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Fast and accurate matching of cellular barcodes
across short-reads and long-reads of single-cell
RNA-seq experiments

Ghazal Ebrahimi,1,6 Baraa Orabi,2,6 Meghan Robinson,3 Cedric Chauve,5 Ryan Flannigan,3,4

and Faraz Hach2,3,4,7,*

SUMMARY

Single-cell RNA sequencing allows for characterizing the gene expression land-
scape at the cell type level. However, because of its use of short-reads, it is
severely limited at detecting full-length features of transcripts such as alternative
splicing. New library preparation techniques attempt to extend single-cell
sequencing by utilizing both long-reads and short-reads. These techniques split
the library material, after it is tagged with cellular barcodes, into two pools:
one for short-read sequencing and one for long-read sequencing. However, the
challenge of utilizing these techniques is that they require matching the cellular
barcodes sequenced by the erroneous long-reads to the cellular barcodes de-
tected by the short-reads. To overcome this challenge, we introduce scTagger,
a computational method to match cellular barcodes data from long-reads and
short-reads. We tested scTagger against another state-of-the-art tool on both
real and simulated datasets, and we demonstrate that scTagger has both signifi-
cantly better accuracy and time efficiency.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has advancedbiological research tomove beyond themacro view pro-

videdbybulkRNAsequencing.Technicaladvanceshaveenabledgeneexpressionanalysisat thesingle-cell level,

which has resulted in a greater understanding of cellular diversity in gene expression (Rozenblatt-Rosen et al.,

2017). scRNA-seq achieves this cell-level resolution by deploying short artificial DNA fragments known as cellular

barcodes to tag the RNA fragments in each cell with a unique sequence of nucleotides. Once tagged, comple-

mentary DNA strands are created for each RNA strand and are subsequently fragmented, amplified, and loaded

onto the sequencingmachine tobe sequenced inbulk. Following this, the sequencingoutputs aredemultiplexed

and reads are assigned todifferent cells in silicousing the sequenced cellular barcodes. Thegenes and their RNA

expression levels that are attributed to each cell allow the user to classify cells into clusters of cell types or pop-

ulations that are biologically relevant (Eberwine et al., 2014; Li et al., 2020). Observing the gene expression at the

scaleof thousandsof cells froma single sample ismade readilyaccessibleusingdroplet-based technologies such

as the 10x Genomics Chromium approach (Zheng et al., 2017).

Although gene expression is valuable to reveal biological processes, it tells only a part of the transcription

story. Genes are composed of various isoforms that differ in the order and composition of their respective

exons, which have significant biological implications in subsequent protein translation and function. Unfor-

tunately, evaluating these splicing variations in RNA isoforms is limited and often impossible when using

standard scRNA-seq techniques, such as the 10x Genomics Chromium protocol, because they rely on

short-read (SR) sequencing platforms, often Illumina where 150 total base pairs are typically sequenced

at a time. The reason SR sequencing is utilized by scRNA-seq is due to its low error rate (� 0:1% (Goodwin

et al., 2016)) which allows for easy demultiplexing of cellular barcodes. In addition, SR platform’s relative

affordability allows for high coverage sequencing that enables the estimation of gene expression. Howev-

er, because of this reliance on SR sequencing, scRNA-seq fails to capture the full picture of transcripts that

are much longer than what the current SR platforms can generate.

Long-read (LR) sequencing technologies, such as Oxford Nanopore Technologies (ONT), have demon-

strated their capacity to identify full-length isoforms, albeit using bulk RNA that is not multiplexed at the
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cellular level (Kovaka et al., 2019; Tang et al., 2020). Recently, new and promising library preparation tech-

niques aim to take advantage of both LR RNA sequencing and SR single-cell RNA sequencing (Singh et al.,

2019; Tian et al., 2021; Gupta et al., 2018). These techniques typically modify existing SR scRNA-seq pro-

tocols by splitting the RNA material, after it is tagged with the cellular barcodes, into two pools: i) one

for Illumina SR sequencing and ii) one for LR sequencing. The high-level overview of this library preparation

technique is illustrated in Figure 1.

These techniques are designed to enable the clustering of cells into types, using cell-specific gene expres-

sion, while taking advantage of the LR data to identify alternatively spliced isoforms and map them to cells

(and subsequently into cell types) using the shared cellular barcodes. However, this mapping process

is computationally not trivial because of the level of noise exhibited by LR sequencing platforms (10%�
20% (Kono and Arakawa, 2019)), which frequently introduces errors to the cellular barcodes sequences. Cur-

rent methods to associate LRs to cellular barcodes include SiCeLoRe (Kevin et al., 2020) and FLAMES (Tian

et al., 2021): SiCeLoRe relies on the exact matching of permutated mutations of the LR barcode sequences,

whereas FLAMES relies on the alignment of the barcodes to the LRs using dynamic programming. Such ap-

proaches are theoretically computationally prohibitive for a large number of cells and reads.

Therefore, we present scTagger, a novel computational method for efficiently and accurately identifying

and matching single-cell barcodes in split hybrid LR-SR scRNA sequencing experiments that can scale

for a large number of reads and cells. scTagger uses a trie-based data structure to efficiently match the

identified barcodes in the SRs to the LRs while allowing for nonzero edit distance matching. Using both

real and simulated datasets, we show that scTagger has accuracy on par with an exact but computationally

intensive dynamic programming-based matching approach while being orders of magnitude faster.

Furthermore, we show that scTagger has much higher accuracy and is much more time-efficient than other

available tools.

RESULTS

scTagger overview

The hybrid SR-LR protocol that we refer to in the Introduction starts with RNA from single cells of a given

sample. The RNA molecules of each cell are barcoded with a fixed-length barcode (Cellular barcode)

sampled from a pool of over six million (10x Chromium v3 Chemistry) possible whitelisted 16bp barcodes.

This RNA material is split into two pools, one pool for SR Illumina sequencing, which is used to produce a

gene expression matrix, and the other pool for LR ONT sequencing, which is used to identify isoforms. The

expected template sequence for the SRs and the LRs is illustrated in Figures 1B and 1C.

Input cells

10x GEM tagging Cell bursting and 
PCR of RNAs

Split into 
two pools

ONT library prep Illumina sequencing

More PCR More PCR

ONT sequencing

SR adpt CB UMI polyA transcript

Forward strand sequencing read

Reverse strand sequencing read

LR adpt

or

SR adpt CB UMI polyA transcript LR adpt

SR adapter (fixed 
22bp)

10x cell barcode (16bp 
from ~7M whitelist)

10x UMI (10bp 
random) polyA transcript

R1 R2

C

B

GEMs

A

Figure 1. Library prepration and sequencing templates for short- and long- reads

(A) Overview of the library preparation: Microfluidic chips are used to generate 10x Chromium GEMs, which tag the RNA transcripts with cellular barcodes.

After the transcripts are tagged, the GEMs are burst, and the tagged RNA material is split into two pools of sequencing, one for SRs and one for LRs.

(B) The SR template. Inside the GEMs, RNA transcripts are tagged with an Illumina adapter that is a fixed sequence, followed by a 16bp cellular barcode (CB),

followed by a random 10bp sequence for the unique molecular identifier (UMI).

(C) The LR template. Note that the LR template is essentially the same as the SR template with the LR sequencing adapter added. Depending on the specifics

of the library preparation, LRs may sequence the forward or the reverse strand of the RNA molecule. In either case, we expect the cellular barcode to be

adjacent to the SR adapter sequence.
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scTagger aims to match each LR to one of the cellular barcodes that tagged the input cells. To achieve this

goal, scTagger proceeds in three stages:

1. Preprocessing the SRs and identifying the barcode of each SR. In this stage, scTagger selects a small

subset (proportional to the number of input cells) of barcodes that cover most of the SRs using the

frequencies of the barcodes appearing in the SRs. The small size of this subset allows for efficient

matching without significant loss of data.

2. Locating a short segment on each LRwhere the barcode is expected tobepresent. In this stage, scTagger

exploits the apriori knowledge about the template of the LRs (Figure 1C) and uses the alignment of the

fixed Illumina adapter sequence to each of the LRs to identify the segment where the barcode is present.

In Figure 7, we show the alignment loci of the Illumina adapter on the LRs on a real dataset we generate.

scTagger uses these observed adapter locations to exctract the barcode segments.

3. Matching the SR barcodes to the LR segments. scTagger achieves this matching by using a trie data

structure (Fredkin, 1960). The trie is modified to allow matching each LR segment to the barcode that

requires the least number of edits (e.g., substitutions, deletions, or insertions) to form an exact match

with the segment. The maximum number of allowed edits for a barcode-segment match is set by the

user and is limited by default to two errors.

Figure 2 presents an schematic overview of these stages and the STARMethods section provides details of

them.

Experimental setup

We assessed the tested methods, FLAMES (GitHub commit 18fb83c) and scTagger, on both real and simu-

lated datasets. Note that we attempted to run SiCelore but failed to run it successfully because of runtime

errors, which is concordant with the reporting from FLAME’s paper on SiCelore (Tian et al., 2021). In addi-

tion to FLAMES and scTagger, we also ran a baseline brute-forcemethod of matching the cellular barcodes

in the LRs by performing a glocal dynamic programming based alignment of all the selected barcodes

(stage 1) to all the extracted LR segments (stage 2). We will refer to this baseline method as the Brute-force

matching method in this manuscript. Note that all the matches found by scTagger exactly mirror those

found by the Brute-force method as long as they have a maximum edit distance of e = 2, the maximum

allowed distance set in scTagger. In addition, according to the FLAMES0 manual, we are supposed to

run FLAMES with the full 10x Genomics barcode whitelist, which includes over six million barcodes. How-

ever, doing so resulted in FLAMES not terminating even after running for 24 h. Therefore, we modified the

way we run FLAMES by feeding it the selected subset of barcodes found by scTagger (stage 1). Thus, the

results we present here for FLAMES depend on some of the output of our own method.

Dataset generation

We generated three real and three simulated datasets. The details of the generating procedures for both

follows below, and the summary statistics for each dataset are detailed in Table 1.

Real datasets. We isolated cells from three different male infertility patients. The three samples were ex-

tracted from the testis tissue using the protocol developed by (Valli et al., 2014). The first sample was

Short-read 
sequencing

Long-read 
sequencing

SR barcode 
selection

Matching
(using a trie)

Cell Ranger

Extracting LR 
barcode segments

SR 
barcodes

Barcode 
segments

LR 
FASTQ

SR 
FASTQ

Selected
SR

barcodes

Figure 2. Overview of scTagger’s pipeline.

The three stages of scTagger are shaded, whereas the data inputs are colored in red
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extracted from a normal human testis biopsy, whereas the second and third samples were extracted from

human testis biopsies diagnosed with nonobstructive azoospermia, a severe abnormality in spermatogen-

esis resulting in failure to produce sperm.We name these three samples N, NOA1, andNOA2, respectively.

Libraries were prepared in accordance with the protocol developed by Gupta et al. (2018) for 10x Genomics

Chromium Single Cell 30 v3.0 and Oxford Nanopore Technologies PromethION platform. For the cDNA

amplification step, we applied 17 cycles of PCR. Then, the amplified and barcode tagged cDNA material

was split into two pools. The first pool was sequenced on the Illumina HiSeq platform with a read length of

2 3 150bp. The second pool was the input for the ONT cDNA sequencing protocol, for which we used the

SQK-PBK004ONT ONT kit. For this pool, end repair, A-tailing, and ligation steps were performed, and 11

cycles of PCR were applied using a starting cDNA amount of 50ng.

Simulated datasets. In addition to the real datasets, it is important to assess the accuracy of the different

tested methods on simulated datasets for which we can obtain the ground truth of barcode matching be-

tween the LRs and SRs. Therefore, we built a simulation pipeline to generate SR and LR data with known

cellular barcode matching. The structure of the simulation pipeline is outlined in Figure 3. Note that we

use both Minnow (Sarkar et al., 2019) and Badread (Wick, 2019) simulators as components of our simulation

pipeline. In total, we generated three simulated datasets. As part of the input for simulating all three data-

sets, we used the transcriptome mapping of the SRs of the real sample N as a basis to simulate the differ-

ential expression of gene isoforms according to Minnow’s instructions.

Barcode selection and SR coverage

The first stage of scTagger filters and selects SR barcodes. Here, we need to examine how well the selected

barcodes cover the SR data and how little value adding more barcodes brings. A significant amount of the

SR coverage is wasted on barcodes that did not tag any input cells in the library preparation and are there-

fore not useful for downstream analysis.

In Figure 4, we plot the proportion of SRs that are covered by retaining each additional 1,000 barcodes in

order of the most-to-least frequent. As we observe in the figure, the contribution of adding each additional

1,000 barcodes diminishes quickly. Therefore, we observe that our barcode selection method (with a

threshold of 0:5%) achieve its conservative goal while producing a relatively small set of error-corrected

barcodes. The exact number of selected SR barcodes and the proportion of SRs they cover are detailed

Table 1. Summary of used datasets

Dataset # of SRs # of LRs # of cells

Real N 172,826,613 7,371,195 7,368

NOA1 148,095,537 5,665,245 4,494

NOA2 111,004,036 4,427,993 3,513

Simulated Small 1,000,379 98,873 50

Medium 15,003,985 998,471 500

Large 150,005,933 4,993,805 5,000

The number of cells for real datasets is estimated by 10x Genomics Cell Ranger v3.0.2.

MinnowMapped SR’s

Simulated 
barcoded SR’s

Molecule 
reconstruction

Barcoded 
transcripts LR simulation

Simulated 
barcoded LR’s

Cell #
Gene #
SR #

LR #

Figure 3. Overview of simulation pipeline: The SRs mapping to the transcriptome reference is used byMinnow to

model differential isoform expression within each gene

The number of genes, SRs, and cells to be simulated are passed to Minnow. We then reconstruct the transcript molecule

(including SR adapter, barcode, and polyA tail) that each simulated SR was generated from. These reconstructed

barcoded transcripts are then passed to the LR simulation module, which wraps around the Badread simulator to

generate the LRs. Note that the full simulation pipeline is available on our GitHub repository.
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in Table 2. Because of this barcode selection process, we lose between 9 and 17% of the SR throughput.

These selected barcodes are the ones used for matching in all the tested methods. Note that in all three

cases, the number of selected barcodes exceeds the expected number of cells in each sample (Table 1).

LR coverage and segment extraction

The second stage of scTagger extracts LRs barcode segments. scTagger uses the alignment of the Illumina

sequencing adapter to the LRs to identify the segment containing the cellular barcode in each LR. In Fig-

ure 5, we plot the histogram of the LRs by the edit distance of the successful adapter alignments. We

observe that we are able to find successful adapter alignments in over 75% of LRs across all real

datasets. For the simulated datasets, we observe that scTagger is able to find successful adapter align-

ments on � 92 � 93% of the LRs.

Accuracy of LR barcode matching

The final andmain stage of scTagger is matching the selected SR barcodes with the extracted LR segments.

Here, we use the simulated datasets to assess the accuracy of the different methods. For every tested

method, we label each simulated LR as: (i) a match if the method outputs only the one barcode we simu-

lated for the LR; (ii) an ambiguous match if the method outputs multiple barcodes and one of them is the

simulated barcode; (iii) a mismatch if none of the output barcodes is the simulated barcode; and finally (iv) a

skip if the method does not output any barcodes for the LR (because of the edit distance limit or because of

not finding any feasible adapter alignment in the second stage of scTagger). Note that although ambig-

uous matches include the correct barcode, they are not readily useful for any downstream analysis. Table 3

details the accuracy statistics for all the tested methods.

As we observe in Table 3, scTagger significantly outperforms FLAMES in its accuracy. Besides, despite the

low edit distance limit we use in scTagger (e = 2), scTagger has a very similar match rate to the Brute-force

baseline method. As a matter of fact, we observe that allowing for higher edit distance increases the

mismatch and ambiguous match rates.
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Figure 4. Cumulative SR coverage with batches of 1,000 barcodes for the real datasets

Table 2. The number of unique barcodes in each real dataset and the percentage of SRs that they cover

Dataset

All barcodes Selected barcodes

% of SRs lost due

to barcode selection

# of unique

barcodes

% of SRs

covered

# of unique

barcodes

% of SRs

covered

N 1,723,938 97% 10,000 80% 17%

NOA1 1,063,678 72% 14,000 55% 17%

NOA2 859,034 94% 7,000 85% 9%

Here, we compare the set of all barcodes we observe in the SRs vs the set of selected barcodes by scTagger.

Note that some SRs do not have any observed barcodes.

ll
OPEN ACCESS

iScience 25, 104530, July 15, 2022 5

iScience
Article



Although we cannot establish a ground truth to calculate the accuracy of scTagger in matching LRs of the

real datasets, we can still compare scTagger matching to the baseline Brute-force method. Note that the

differentiating parameter between these twomethods is the choice of the edit distance limit in scTagger; if

we set that parameter to the barcode size, the two methods produce identical results. Figure 6 depicts the

distribution of the real datasets LRs by whether they are: (i) skipped, (ii) matched with edit distance% 2, (iii)

matched with edit distance> 2, and (iv) matched by a single unique barcode. As we observe in these UpSet

(Alexander et al., 2014) plots, only 0:8% to 2:2% of all the LRs have unambiguous matches and yet are lost by

scTagger because of having an edit distance limit of two edits. Thus, the loss of matches because of setting

the error limit to two is very small in practice. The remaining ambiguous matches, i.e., those with more than

one barcode match, are not readily usable by downstream analyses. In addition, when comparing FLAMES

and scTagger matches with the Brute-force method, we observed that the percentage of the LRs that are

matched by FLAMES and the Brute-force methods but not scTagger is negligible (� 0:1%). In contrast, the

percentage of the LRs that are matched by scTagger and the Brute-force methods but not FLAMES is very

significant (� 26% to� 28%). Table S1 of the Supplemental information presents the statistics of comparing

the three methods’ matches on the real datasets.

Runtime and memory

Table 4 shows the memory usage and runtime of the different stages of scTagger as well as FLAMES and

the Brute-force method. As we observe in Table 4, scTagger matching stage has the smallest runtime foot-

print compared to the other methods. Unlike FLAMES, scTagger can take advantage of multiple CPU cores

and completes computing in orders of magnitude less time than FLAMES or the Brute-force method. The

only computational resource that scTagger lags behind the other tested tools is memory usage. However,

its memory usage for these real datasets is well within the acceptable limits of modern personal computers.

Figure 5. Cumulative percentage of LRs distance with a successful SR adapter alignment

NA refers to LRs with no alignment % 10 edits.

Table 3. Accuracy on simulated datasets

Dataset Method Matches Ambiguous matches Mismatches Skipped

Small scTagger 47.68% 9.98% 4.57% 37.76%

Brute-force 53.22% 23.82% 14.77% 8.19%

Flames 27.40% 0.00% 15.92% 56.68%

Medium scTagger 51.60% 7.10% 4.54% 36.76%

Brute-force 55.55% 20.03% 17.37% 7.05%

Flames 28.37% 0.00% 22.10% 49.52%

Large scTagger 53.26% 6.24% 5.87% 34.62%

Brute-force 54.91% 18.42% 19.62% 7.04%

Flames 30.05% 0.00% 20.34% 49.61%
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DISCUSSION

We presented a novel computational method—scTagger—to match SR data to LR data using their cellular

barcodes. We show that scTagger achieves this goal more efficiently and accurately than the other alter-

native methods. In the future, we plan to extend the scTagger method to handle matching of the unique

molecular identifier sequences present in the SR and LR data. We also plan to improve on scTagger’s mem-

ory use by streamlining how it reads and processes the input.

Limitations of the study

The main limitation of the current form of scTagger is that it is specific for 10x Genomics scRNA-seq. Note

that it is possible to readily extend support for other scRNA-seq platforms if their resulting LR template in-

cludes some fixed sequence next to the barcode. In addition, scTagger takes advantage of the fact that the

number of cells (and thus the number of relevant barcodes) is on the manageable order of magnitudes of

thousands to tens of thousands. Therefore, we expect scTagger in its current design not to scale well if the

number of relevant barcodes becomes much bigger than that.
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Figure 7. Optimal alignment locations of the SR adapter to the LRs

Negative locations are on the reverse strand. Automatically selected ranges around the peaks for sample N are indicated

on the plot.
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Dataset Method Real time (min) User time (min) Max memory (GB) Threads

N scTagger (LR segments) 4 14 7.3 32

scTagger (matching) 15 266 4.9 32

scTagger (matching) 185 186 3.6 1

Brute-force matching 232 7,234 2.2 32

FLAMES 709 702 0.1 1

NOA1 scTagger (LR segments) 3 11 6.6 32

scTagger (matching) 9 140 3.4 32

scTagger (matching) 192 193 2.9 1

Brute-force matching 96 2,975 1.6 32

FLAMES 308 304 0.1 1

NOA2 scTagger (LR segments) 5 16 8.4 32

scTagger (matching) 17 280 4.6 32

scTagger (matching) 129 128 2.3 1

Brute-force matching 214 6,600 2.9 32

FLAMES 603 600 0.1 1
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information requests and inquiries should be directed to and will be fulfilled by the lead contact,

Faraz Hach (faraz.hach@ubc.ca).

Materials availability

� This study did not generate new unique reagents.

Data and code availability

d The simulated and real datasets have been deposited to Figshare data repository. Access links are listed

in the Key Resources Table. The simulated dataset was deposited as is. Due to privacy concerns, the

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Hypothermosol FRS Stemcell Technologies Cat# 07935;

Hanks’ Balanced Salt Solution Millipore Sigma Cat# 55021C

Collagenase NB4 Nordmark Biochemicals Cat# S1745402

Trypsin/EDTA Sigma Cat# T3924

DNase I Sigma Cat# D4263

Fetal bovine serum Gibco Cat# 12483-020

Trypan Blue Dye Bio-Rad Cat# 1450013

Bovin serum albumin Miltenyi Biotec Cat# 130-091-376

Nuclease-free water Thermofisher Scientific Cat# AM9937

10% Tween 20 Bio-Rad Cat# 1662404

Glycerin, 50% (v/v) aqueous solution Ricca Chemical Company Cat# 3290-32

Qiagen Buffer EB Qiagen Cat# 19086

Critical commercial assays

Dead cell removal kit with MS Columns Miltenyi Biotec Cat#s 130-090-101 (kit) and 130-042-201 (MS

columns)

10X Genomics Chromium Single Cell 3’ GEM,

Library & Gel Bead Kit V3

10x Genomics Cat# PN-1000092

High sensitivity D1000 ScreenTape/Reagents Agilent Cat# 5067-5592/5067-5593

Qubit dsDNA HS Assay Kit Thermofisher Scientific Q32854

KAPA library quantification kit KAPA Biosystems KK4824

Deposited data

Simulated datasets Figshare data: 10.6084/m9.figshare.

19740475.v1

Real datasets (trimmed) Figshare data: 10.6084/m9.figshare.

19735678.v1

Software and algorithms

scTagger (commit #19d2be5) This manuscript https://github.com/vpc-ccg/scTagger/

FLAMES (commit #18fb83c) Tian et al 2021 https://github.com/LuyiTian/FLAMES

edlib (v1.3.9) �So�si�c and �Siki�c, 2017 https://github.com/Martinsos/edlib

Minnow (v1.2) Sarkar et al 2019 https://github.com/COMBINE-lab/minnow

Badread (v0.1.5) Wick 2019 https://github.com/rrwick/Badread
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long-reads of real dataset were trimmed to remove any RNA sequences in them. Additionally, the short-

reads of the real dataset were not included but the extracted cellular barcode list was. This partially

masked real dataset allows the user to test and run scTagger and the other methods tested in the manu-

script. Access link is listed in the key resources table.

d The code for scTagger, including the simulation generation and accuracy assessment codes, is freely

accessible on our GitHub repository. Access link is listed in the key resources table.

METHOD DETAILS

SR barcode selection stage

In the first stage, scTagger uses 10x Genomics Cell Ranger (Zheng et al., 2017) that performs genomic map-

ping, filtering, barcode counting, and UMI counting to build a map from the SRs to their error-corrected

cellular barcodes. Ideally, the set of error-corrected barcodes in this map should have the same size as

the number of cells used in the library preparation. However, the number of barcodes in this map ends

up being orders of magnitude larger than the number of input cells. We believe this is due to library prep-

aration artifacts and sequencing errors. Therefore, it is important to filter out these noisy barcodes before

matching them to the LRs. 10x Genomics library protocol draws barcodes from an original whitelist of more

than six million barcodes. In our experiments, typically, we observe over a million unique error-corrected

barcodes in the SRs (see Table 2 for details). The vast majority of these error-corrected barcodes have

very low frequencies, appearing only in a few SRs. These low-frequency barcodes cannot be utilized by

downstream scRNA-seq analysis tools. Therefore, we can select a drastically smaller subset of the 10x Ge-

nomics barcode whitelist, that will nevertheless cover a majority of SRs, by filtering out the lowest-fre-

quency barcodes.

We achieve this by sorting the set of error-corrected barcodes that are detected by Cell Ranger by the

frequency of which they appear in the SRs, in descending order. We then examine the sorted barcodes iter-

atively in increments of 1,000 barcodes at a time; if the sum of SRs retained as a result of retaining the cur-

rent 1,000 barcode increment represents less than t% (by default t = 0:5) of the total number of SRs, we

stop retaining barcodes. Otherwise, we proceed to the next 1,000 barcode increment. In practice, this pro-

cess typically reduces the number of barcodes from about amillion barcodes to less than a few tens of thou-

sands of barcodes which is higher than the number of input cells. At the same time, this process retains up

to 70% of all the SRs. The small size of the selected barcode set allows us to match the LRs to the barcodes

much more efficiently than if we were to include the many low-frequency barcodes which are not useful for

downstream analyses.

Extracting LR barcode segments stage

From the library preparation and its resulting LR template (Figure 1C), we expect the cellular barcodes to

be located within specific narrow ranges on the LRs. Thus, if we encounter an adapter alignment outside

these expected ranges, we can suspect that it is an erroneous alignment. We believe it is critical to identify

these ranges from the sample data directly, rather than rely on theoretical preset ranges. Detecting these

possible ranges from the sample’s data allows scTagger to be robust against library preparation artifacts or

modifications that may affect the structure of the LR template. We can locate the adapter on the LRs by

performing a glocal alignment of the adapter to the LRs (i.e., performing a global alignment that does

not penalize prefix and suffix deletions on the target). This takes OðR3aÞ time, where R is the total length

of the LRs and a is a small constant equal to the length of the adapter string (CTACACGACGCTCTTCC

GATCT.). To perform this alignment, we use the edlib library (�So�si�c and �Siki�c, 2017). In Figure 7, we plot

the distribution of mapping locations that are used by scTagger to detect the ranges on a real dataset (da-

taset details in the results section). As we can observe, the adapter alignment has distinct peaks on each of

the forward and reverse strands of the LR data. scTagger automatically detects the ranges around these

peaks and uses these detected ranges to reject any adapter alignments that fall outside. This detection

process is detailed in Algorithm S1 of the supplemental information. Finally, for each successful adapter

alignment scTagger extracts the 20bp LR segment starting from the end of the adapter alignment (16bp

for the barcode length and an extra 4bp to allow for a small error margin).

Matching LRs and selected barcodes stage

In this stage, scTagger matches the extracted LRs segments to the selected subset of SR barcodes by

finding the best barcode alignment to each LR segment. We use a trie structure to store all k-mers and
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use SR barcodes as a query. Using a trie allows us to find all LR matches for a given barcode in one query.

Also we use a simple unit-cost Levenshtein edit distance since it is more efficient to compute than other

more complex edit distances (e.g., affine gap) and should be sufficient for the short length of the barcodes.

Computing the minimum (Levenshtein) edit distance between all considered barcodes and LRs by dynamic

programming results in a time complexity that is too large:OððN 3 SÞ 3 ðM 3 LÞÞ, whereN is the number of

LRs, S is the size of each LR segment, M is the number of barcodes, and L is the length of each barcode.

Instead of using such a brute-force approach, we opted to use a trie data structure to compute the optimal

edit distances between SR barcodes and the LR segments up to an assumed maximum edit distance of e.

We begin by constructing the trie by inserting the LR segments into the trie. Then, we query the trie with

each barcode in a fashion that allows for edit errors (insertions, deletions, and mismatches). Note that we

use the Numpy (Harris et al., 2020) library for our implementation of the trie.

Trie construction

We extract all the k-mers from the LR barcode segments and insert them into the trie. To allow up to e edits

in matching the barcodes to the LR segments, we choose 16+e as the k-mer size (16 for the barcode size

plus e possible insertion errors). This trie construction step is similar to the classical insertion in tries. Addi-

tionally, we maintain a map of all the trie nodes at tree depthsR 16 � e; any barcode query terminating in

shallower nodes will result in alignments errors >e. Each node in the map will be associated with the set of

LRs with k-mers that threaded through the node during their insertion into the trie. This will allow us to find

all barcode alignments to LR barcode segments with up to e deletions, insertions, or mismatches. Figure S1

in the Supplementary information illustrates an example of the trie construction process.

Querying the trie

For each barcode, we query the trie by searching it recursively, starting from the root. Each recursive call

includes the information on how many characters we matched so far on the barcode and how many errors

we are still allowed to have. For deletion edits, the recursive call stays on the same node while incrementing

the query’s index. For insertion edits, the recursive calls would advance to each of the children of the cur-

rent node while maintaining the current query index. For mismatch edits, we go to any children node that is

not matched by the character at the query index. The recursive calls terminate when the error allowance is

negative or the length of the barcode is exhausted. The result of this search is the set of LR barcode seg-

ments that contains k-mers that are at most e edits away from the query barcode. In the supplemental in-

formation, Algorithm S2 presents the pseudocode of querying the trie and Figure S2 illustrates how we

query the trie with a barcode while allowing for these edit errors.

The time complexity of this stage is defined in two parts. First, the trie construction step takesOðN3S3kÞ
time whereN is the number of LRs, S is the size of each LR segment, and k is the k-mer size. This is practically

linear since S and k are small constants. Second, for the querying step, the time complexity is OðM 3 4e 3

ðL+ eÞe+ 1Þ, whereM is the number of barcodes, L is the size of each barcode, and e is themaximum allowed

edit distance. Details of calculating this upper bound on the time complexity are available in Theorem 1.

Later in the results section, we show that the vast majority of LRs with > 2 edits have no unique barcode

match and are therefore not useful for downstream analysis. Therefore, by default, we set e = 2. This main-

tains a runtime that is faster than the brute-force alignment-based method’s runtime while sacrificing little

in terms of results.

Theorem 1. The time complexity for querying the trie in the matching stage of scTagger isO
�
M3ε

e3ðL+eÞe +1
�

Proof. First, to prove the time complexity of querying the trie, we need to propose an upper-bound U on the

number of possible strings with edit distances % e from a barcode query assuming an alphabet with size ε. We claim

that U = ð2ε+ 1Þe 3 ðL+ eÞe. The length of the longest string with at most e edits is L+ e. Therefore, the length of a

string that we can still edit is at most L+ e � 1. This is because the starting barcode has L characters and there could

have been no more than e � 1 insertions applied before the current edit is applied. Keeping this in mind, we have

three types of edits:

1. Substitution. We need to select a position to alter and then select another alphabet character to replace it. Since

the string length is at most L+ e � 1 before applying an edit, there are at most ðε � 1Þ3ðL +e � 1Þ possible strings

as a result of a substitution.
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Parallelizing trie construction and querying

To enable parallelized computation of the trie, we partition the space of all possible k-mers into disjoint

sets. Each available CPU thread can then process the k-mers belonging to each partition independently

by constructing a trie using the partition’s k-mers and querying the barcodes on the constructed trie.

The main thread can then collate the query results from all the threads, discarding any sub-optimal bar-

code-LR matches.

In scTagger, we partition the k-mers by their prefix of length p. Thus, the number of partitions is 4p since the

nucleotide alphabet size is 4. We set p such that the number of partitions is at least equal to the number of

available CPU cores. This partitioning scheme allows for simple data parallelism while resulting in a similar

CPU-bound time complexity as with the single-thread (single-trie) implementation discussed above. This is

because the only major overhead here is the collation of the results from the threads by the main thread.

2. Deletion. We need to select a single position to delete. Therefore, we have at most L+ e � 1 possible strings as a

result of a deletion.

3. Insertion. We need to select a position and a character from the alphabet to insert at that position. Therefore, we

have at most ε3ðL + eÞ possible strings as a result of an insertion.

4. No edit. Additionally, we can decide not to use an edit, keeping the string unchanged. Obviously, there is 1

possible string resulting from this operation. This accounts for error distances strictly less than e.

Each of these options can be taken at most e times. Adding all this together (simplification: L+ e � 1 is upper bounded

by L+ e) gives us an upper bound of U = ð2ε+ 1Þe 3 ðL+ eÞe, which proves the claim.

Finally, the cost of finding each of these possible strings in the trie is equal to the height of the trie tree, L+ e. In total,

we have the ð2ε+ 1Þe3ðL+ eÞe+ 1 as the cost for each query barcode. And since we have M query strings, the total time

complexity for the query stage of scTagger is OðMε
eðL+ eÞe+ 1Þ. ,
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