increasing μ), however ignoring the initial spike in gain at the onset of
spiking (blue curves). The solid red curves match the blue curves even better than the green
curves (as there were fewer approximations needed). Although the dashed red and cyan curves

Fig 6. f-I curve gain, simulations and theory: QIF with Xreset = 0.1 andCreset =C1(Vreset, Xreset). The gain (or f-I curve slope) is plotted for the
numerically simulated model in blue, with the derivative of Eq (1) in green and red (solid and dashed). Additionally the approximate gain Eqs (2) and
(3) are superimposed in yellow and cyan dashed lines. The peak of the blue gain curve occurs at μ* (vertical black line) where the theoretical
predictions all diverge. Panels A-D correspond to increasing values of gCa.

doi:10.1371/journal.pone.0159300.g006
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do differ significantly, it is a roughly constant amount and the cyan curve still captures the
essential scaling features. To quantify the quality of these approximations, the absolute differ-
ences of each pair, normalized by the target curve, is plotted in Fig 7. Red and green compare
Eq (1) with the simulations, and yellow and cyan compare Eqs (2) and (3) with the derivative
of Eq (1).

Theoretical firing rate for the QIF model with spike generated resets:
convergent iterative predictions
Coming back to the more physiological QIF model with spike generated reset conditions,
which reproduces closely the HH model’s boosting nonlinearity as well as its bifurcations
through bursting, the reset values, xreset and Creset, are no longer given. These reset values may
be estimated via an iterative algorithm (see Models and Methods), which may converge to a
stable sequence of reset values. In the high bias region where the slow gating variable approxi-
mation is valid, a self-consistency condition can be used to generate successive gating variable
reset values (and in turn ISIs) similarly to that of Richardson [15]. As described in Models and
Methods, because F(V)> 0 in this regime, a result of the Fokker-Plank equation can be used to
give the probability distribution of the voltage, p(V), which can be used to calculate xreset = hxi
and Creset = hCi [15] according to Eqs (28)–(30). For low bias values where the slow gating vari-
able approximation is not valid, however, Eq (30) no longer holds and the artificial action
potential must be used to calculate new reset values.

Letting the algorithm iterate, it may converge to a sequence of identical ISIs (i.e. stable 1-spk
limit cycle), a sequence of 2 or more ISIs which repeats (i.e. stable 2- or 3-spk limit cycle;

Fig 7. Comparison between results from the full theoretical and approximate gain equations. The
quality of the full theoretical model is assessed by plotting the absolute difference between the derivative of
Eq (1) and the numerical simulations, normalized by the simulated gain, plotted in green and red for μ < μ*
and μ > μ* respectively. Additionally, the approximate gain Eqs (2) and (3) are compared to the derivative of
Eq (1) with τr = 0, plotted in yellow and cyan dashed curves.

doi:10.1371/journal.pone.0159300.g007
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bursting), or even a sequence of ISIs that has no repeating patterns. After 20 iterations of tran-
sient ISIs, convergence has generally been reached and the mean and standard deviation of the
subsequent sequences of 1/ISIs was used to estimates the f-I curves, as plotted in Fig 8A. The
iterative theory can be seen to converge to stable 1-spk limit cycles in the limits of low and high
bias current, as well as produce variable ISI sequences (red dashed) near the bursting in the
QIF model (black dashed). The best agreement is actually achieved for the highest value of gCa
= 0.2 in the bottom right panel of Fig 8A, where two example bias currents are indicated by yel-
low dots, which will be considered in the VW phase space below.

For the stable 1-spike limit cycles in reasonable agreement with the QIF simulations, the
low and high bias example trajectories are plotted in the VW phase space in Fig 8B and 8C.
These two trajectories can be seen to have the same fundamental geometry of those in Fig 4: in
the high bias region the trajectories do not encounter the parabola, μ + ψ, while for low bias
currents, they do. However, in Fig 8B the simulated QIF trajectory (blue curve) crosses the
black parabola and changes direction in V, before crossing the parabola again and crossing
back over itself (which is only possible since this is really a 3D phase space projected into 2D)
before increasing to threshold. It is this trajectory that result in the specific AHP shape in
which the voltage changes directions twice. In this case Eq (22) must be used to estimate the
calcium decay from V� to V2, which is compared to that calculated analytically via Eq (21) in
the Fig 8B inset (see Models and Methods for details). Once the time interval for each separate
component is calculated as described in Models and Methods, the voltage distribution during
each segment can be estimated and in the bottom of 8B can be seen to provide a not very accu-
rate match to the simulation (compare black and blue curves), but it does have the marked fea-
tures of the combined red and cyan peaks. These distributions in 8B, however, are not used in
the iterative algorithm. For example 2 in the high bias regime (Fig 8C), both V andW can be
seen to increase monotonically from reset to threshold, and the resulting voltage distribution is
in much better agreement with the simulations.

Although the iterative theory captures the essential phase space geometry to explain the
boosting nonlinearity, the results in the regions of bursting are considered next. In Fig 9 (left)
the FI curves of the QIF with spike are again plotted, but now with each 1/ISI in the sequences
(black dots). Clearly these do not follow the ordered period adding bifurcations see in Figs 1E
and 2E. Although there does appear to be a window of order with a stable 3-spike burst (see Fig
9 right), this 3-spike sequence does not have the same structure as the bursts in Figs 1 and 2
(i.e. short-short-long ISI sequences) and may instead be considered an alternation of 1-spk and
2-spk bursts. While the iterative theoretical predictions do capture the low to high gain transi-
tion across the boosting nonlinearity, they do fail entirely at capturing the period adding bifur-
cations through bursting.

Conclusions
To summarize, in this paper it was shown that a conductance-based Hodgkin-Huxley type ves-
tibular neuron model with high voltage-activated calcium and calcium-activated potassium
currents, can exhibit a boosting nonlinearity for increased calcium conductance, gCa. In addi-
tion, the model exhibits a period adding bifurcation through bursting for intermediate bias cur-
rents separating the low and high gain regions of the boosting nonlinearity, with an AHP in the
low gain region. In order to isolate the mechanism underlying the boosting nonlinearity, the
HHmodel was reduced to a generalized QIF model that preserves the subthreshold bifurcation
structure. With an artificial action potential to activate the gating variables, the QIF model
reproduces the boosting nonlinearity and the bifurcation through bursting and AHP. To fur-
ther simplify the model and tease apart the necessary ingredients for a boosting nonlinearity,
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QIF models were created that use fixed values for, Δx and ΔC, and finally for, xreset and Creset.
For this simplified QIF a slow gating variable approximation was used as a starting point to
derive an analytic equation for the f-I curves, and approximate expressions for the gain (i.e. its
slope), showing the gain to be peaked at μ = μ�. An intuitive geometrical picture of how the tra-
jectories through VW phase space shows that they differ qualitatively in the low and high bias
regions of the boosting nonlinearity, and that these two types of trajectories provide the basis
for understanding the boosting nonlinearity and deriving an expression for μ�. Finally, in the
case of spike generated reset conditions, it is shown that an iterative algorithm can find stable
1-spk limit cycles that provide reasonable agreement in the limit that μ! 0, and excellent
agreement in the high bias regime.

Comparison to other two- and three-variable adaptive models
Previously a two-variable adaptive QIF model was studied and found to exhibit a similar boost-
ing nonlinearity [14]. This model used a fixed reset value for its adaptation current,W, such
that it would be reset above the parabolic function μ + ψ(V) for low bias, causing the voltage to
initially move in the negative direction until it can cross below ψ and begin moving positively,
towards threshold. Once μ is increased such that it is greater thanWreset, the trajectories are
then reset below ψ and increase monotonically towards threshold. This is a very similar mecha-
nism of boosting, whereby spiking trajectories in the low gain region must cross (or come very
close to) the V-nullcline,W� = ψ(V�), while trajectories in the high gain region do not. This
mechanism also results in an AHP in the low gain region, where the voltage initially decreases
through a slow minimum, but only changing directions once. However, because phase space
trajectories can not cross over themselves, the low gain region only emerges when the reset
conditions start the trajectory above ψ. In the three-variable adaptive QIF model considered
here, the projections in the VW plane can cross themselves only because they have an extra
dimension due to the x and C variables, andW(x, C). This allows trajectories in the QIF model
to start below the V-nullcline, cross up above it, loop back below, cross themselves and off
towards threshold. This is what gives my 3-variable QIF model’s spikes their signature AHP
shape which initially increases before decreasing, unlike two-variable models.

Although the two-variable QIF model of Shlizerman and Holmes does not burst [14], its close
relative the adaptive exponential-IF (aEIF, also two-variable) can produce bursting [11, 12],
when the adaptation variable reset condition is insteadWreset =W(tspk) + ΔW. This produces
bursting in a similar way as the adaptive QIF model: multiple short ISIs occur (which do not
intersect ψ) withW increasing each time, untilW has accumulated enough that the trajectory
does intersect ψ and a long ISI occurs, terminating the burst. Although the exponential function
in the aEIF model changes the shape of ψ, it does not change the basic concave-up geometry cap-
tured by the QIF. As such, it may be expected that the regions of such aEIF models that produce

Fig 8. WV phase space projection for QIF model with spike waveform, and convergent iterative theoretical predictions for μ > μ* and μ! 0.
(A) Firing rate for QIF with spike waveform, as in Fig 3A, in solid black lines for gCa > 0 (as indicated), and blue curves for gCa = 0. Iteratively estimated
theoretical predictions (see Models and Methods for details) are superimposed in red, with solid lines indicating the mean 1/ISI, and dashed lines
indicating standard deviation (SD) of 1/ISIs (the bursting patterns will be considered in the next figure). Theory shows excellent agreement above the
bursting region where F(V) > 0, and reasonable agreement at very low bias currents. Two example bias currents are indicated by numbered yellow
circles in the bottom right panel. (B) Low bias example trajectory in VW phase space. Simulated trajectory in blue (with direction of flow indicated by
blue arrows), with theoretical trajectory connecting Vreset to V* (red line), then V* to V2 (cyan line), and finally V2 to Vth (green line). Inset shows the
cyan trajectory in terms of decaying variables x*(t) andC*(t), and how Eq (22) captures the initial increase and then decrease in the calcium
concentration, while Eq (21) does not. Below, the corresponding voltage probability density for the simulated trajectory (blue), and each of the red,
cyan, and green segments (independently normalized), as well as their weighted combination (black, see Models and Methods). (C) Same as panel
B, but for the high bias example point.

doi:10.1371/journal.pone.0159300.g008

Model Vestibular Neurons Exhibit Calcium-Induced Boosting Nonlinearity

PLOS ONE | DOI:10.1371/journal.pone.0159300 July 18, 2016 16 / 27



Fig 9. Iterative theoretical predictions for QIF model with spike waveform: stable and unstable 1-spike limit cycles. (A) f-I curves for QIF model with
spike waveform, each panel comparing gCa = 0 (blue) with gCa > 0 as indicated (color), as well as the theoretical predictions (black). The iterative theory
produces a sequence of ISIs, the final 20 are plotted as 1/ISI at each bias (black dots), and their average value versus bias is superimposed (solid black).
(B) For the highest gCa value, ISI return maps are shown for six illustrative bias current values starting with a low bias stable 1-spk limit cycle (top left panel),
through bifurcations to aperiodic spiking, with windows of repeating sequences, and back to stable 1-spk limit cycles at high biases (bottom right panel).
The same 20 ISIs from A are also plotted in B. It can be seen that at μ = 20.5, a stable sequence of 3 intervals repeats. Similarly, the bottom left panel
shows similar sequence of 3 ISIs almost repeats, but 2+ slightly different versions of it repeat, illustrating how regions with stable N-spike ISI sequences
transition to other regions with stable M-spike ISI sequences.

doi:10.1371/journal.pone.0159300.g009
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bursts might also indicate the presence of a boosting nonlinearity, however this has not been
reported [11, 12]. In addition, although the aEIF model generally uses a simpler linear equation

for the dynamics of the adaptation variable such as _W ¼ ½aðV � VwÞ �W�=tw, it still requires
the further simplification that a = 0, to compute that hWi = ΔW a priori and apply a slow gating
variable assumption for an analytic solution [10, 16].

Finally, Richardson analyzes a three-variable adaptive model very similar to ours [15], with
spike-triggered calcium and calcium activated potassium, however he uses an artificial action
potential with Vmax = 0, that decays linearly to the reset Vreset. He also avoids the problem of
not knowing the value of hWi by using the slow gating variable assumption and self-consis-
tency criterion to find it iteratively. He does not report a boosting nonlinearity or bursting, but
remains in a region of parameter space where F(V)> 0 and no AHP [15]. In addition, different
spike shapes with the QIF did have a significant effect on whether or not the adaptation cur-
rents were strong enough to produce either boosting or bursting, which is one possible expla-
nation for our differing results. However, different values for the conductances gCa and gKCa
are used as well. Although the goal of this study was to understand the mechanisms that pro-
duce boosting in the HH model, the ultimate goal is to relate it back to experimental data from
the vestibular system, and how it might be functionally relevant.

Correspondence to vestibular nuclei neuron data
The HHmodel used in this paper is already a simplified version of the original vestibular nuclei
neuron model developed by Av-Ron et al. [5], where only the ion channels necessary to gener-
ate the boosting nonlinearity were included. These channels were originally tuned to produce
the characteristic bi-directional AHP that goes up and then down before rising to threshold
(switching direction twice). This very AHP appears to be a signature that the model would
likely produce a boosting nonlinearity (and bursting) if driven to sufficiently high bias currents
that the AHP no longer occurs. However, this model was originally developed for in vitro prep-
arations where the average baseline firing rate is much lower (i.e.*30–50spk/s) than in alert
behaving animals (i.e.*60–80spk/s) [6]. This may be why such a boosting nonlinearity has
not yet been observed in vitro. One would expect that if the in vitro recordings used current
injections large enough that the AHP could no longer occur, that this would also be sufficiently
large to reveal a boosting nonlinearity as well, an experimentally testable prediction of this
manuscript.

It is also important that neurons are considerably more variable in vivo, requiring an addi-
tive noise term in the model [6]. Including such increased noise, simulations of the HHmodel
still show the boosting nonlinearity, while the noise is sufficient to disrupt the bursting (not
shown). Furthermore, analysis of the data in Massot et al. [4] has shown no evidence of burst-
ing in vivo. To further improve the correspondence between the HH model and VN neurons,
additive noise could be added to provide the appropriate coefficient-of-variation of the sponta-
neous spiking activity [4]. However, it is known that different noise intensities may be needed
during spontaneous and driven stimulation conditions, as was found for vestibular afferent
models [17]. Experimental efforts should therefore be made to measure both the mean firing
rate and its variance as functions of bias current, using different stimuli, to further constrain
accurate VN neuron models.

Implications for sensory information processing in the vestibular system
The boosting nonlinearity was originally found in vestibular-only (VO) neurons in VN using
narrow band noise stimuli with low (0–5 Hz) and/or high (15–20 Hz) frequency content, and
it was found that when presented together the high frequency stimuli masked the response to

Model Vestibular Neurons Exhibit Calcium-Induced Boosting Nonlinearity

PLOS ONE | DOI:10.1371/journal.pone.0159300 July 18, 2016 18 / 27



low frequency stimuli [4]. A linear-nonlinear (LN) cascade model of the data could explain this
masking effect and predict the % attenuation for additional stimuli. The statistics of naturally
occurring head movements in primates have since been recorded [18] and indeed been found
to have significantly higher power over the low frequency range than the high frequency range,
making it unclear whether such masking would occur under natural conditions. This could be
explored in a model using stimuli with naturalistic frequency content combined with afferent
filters. Additionally, natural stimuli have combinations of angular and linear movements,
which could also lead to masking between different axes of motion, rather than different fre-
quency bands within one axis of motion.

It is well known that when neurons are driven across a common rectifying nonlinearity, it
can result in increased spiking precision, with information lost about the stimuli in the zero
gain region of the nonlinearity which also has a firing rate of zero. It is therefore possible that
the boosting nonlinearity could allow the same increased spiking precision, potentially indica-
tive of temporal encoding, to coexist with a standard rate coding since the low gain region still
has non-zero gain and firing rate. Further studies with this model could therefore investigate
the possibility of simultaneous rate and temporal coding, under natural stimulus conditions.

Finally, it should be pointed out that VO neurons are known to respond robustly to pas-
sively applied stimuli (i.e. head movements externally generated by the experimenter), but to
show*70% to the self-generated stimuli studied [19], and that the large majority of natural
stimuli recorded by Schneider et al. was indeed self-generated [18]. This suggests a potential
role for the boosting nonlinearity: if self-generated stimuli elicit responses that are not suffi-
ciently attenuated and cross the boosting nonlinearity, an increased level of spiking precision
(or population synchrony) could signal a potential problem, without entirely disrupting the lin-
early decodable information remaining about the stimulus in the firing rate.

Models and Methods

Full HH model
The Hodgkin-Huxley (HH) type model of a VN neuron developed by Av-Ron et al. [5] and
adapted by Schneider et al. [6] is studied in this paper. Specifically, the model includes spiking
sodium and potassium currents governed by the single activation variable, n (as in the Morris-
Lecar model), as well as a voltage-activated calcium current and calcium-activated potassium
current, each governed by the activation variables, x and C, respectively. The additional cal-
cium current, is activated by high voltages that occur during an action potential, and serves pri-
marily to let calcium into the cell with only a small effect on membrane voltage. The additional
potassium current, however, is only activated by the calcium that enters the cell when it spikes,
and serves to reduce the voltage and prevent spiking. The additional persistent sodium and
hyperpolarization-activated currents present in [5, 6] have been removed, as they are not nec-
essary for the model to generate the boosting nonlinearity being investigated. This results in a
4-dimensional spiking neuron model governed by the following differential equations:

Cm

dV
dt

¼ H1ðV ; n; x;CÞ ¼ m� IionsðV ; n; x;CÞ
dn
dt

¼ H2ðV ; nÞ ¼ ½n1ðVÞ � n�=tn
dx
dt

¼ H3ðV ; xÞ ¼ ½x1ðVÞ � x�=tx
dC
dt

¼ H4ðV ; x;CÞ ¼ ½C1ðV ; xÞ � C�=tC:

ð4Þ
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Iions = INa + IK + Ileak + ICa + IKCa, with C1 ¼ � K
R
ICa, and the currents are given by the follow-

ing additional equations:

INaðV ; nÞ ¼ gNam
3
1ð1� nÞðV � VNaÞ

IKðV ; nÞ ¼ gKn
4ðV � VKÞ

IleakðVÞ ¼ gLðV � VLÞ
ICaðV ; xÞ ¼ gCax

2ðV � VCaÞ

IKCaðV ;CÞ ¼ gKCa
C

C þ Kd

ðV � VKÞ;

ð5Þ

where the steady state activation variables obey the following equation:

z1ðVÞ ¼ 1=½1þ exp ½�2aðzÞðV � V ðzÞ
1=2Þ��, for z 2 {n, x}. All parameters are as used by Schnei-

der et al. [6], unless otherwise stated. The calcium current equation ICa has also been modified

from Schneider et al. to remove the calcium saturation term, Kr
CþKr

, to further simplify the model

while preserving the boosting nonlinearity.
The fixed points (FPs) of the HHmodel can be found by setting the equations H1 =H2 =H3

=H4 = 0, then solving for, n� = n1(V�), x� = x1(V�), C� = C1(V�), while V� must be found by
plugging these into H1, and numerically finding the zeros of

H1ðV ; n�; x�;C�Þ ¼ m� gLðV � VLÞ � gNam
3
1ðVÞð1� n�ðVÞÞðV � VNaÞ

�gKn
�4ðVÞðV � VKÞ

�gCax
�2ðVÞðV � VCaÞ � gKCa

C�ðVÞ
Kd þ C�ðVÞ ðV � VKÞ;

ð6Þ

for a range of bias current values, μ. The stability of the fixed points can then be found by look-
ing at the eigenvalues of the following matrix

LHH ¼

@H1=@V @H1=@n @H1=@x @H1=@C

@H2=@V @H2=@n 0 0

@H3=@V 0 @H3=@x 0

@H4=@V 0 @H4=@x @H4=@C

0
BBBBBBB@

1
CCCCCCCA
; ð7Þ

where the FP is stable if all its eigenvalues have negative real parts.
Setting gCa = 0 (and in turn C = 0), it is well known thatH1(V) has a cubic form (or sideways

‘S’ shape), with a local minimum at a lower voltage and a local maximum at higher voltage.
This shape does not change, but is translated vertically with changes in the bias current, μ. For
sufficiently low values of μ there are three fixed points, only that with the lowest voltage is sta-
ble, and corresponds to the steady state resting potential. As μ is increased, the two fixed points
at lower voltages annihilate in a saddle-node bifurcation at which point there is no stable fixed
point, and the model generates action potentials via a stable limit cycle. It is also possible
(when gCa > 0) for the lowest voltage fixed point to lose stability via a Hopf bifurcation. In this
case the spiking limit cycle can coexist with all three unstable fixed points, with the two lower
voltage fixed points annihilating at yet higher values of μ.

Simplified QIF model
In order to find an analytic equation explaining the change in gain of the boosting nonlinearity, a
reduced integrate-and-fire (IF) type model is used, that preserves the FP bifurcation structure of
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the HHmodel. This is done by removing the gating variable, n, and replacing the currents, IL(V)
+ INa(V) + IK(V), with a nonlinear function ψ(V), and a voltage threshold and reset. Although
simple constant or linear functions can be used for ψ(V), a concave up function is needed to
reproduce the second bifurcation of two subthreshold fixed points in the case of the Hopf bifur-
cation at spiking onset. The simplest of these functions is the quadratic, ψ(V) = g2(V − V2)

2,
resulting in the generalized QIF model, governed by 3 differential equations:

Cm

dV
dt

¼ F1ðV ; x;CÞ ¼ mþ cðVÞ � ICaðV ; xÞ � IKCaðV ;CÞ
dx
dt

¼ F2ðV ; xÞ ¼ ½x1ðVÞ � x�=tx
dC
dt

¼ F3ðV ; x;CÞ ¼ ½C1ðV ; xÞ � C�=tC;

ð8Þ

where the only new parameters to define are g2 and V2.
In addition, the QIF model requires a boundary condition such that when the voltage

reaches a threshold, Vth, a spike is said to have occurred, and the voltage is returned to a reset
value, Vreset, for an absolute refractory period, τr. However, because the high voltages occurring
during the action potential are needed to drive the voltage-activated calcium currents, a simple
piece-wise linear function, Vspk(t), is used during the refractory period tspk < t< τr (similar to
Richardson [15]). The spike shape rises linearly to a maximum, and then decays linearly to the
reset voltage according to

VspkðtÞ ¼ Vth þ
Vmax � Vth

t1
t; : : : : : : for 0 � t < t1

Vmax þ
Vr � Vmax

tr � t1
ðt � t1Þ; : :for t1 � t < tr

ð9Þ

where t = 0 corresponds to the spike times. In this paper, the spike shape parameters, Vmax =
30 mV, t1 = 0.4 ms, and τr = 3 ms are used. This results in the x and C gating variables changing
according to x(tspk)!x(τr) = x(tspk) + Δx, and C(tspk)!C(τr) = C(tspk) + ΔC, where Δx and ΔC
are calculated by plugging Eq (9) into Eq (8b) and (8c) and numerically integrating x(t) and C
(t) from tspk to τref.

The QIF model can be further simplified by removing Vspk(t) and using either fixed Δx and
ΔC, or fixed xreset and Creset, resulting in x(tspk + τr) = xreset and C(tspk + τr) = Creset. This results
in two more parameters, either xreset and Creset, or Δx and ΔC, which must be defined, instead
of Vmax and t1.

The fixed points (FPs) of this simplified QIF model do not depend on the artificial spike
shape or reset boundary conditions, and can be found by setting the equations F1 = F2 = F3 = 0,
and solving for, x� = x1(V�), C� = C1(V�), as before, with V� now being found by plugging
these into F1, and numerically finding the zeros of

F1ðV ; x�;C�Þ ¼ m� g2ðV � V2Þ � gCax
�2ðVÞðV � VCaÞ � gKCa

C�ðVÞ
Kd þ C�ðVÞ ðV � VKÞ

¼ 0:

ð10Þ

The stability of the fixed points can then be found by looking at the eigenvalues of the following
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matrix

LQIF ¼

@F1=@V @F1=@x @F1=@C

@F2=@V @F2=@x 0

@F3=@V @F3=@x @F3=@C

0
BBB@

1
CCCA: ð11Þ

Although the subthreshold fixed points and their stability depend only on the system of Eq (8),
the reset values, xreset and Creset, behave as additional bifurcation parameters, similarly to the
reset parameters in the adaptive two-variable models studied by Naud et al. [12].

To estimate the QIF model parameters g2 and V2 from the HHmodel, gCa can be set to zero,
and the nonlinear functions in H1(V, n�) expanded to second order in V, around its approxi-
mate minimum (� −50 mV, seen by plotting),

H1ðVÞ ¼ m� gLðV � VLÞ � gNa m3
1ðVÞ|fflfflffl{zfflfflffl}

�a1þb1ðVþ50Þ

ð1� n1ðVÞ|fflfflffl{zfflfflffl}
�a2þb2ðVþ50Þ

ÞðV � VNaÞ

� gK n4
1ðVÞ|fflfflffl{zfflfflffl}

�a3þb3ðVþ50Þ

ðV � VKÞ;

� mþ kþ aðV � hÞ2;

ð12Þ

with a1 ¼ m3
1ðV ¼ �50Þ, a2 = n1(V = −50), a3 ¼ n4

1ðV ¼ �50Þ, b1 ¼ @m3
1=@VðV ¼ �50Þ,

a2 = @n1/@V(V = −50), and a3 ¼ @n4
1=@VðV ¼ �50Þ. Solving for a and h can then be used to

estimate g2 and V2, however, the values g2 = 0.1 and V2 = −50 mV do a sufficient job to repro-
duce the HHmodel’s features of interest.

A complete solution of this model would result in V(t), x(t), and C(t), and can result in tonic
firing of a single repeated interspike-interval (ISI), or bursts of two or more ISIs in a sequence
which repeats, as well as possibly aperiodic spiking with sequences of ISIs which never repeat.
In the entire 3D phase space, there is a single trajectory deterministically connecting Vr to Vth,
for each possible combination of xreset and Creset values which occur at the voltage reset. The
trajectories cannot intersect and the entire phase space of trajectories is defined by the system
of Eq (8), but the particular trajectory for each ISI is determined by the values of Vreset, xreset,
and Creset. The x and C values occurring at the voltage threshold may of course be different,
and not necessarily result in the same reset values, and may therefore be reset onto a different
nearby trajectory in phase space. In my simplified QIF with fixed xreset and Creset reset values,
together with Vreset, the voltage is reset onto the same trajectory after each spike, resulting in
only tonic spiking of a single repeated ISI. In this case the ISI can be estimated analytically,
with the values of xreset and Creset defined as model parameters.

Slow gating variable approximation for fixed reset conditions
The additional gating variables, x and C, have time constants of 10 and 20 ms, compared to the
average membrane time constant of�2 ms, and can thus be assumed to vary slowly by com-

parison (i.e. _x � _C � _V ). Although the gating variables may be reset instantaneously during
the refractory period following spiking, this approximation only needs hold from the end of
the refractory period until the next spike. Additionally subthreshold regions in which this
approximation breaks down, such as during an AHP, will be identified and dealt with sepa-
rately. This assumption allows the gating variables to be approximated by their initial values, x
� xreset and C� Creset. As a result, the additional calcium related currents depend only on V,
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and can be defined in the adaptation current, �WðVÞ, as
�WðVÞ ¼ ICaðV ; xrÞ þ IKCaðV ;CrÞ
�WðVÞ ¼ gCax

2
r þ gKCa

Cr

Cr þ Kd

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Wm

V� gCax
2
r VCa þ gKCa

Cr

Cr þ Kd

VK

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�W0

�WðVÞ ¼ W0 þWmV :

ð13Þ

�WðVÞ is simply linear in V, always having a positive slope (except when gCa = 0, causingW0 =
Wm = 0). This results in the system of Eqs in 8, reducing to a single differential equation

dV
dt

¼ FðVÞ ¼ mþ cðVÞ � �WðVÞ; ð14Þ

where ψ(V)> 0 represents the spike-generating currents which always drive the membrane
voltage towards threshold, and �WðVÞ > 0 represents the calcium and calcium-activated potas-
sium currents which always act to drive the voltage away from threshold. It is because VK < Vr

� V� Vth < VCa, that although the calcium current always serves to depolarize the membrane,
the stronger calcium-activated potassium current always serves to hyperpolarize the cell.

In the approximate 1D system defined by Eq (14), μ + ψ(V) is a parabola with its minimum
at μ, and �WðVÞ is a line with positive slope, independent of μ. This gives two possible scenarios:
for low enough μ the parabola and line intersect, while for high enough μ the parabola and the
line do not intersect. If there is an intersection, then F(V) = 0 at that voltage, and the approxi-
mate 1D system should have a fixed point, but since the system is really a 3D system, it only
indicates that the slow gating variable approximation breaks down. Although the initial condi-
tions at voltage reset could correspond to a region where �W > c, as in [12, 14], this does not
occur for the model parameters considered in this paper.

Since the parabola is translated linearly with μ, there must always exist a bias current, μ�,
such that F(V)> � for μ> μ�, where the parabola, μ + ψ − � and the line, �W intersect at a single
point. The value of � is chosen to be 0.5, small but non-zero, to avoid divergent calculations
involving 1/F(V). For gCa > 0, the bias current μ�, can be defined by F(μ�, V) = �:

m� ¼ ð2g2V2 þWmÞ2
4g2

� g2V
2
2 þW0 þ �: ð15Þ

For μ> μ�, F(V)> � and it is straightforward to integrate Eq (14) from reset to threshold to

calculate the ISI (consider this case 1). But for μ< μ�, _V < � for a range of V in which the slow
gating variable assumption cannot be made and Eq (14) cannot be used (consider this case 2).
It should be noted that in the limit that gCa ! 0, μ� ! μ, as expected.

Case 1: μ> μ� and j _V j > �With μ> μ� and j _V j > �, the voltage moves monotonically
from reset to threshold, and Eq (14) can be integrated to get the time interval

I 0ðmÞ ¼
Z Vth

Vr

dV
FðVÞ : ð16Þ

Plugging Eq (14) into 16 results in

I 0 ¼
Z Vth

Vr

dV

�m þ g2ðV � �V 2Þ2

¼ 1ffiffiffiffiffiffiffi
g2�m

p tan �1

ffiffiffiffiffiffiffi
g2�m

p ðVth � VrÞ
�m þ g2ðVth � �V 2ÞðVr � �V 2Þ

� �
;

ð17Þ
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where the new variables: �m ¼ m�W0 �WmðV2 �WmÞ, �V 2 ¼ V2 þWm=2g2 have been
defined. In the limit that gCa ! 0, �m ! m and �V 2 ! V2, and the solution to the to the simple
QIF model is recovered [14]. Further letting g2 ! 0, the well known IF model ISI,
I IF ¼ ðVth � VrÞ=m, results.

Case 2: μ< μ�

Case 2a: Vr � V� V�, with _V > � For low bias currents, μ< μ�, there are two voltages at
which the depolarizing current, μ + ψ(V) is balanced by the hyperpolarizing adaptation cur-
rent, �WðVÞ, corresponding to fixed points where F(V) = 0. However, at the reset point, (Vr,
Wr), F(V) is positive and remains so until the voltage reaches the �-neighbourhood of the lower
intersection point, V�, defined by

V� ¼
2g2V2 þWm �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2g2V2 þWmÞ2 � 4g2ðm� �þ g2V2

2 �W0Þ
q

2g2
; ð18Þ

where F(V�) = �. In this case, the voltage evolves according to Eq (14) from Vr up to V�, with
�m < 0 in this region, resulting in

I 1 ¼
Z V��

Vr

dV

�j�mj þ g2ðV � �V 2Þ2

¼ �1

2
ffiffiffiffiffiffiffiffiffiffi
g2j�mj

p ln

���� ½1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
g2=j�mj

p ðV�
� � �V 2Þ�½1�

ffiffiffiffiffiffiffiffiffiffiffiffi
g2=j�mj

p ðVr � �V 2Þ�
½1� ffiffiffiffiffiffiffiffiffiffiffiffi

g2=j�mj
p ðV�

� � �V 2Þ�½1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
g2=j�mj

p ðVr � �V 2Þ�

����;
ð19Þ

with �m and �V 2 defined as in Eq (17).

Case 2b: V� � V� V2, with j _V j < � Once the membrane voltage has reached V�, F(V)��

and the slow gating variable approximation can no longer be made, and x and Cmust be
allowed to evolve in time. It is assumed that at V� the gating variables result in an adaptation
currentW� > μ, and that they can now decay until the adaptation current,W�(t), reaches the

bottom of the parabola at μ − �. In this region, _V � 0 and V � ðV� þ V2Þ=2 � �V �, so that one
can solve F2 and F3 for x�(t) and C�(t). Assuming x�1 � x1ð�V �Þ, Eq (8b) gives

x�ðtÞ ¼ x�1 � ðx�1 � xrÞe�t=tx ; ð20Þ

by requiring x�(t = 0) = xr. Now to solve Eq (8c), one should plug in x�(t), as calculated above,
however to get an analytic solution, it is assumed that x�ðtÞ � x�1, and C

�
1 � C1ðV�; x�1Þ is

defined, resulting in

C�ðtÞ ¼ C�
1 � ðC�

1 � CrÞe�t=tC : ð21Þ

To get a more accurate prediction, Eq (8c) can be numerically integrated according to

C�
2ðtiÞ ¼ C�

2ðti�1Þ þ Dt½C1ðV�; x�ðti�1ÞÞ � C�
2ðti�1Þ�=tC; ð22Þ

with C�(t0) = Cr, in either case.
The gating variable dynamics in turn cause changes inW�(t). It is then assumed thatW�(t)

decays until it reaches the bottom of the parabola μ + ψ(V) − �, at V2. This time can then be
solved for,W�(t�) = μ − �,

W�ðt�Þ ¼ gCax
�ðt�Þ2|fflfflffl{zfflfflffl}

�a1þb1t�

ðV� � VCaÞ þ gKCa
C�ðt�Þ

C�ðt�Þ þ Kd|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�a2þb2t�

ðV� � VKÞ ¼ m� � ð23Þ
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by expanding to first order in time. The resulting coefficients are: a1 ¼ x2r , a2 = Cr/(Kd + Cr),
and

b1 ¼ @x�ðtÞ2
@t

����
t¼tx

¼ 2x�ðtxÞðx�1 � xrÞ
tx

e�1

b2 ¼ @

@t
C�ðtÞ

Kd þ C�ðtÞ
� �����

t¼tC

¼ KdðC�
1 � CrÞ

ðKd þ C�ðtCÞÞ2tC
e�1:

ð24Þ

This allows t� to be found,

I � ¼ t� � 0 ¼ m� �� ½gCaa1ðV� � VCaÞ þ gKCaa2ðV� � VKÞ�
gCab1ðV� � VCaÞ þ gKCab2ðV� � VKÞ

¼ m� �� A
B

;

ð25Þ

where A� [gCa a1(V� − VCa) + gKCa a2(V� − VK)] and B� gCa b1(V� − VCa) + gKCa b2(V� −
VK). This shows that A represents the amount of adaptation current,W, when the voltage

enters the _V < � region at V�, while B represents rate of change of adaptation current, due to
the decay of the gating variables x and C. This gives the simple geometric interpretation that
the time interval I � is equal to the “distance” thatWmust travel, divided by the “velocity” at
whichW travels.

At this point in time, the adaptation currentW has decayed toW(t�) = μ − �, and V(t�) =
V2, and the voltage is once again free to increase monotonically until threshold.

Case 2c: V2 � V� Vth, with _V > � For the remaining trajectory, I require a new adaptation
current, �W �, using the decayed gating variables instead of their initial reset values. However, I
also require that �W �ðV2Þ ¼ m� � to have the desired initial conditions, resulting in

�W �ðVÞ ¼ W�
0 þW�

mV

W�
m ¼ gCax

�ðt�Þ2 þ gKCa
C�ðt�Þ

Kd þ C�ðt�Þ
W�

0 ¼ m� ��W�
mV2:

ð26Þ

Eq (14) can then be integrated from V2 to Vth, resulting in

I 2 ¼
Z Vth

V2

dV

�m� þ g2ðV � �V �
2Þ2

¼ 1ffiffiffiffiffiffiffiffiffi
g2�m�p tan �1

ffiffiffiffiffiffiffiffiffi
g2�m�p ðVth � V2Þ

�m� þ g2ðVth � �V �
2ÞðV2 � �V �

2Þ
� �

;

ð27Þ

where the new variables: �m� ¼ m�W�
0 �W�

mðV2 �W�
mÞ, �V �

2 ¼ V2 þW�
m=2g2 are again

defined. Once the voltage has reached threshold, in this case the x and C variables have decayed
from their reset values to new values at the occurrence of the new spike, x(tspk) = x�(t�) and C
(tspk) = C�(t�). In this case, the fixed gating variable reset conditions are independent of these
threshold values, but in the case of the spike generated resets, they will depend strongly on
these threshold values.

Iterative Theoretical Predictions: Stable and Unstable Limit Cycles
For the QIF model with spike generated reset conditions, the values of xreset and Creset are not
known. However, with the theory described above, for fixed resets, there are two general types

Model Vestibular Neurons Exhibit Calcium-Induced Boosting Nonlinearity

PLOS ONE | DOI:10.1371/journal.pone.0159300 July 18, 2016 25 / 27



of ISI trajectories: Case 1, μ�(xreset, Creset)<μ in which _V > � and the slow variable approxima-
tion holds, and case 2, μ�(xreset, Creset)>μ in which the slow variable approximation is violated
and the gating variables are allowed to decay.

For case 1, μ> μ�, the slow gating variable assumption is that x� hxi = xreset and C� hCi =
Creset are constant. In this case, the ISI is easily computed by Eq (17), and a simple result of the
Fokker-Plank equation corresponding to Eq (14), gives the steady state voltage distribution

p0ðVÞ ¼
1

FðVÞ =
Z Vth

Vr

dV
FðVÞ ; for Vr < V < Vth; ð28Þ

where the normalization constant is in fact the ISI, I 0. However, this is only the subthreshold
voltage distribution, and doesn’t include the voltage distribution of the action potential,
pspk(V), during the refractory period. To get the full voltage distribution these two distributions
are combined, weighted according to their fraction of the total ISI:

pðVÞ ¼ A
I 0

I 0 þ tr
p0ðVÞ þ

tr
I 0 þ tr

pspkðVÞ
� �

; ð29Þ

where A is a new normalization coefficient. This leads to the same gating variable self-consis-
tency equations from Eq (5b) and (5c) as in [15]:

hxi �
Z

x1ðVÞpðVÞdV

hCi �
Z

C1ðV ; x1ðVÞÞpðVÞdV :

ð30Þ

In this case the iterative algorithm outputs a voltage distribution, p(V), which is used to esti-
mate the mean gating variables which will be used in the next iteration. If they again result in μ

> μ�, the same procedure repeats, and may converge to a stable sequence of a single ISI. If not,
the algorithm will proceed to case 2.

If the reset conditions result in case 2, μ< μ�, the gating variables will get a chance to decay,
as estimated in Models and Methods. Therefore, because the slow gating variable approxima-
tion is violated, Eq (30) can no longer be used as the self-consistency criterion. Now the artifi-
cial action potential must be used to numerically reset the gating variables, and if the amount
they decay is stabilized by the amount they are reset, a single trajectory and ISI will repeat.
However, if they do not match, a new trajectory will be selected, which may again result in case
2, or take the algorithm back to case 1.

The algorithm may converge to a single repeated ISI, estimated either via case 1 in the high
bias regime, or case 2 in the low bias regime, however, the algorithm may also result in a
sequence of 2 or more ISIs which repeat periodically (i.e. bursting), or even an aperiodic
sequence of ISIs which do not contain any repeating pattern. The sequences of ISIs and gating
variable reset values, can be analyzed via the ISI return map, f: ISIk! ISIk+1, to quantify their
stability.
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