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Centro Andaluz de Biologı́a Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla – Consejo Superior de Investigaciones Cientı́ficas (CSIC), Sevilla, Spain

Abstract

THO/TREX connects transcription with genome integrity in yeast, but a role of mammalian THO in these processes is
uncertain, which suggests a differential implication of mRNP biogenesis factors in genome integrity in yeast and humans.
We show that human THO depletion impairs transcription elongation and mRNA export and increases instability associated
with DNA breaks, leading to hyper-recombination and cH2AX and 53BP1 foci accumulation. This is accompanied by
replication alteration as determined by DNA combing. Genome instability is R-loop–dependent, as deduced from the ability
of the AID enzyme to increase DNA damage and of RNaseH to reduce it, or from the enhancement of R-loop–dependent
class-switching caused by THOC1-depletion in CH12 murine cells. Therefore, mammalian THO prevents R-loop formation
and has a role in genome dynamics and function consistent with an evolutionary conservation of the functional connection
between these mRNP biogenesis factors and genome integrity that had not been anticipated.
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Introduction

Transcription is a central cellular process occurring in the

nucleus of eukaryotic cells in coordination with other nuclear

processes. During transcription, the nascent pre-mRNA associates

with mRNA-binding proteins and undergoes a series of processing

steps, resulting in export-competent mRNA ribonucleoprotein

complexes (mRNP) that are transported into the cytoplasm. The

different steps of mRNP biogenesis are coupled to each other via

an extensive network of physical and functional interactions [1,2].

THO is a structural and functional unit identified first in

budding yeast that is composed of four-protein (Hpr1, Tho2, Mft1,

Thp2) and is associated with Tex1 and the mRNA export factors

Sub2 and Yra1 forming a larger complex termed TREX [3,4].

THO mutations lead to gene expression defects that are

particularly evident for long and GC-rich DNA sequences [3],

as well as for repeat-containing genes [5]. Such defects are the

consequence of an impairment in transcription elongation as

determined both in vivo and in vitro [3,6,7]. THO mutants show a

hyper-recombination phenotype that is associated with transcrip-

tion and is dependent on the nascent RNA molecule and on the

co-transcriptional formation of RNA-DNA hybrids (R-loops)

[8,9]. In the current view, yeast THO would participate in

the co-transcriptional formation of export-competent mRNP

during transcription elongation by controlling the assembly of

heterogeneous nuclear ribonucleoproteins (hnRNPs) onto the

mRNA [10].

THO/TREX is conserved in all eukaryotes, and has been

purified in Drosophila and human cells [4,11,12]. The human

TREX (hTREX) complex is composed of the multimeric THO

(hTHO) complex, containing hTHO2/THOC2, hHpr1/THOC1,

fSAP79/THOC5, fSAP35/THOC6, fSAP24/THOC7 and hTex1/

THOC3, the DEAD-box RNA helicase Sub2/UAP56 and the

mRNA export adaptor protein Yra1/Aly/THOC4 [12]. Interest-

ingly, it is associated with the spliceosome proteins and with spliced

RNA, the latter interaction being independent of transcription,

which raises the question of whether or not the involvement of

THO/TREX in transcription is general from yeast to humans [12].

There is also evidence for transcription-dependent recruitment of

THO to chromatin in both Drosophila and human cells [13,14], but

whether or not this is due to the known co-transcriptional function

of the splicing machinery is still an open question. In this sense,

hTREX has been shown to be recruited to the 59 cap site of the

mRNA via an interaction between ALY and the cap-binding

complex CBC during splicing, ensuring mRNA export to the

cytoplasm in a 59 to 39 direction [13]. ALY is a well-conserved

RNA-binding protein that physically interacts with the conserved

mRNA export Mex67/Tap/NXF1 allowing the mRNA-protein

complex to be exported through the nuclear pore [15].

Despite the conservation of THO/TREX it is unclear whether

the functional relevance is the same in all eukaryotes, which is

important to know the degree of coupling between transcription

and RNA export in higher eukaryotes. Thus, for example, in

Drosophila the THO complex, is not essential for bulk poly(A)+
RNA export, whereas this is the case for UAP56 [16–19]. Whether

human THO depletion impairs transcription elongation, mRNP

biogenesis or RNA export or has genome-wide or transcript-

specific effect is still an open question [11,12,19–22].

A distinctive phenotype of yeast THO mutants is their hyper-

recombination phenotype associated with transcription, which is
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shared by other mRNP biogenesis/export factors from yeast to

humans [23–26]. It has long been established that transcription

enhances homologous recombination from bacteria to mammalian

cells, a phenomenon termed TAR (transcription-associated

recombination) [27]. However, whereas TAR in yeast THO

mutants is dependent on the nascent mRNA molecule and is

associated with R-loop formation, this has not been shown for

human THO depletion.

In this work the effect of human THO depletion has been

investigated on cell proliferation, transcription elongation and

genome stability. Our study reveals that depletion of human THO

subunits, in particular THOC1/hHPR1, reduces transcription

elongation and RNA export, as determined by nuclear mRNA

accumulation. hTHO depletion in different cell lines increases

instability associated with the accumulation of DNA breaks, such

instability being R-loop-dependent. Consistently, R-loop-depen-

dent class-switching recombination is enhanced by THOC1

depletion in murine CH12 cells. Altogether, this work provides

evidence for a functional role of THO in transcription and RNA-

dependent genome instability, supporting a function of human

THO/TREX in chromatin dynamics and function. These results

indicate that the connection of transcription and mRNP biogenesis

with genome instability is more functionally conserved from yeast

to humans than previously anticipated.

Results

Gene expression defects in THO/TREX knockdown cells
To assay the implication of hTHO/TREX in gene expression,

the effect of gene silencing of different THO/TREX components

by RNA interference was investigated. HeLa cells were transfected

with siRNAs against hHpr1/THOC1, THOC5, UAP56 and ALY

and total RNA was analyzed by RT-qPCR. After transfection

THOC1, THOC5, UAP56 and ALY mRNA levels were reduced

to 33%, 26%, 51% and 19%, respectively, compared to the levels

of the cells transfected with the siC control (Figure 1A).

Next we asked whether this depletion had a significant effect on

gene expression of a reporter gene. For this purpose 72 h siRNA

depleted HeLa cells were newly transfected with plasmid pmax

containing a GFP cDNA. GFP gene expression was analyzed 24 h

later by flow cytometry. Figure 1B shows the levels of GFP

expression in the siRNA-transfected HeLa cells. The relative

percentage of GFP positive cells was calculated for each siRNA

transfected cell line. A reduction of approximately 40% of GFP

expression was observed in cells transfected with siTHOC1 and

siTHOC5, a similar percentage (about 50% of GFP) detected for

cells treated with the transcription inhibitor a-amanitin, used as

positive control in the experiments. The most drastic change,

however, was observed in cells transfected with siUAP56 and

siALY with a reduction close to 70% in the percentage of GFP

positive cells. A reduction in the expression of a constitutive

endogenous HPRT gene by RT-qPCR was also detected (Figure

S1A). Altogether these results support that hTHO/hTREX

depletion in human cells causes transcription defects.

Transcription elongation impairment in THO/TREX-
depleted cells

To investigate whether the conserved human complex has a role

in transcription elongation we used a tandem system (TAN1) to

measure transcription elongation in cells depleted of THOC1 and

other mRNP factors. This system consists of a single transcrip-

tional unit covering two reporter genes, FLUC and hRLUC,

under the control of the doxycycline inducible tet promoter [28]

(Figure 1C). As the two reporter sequences are transcribed from a

unique promoter, the ratio of expression of the downstream

reporter versus the upstream reporter provides a measure of the

relative rate of successful elongation through the intervening

sequence. First, we evaluated the expression of the reporter FLUC

in cells transfected with siTHOC1 versus the siC control and a-

amanitin treated cells. A reduction of 50% of the reporter

expression was observed in a-amanitin treated cells and a

comparable but slightly lower reduction was detected with

siTHOC1 (Figure 1C, upper panel). Interestingly, when the

siTHOC1 transfected cells were treated with a-amanitin, a

synergistic effect was observed (90% of reduction in FLUC

expression). The ratio of hRLUC to FLUC activities in THOC1-

depleted cells was reduced and in the presence of a-amanitin a

synergistic effect was observed again (Figure 1C, lower panel),

indicative of a role of THOC1 in transcription elongation. A

strong reduction of FLUC activity was observed with siTHOC5,

siUAP56 and siALY, consistent with a relevant role of these three

subunits in transcription. However, due to these low FLUC values,

it was not possible to obtain reliable hRLUC/FLUC ratios in these

cases. To confirm that the effect observed in transcription

elongation deduced from the hRLUC and FLUC activities, we

determined the levels of transcripts containing each segment by

qRT-PCR. The results clearly indicate that the hRLUC:FLUC

ratios of mRNA levels was significantly reduced in the cell lines

depleted of the 4 subunits analyzed, THOC1, THOC5, UAP56

and ALY (Figure S1B), confirming a general role of THO/TREX

in transcription elongation in human cells.

Increased DNA breaks and recombination in THO/TREX-
depleted cells

Since homologous recombination in mitotically dividing cells is

the consequence of the repair of DNA breaks, the accumulation of

DNA breaks was determined in THO/TREX-depleted cells by

measuring the accumulation of cH2AX foci, one of the first

components of the DNA damage response [29]. cH2AX in situ

localization in HeLa cells transfected with siRNAs against hHpr1/

THOC1, THOC5, UAP56 and ALY show clearly that transient

Author Summary

THO/TREX is an eukaryotic conserved complex, first
identified in budding yeast, that acts at the interface
between transcription and mRNP (ribonucleoprotein)
export. In yeast, THO mutants show gene expression
defects and a transcription-associated recombination
phenotype. Despite the structural conservation of THO/
TREX, it is unclear whether the functional relevance is the
same in mammals, in which several reports have identified
a role of THO/TREX separated from transcription. We have
asked whether mammalian THO/TREX function is connect-
ed to transcription and whether this function is required to
prevent R-loop formation and to maintain genome
integrity. Our study reveals that depletion of human THO
subunits, in particular THOC1/hHPR1, reduces transcription
elongation, affects mRNA export, and increases genome
instability associated with the accumulation of DNA
breaks. This genome instability is R-loop–dependent and
is accompanied by an alteration of global replication
patterns and an increase in recombination. We conclude
that human THO/TREX prevents the formation of R-loops
that can compromise genome integrity. This work,
therefore, provides experimental evidence for a role of
mRNP biogenesis factors and R loops in genome integrity
in humans.

R-Loop–Dependent Genome Instability
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depletion of these factors causes an accumulation of DNA damage,

as deduced from the 2.6–10-fold increase in the number of cells

containing cH2AX foci (Figure 2). Experiments were also

performed in HeLa cell lines in which THO/TREX subunits

were depleted by shRNAs. We first showed that shTHOC1,

shUAP56 and shALY reduced the levels of THOC1, UAP56 and

ALY mRNA to 30–40% of the levels of the cells transfected with

the shTM blank control, as determined by RT-qPCR after 48 h of

transfection (Figure S2A). In this case, in addition to cH2AX foci

we analyzed the levels of the 53BP1 DNA-damage checkpoint

protein [30]. The levels of cH2AX and 53BP1 foci were increased

(Figure S2B and S2C), although to a lesser extent as in the siRNA-

depleted cells, likely due to an earlier and more efficient protein

depletion with siRNAs transfection.

Next, DNA damage was directly assessed by single-cell

electrophoresis (Comet assay) by which, following DNA unwind-

ing under alkaline conditions, broken DNA fragments (damaged

DNA) migrate away from the nucleus (see Materials and

Methods). First, we performed comet assay at different times in

HeLa cells transfected with siTHOC1 and siTHOC5. As can be

seen in Figure 3A, THO depleted cells show a significant increase

in the tail moment. Similar results were obtained in siTHOC1 and

siTHOC5-depleted MRC5 cells (Figure S3), a fibroblast cell line

derived from normal lung tissue, indicating that THO depletion

leads to an accumulation of DNA breaks in both normal and

tumoral cell lines. Finally, to assay whether this accumulation

occurred in cells depleted of other THO/TREX subunits, we

performed the same experiments in HeLa cells transfected with

siUAP56 and siALY siRNAs. As can be seen in Figure 3B, after

72 h of siRNA transfection, the cells showed a significant increase

in DNA breaks as determined by the Comet assay.

Stable cell lines for inducible shTHOC1 show
transcription and mRNA export defects

Once demonstrated that THO/TREX depletion has an impact

on gene expression, regardless of the subunit depleted, we decided

to continue the analysis with the THOC1 conserved subunit as a

representative THO subunit. For this reason, we first constructed

stable HeLa cells lines for the depletion of THOC1. HeLa cells

were stably transfected with an inducible shRNA for THOC1 (see

Materials and Methods). Stable integration of the inducible

Figure 1. THO/TREX depletion impairs transcription elonga-
tion. A) Relative expression of THO/TREX components. mRNA levels
were measured by RT-qPCR 96 h after siRNA depletion. B) GFP
expression determined by FACS analysis after 96 h of depletion with
siRNAs (hHpr1/THOC1, THOC5, UAP56 and ALY), performed 24 h after
transfection with the pmaxGFP vector containing CMVp::GFP. a-
amanitin (2 mg/ml) was used as a positive control of transcription
inhibition. A scheme of the pmaxGFP reporter carrying a CMVp::GFP
fusion is shown on top. C) Transcription elongation determined with
TAN system. Scheme of the tandem reporter system TAN1 used for
transcription elongation. A tetracycline-regulated promoter (TETp)
drives transcription through the FLUC and hRLUC tandem reporters.
An internal ribosome entry sequence (IRES) enhances translation of the
uncapped hRLUC expression fragment by replacing the requirement for
the 59 cap and untranslated region (59 UTR). FLUC expression
determined by luminometer analysis with TAN1 is shown. hRLUC:FLUC
activity ratios are plotted for the indicated 96 h siRNA depleted cells.
For this, 72 h after siRNA transfection, cells were transfected with TAN1,
transcription was activated with doxycycline, and 24 hours later, cells
were harvested. Results are expressed as a percentage of the siRNA
control (siC). Average and standard error from three independent
experiments are shown. When the P value of the difference with the siC
control calculated with the Student’s t test is ,0.05, it is indicated with
an asterisk (*).
doi:10.1371/journal.pgen.1002386.g001

R-Loop–Dependent Genome Instability
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THOC1 shRNA vector allowed the rapid production of siRNAs

upon doxycycline induction. Among 4 stable clones obtained,

HeTH-1 and HeTH-4 were chosen, showing about 50%

reduction on THOC1 mRNA levels as determined by RT-qPCR

(data not shown) and an efficient knock-down of the THOC1

protein as determined by Western analysis (Figure 4A). As

expected from previous works [31], the growth rate of these

stable cell lines was significantly reduced (Figure S4).

The impact of THOC1 depletion on transcription of endoge-

nous genes was analyzed in HeTH-4 cells (+DOX) (+doxycycline)

compared to control cells HeTH-4 cells (-DOX) (Figure 4B).

These kinds of analyses have been previously used to study the role

in transcription elongation of splicing factors [32]. RT-qPCR on

DNase I-treated total RNA was performed using primer pairs

covering different regions of three different-sized genes: PTBP1

(polypyrimidine tract binding protein 1), LIG3 (ligase III, DNA,

ATP-dependent) and UTRN (utrophin). A reduction in the amount

of mRNA at the 39 proximal regions versus the 59 ones were

observed for the three endogenous genes analyzed upon

doxycycline addition (Figure 4B). A similar reduction was observed

Figure 2. THO/TREX depletion increases cellular DNA damage response. A) Immunofluorescence of cH2AX after transfection with the
indicated siRNAs. Time-course experiments were performed. The time point where the maximum cH2AX foci containing cells were observed for each
depletion is shown (48 h for siTHOC1 and siTHOC5, and 72 h for siUAP56 and siALY). Nuclei were stained with DAPI. B) Quantification of cH2AX after
siRNA depletion is shown. . Average and standard error from three independent experiments are shown (more than 100 cells were analyzed per
siRNA transfection). When the P value of the difference with the siC control calculated with the Mann & Whitney test is ,0.05, it is indicated with an
asterisk (*).
doi:10.1371/journal.pgen.1002386.g002

R-Loop–Dependent Genome Instability
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when we added the transcription inhibitor a-amanitin (Figure S5).

These results suggest that THOC1 depletion has a negative effect

on transcription elongation in human cells.

We performed a global analysis of transcription to see whether

the effect was general and to explore whether an effect on a

specific transcription or mRNP biogenesis factor could indirectly

explain the previous results. Comparison of the gene expression

profiles between THOC1-depleted cells (HeTH-4 +DOX) cells

with mock-treated controls (HeTH-4 –DOX) revealed that out of

28869 genes, 94 were down-regulated (32 well annotated genes

and 62 non-coding RNAs (ncRNA)) and 140 up-regulated (36 well

annotated genes and 104 ncRNAs), taking as a threshold set at 1.5-

fold difference. (Table S2). Gene-GO term enrichment analysis

does not show any relevant GO term associated with the list of

gene deregulated. These data suggest that the effect of THOC1

depletion on transcription could be direct and not mediated by the

altered expression of other genes.

Yeast THO mutants have a global poly(A)+ mRNA export

defect [4], whereas in Drosophila THO is required for nuclear

export of heat-shock mRNAs but it seems dispensable for nuclear

export of total mRNA [11]. However, in human cells ambiguous

data about the role of the THO complex in export of bulk

poly(A)+RNA have been reported [20,21]. To explore whether

THOC1 is required for nuclear export of bulk poly(A)+ RNA in

human cells in situ hybridization assays were performed with a

fluorescently labeled oligo(dT) probe in HeTH-4 cells (+DOX)

(Figure 4C). A series of optical sections through the entire cell was

analyzed by confocal microscopy and the fluorescence signal in the

cytoplasmic and nuclei was compared. The analysis revealed that

whereas the non-induced shTHOC1 control cells showed uniform

poly(A)+ distribution in the cell, similar to that of untransfected

HeLa cells, poly(A)+RNA accumulated in a non-uniform manner

in HeTH-4 cells (+DOX). The pattern was similar to that

observed in HeLa cells transfected with a plasmid bearing a

shRNA specific of ALY, used as positive control (Figure 4C).

Accordingly, a significant reduction in the cytoplasmic-nuclear

(C/N) ratio was observed with respect to that of HeLa control

cells. Altogether these results suggest a general role of THOC1 in

transcription and RNA export.

Stable cell lines for inducible shTHOC1 show an increase
in DNA breaks and recombination

To further investigate how THO depletion induces DNA

damage, we focused our efforts on THOC1-depletion using as a

tool the stable HeTH-4 cell line expressing the inducible

shTHOC1. First, we confirmed that the accumulation of 53BP1

foci after depletion of this factor also take place in the stable cell

line. The strong reduction of THOC1 (+DOX) was accompanied

by a 2-fold increase in 53BP1 foci with respect to the control

(2DOX) (Figure 5A).

Next, DNA damage was assessed by single-cell electrophoresis

(Comet assay) by which, following DNA unwinding under alkaline

conditions, broken DNA fragments (damaged DNA) migrate away

from the nucleus (see Materials and Methods). A two-fold increase

Figure 3. THO/TREX depletion leads to an increase in DNA breaks. A) Quantification of DNA breaks at sequential time points after
transfection with siTHOC1 and siTHOC5 siRNAs assessed by the alkaline comet assay. B) Comet assay 72 h after transfection with siUAP56 and siALY
siRNAs. At least 50 cells were counted per group to calculate the median of the tail moment. Average and standard error from three independent
experiments are shown. When the P value of the difference with the siC control calculated with the Mann & Whitney test is ,0.05, it is indicated with
an asterisk (*).
doi:10.1371/journal.pgen.1002386.g003

R-Loop–Dependent Genome Instability
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in the tail moment in THOC1-depleted HeTH-4 cells (+DOX)

demonstrates the accumulation of DNA breaks (Figure 5B).

Finally, to assay whether the increase in DNA breaks in THO/

TREX depleted cells resulted in an increase in recombination, we

designed and constructed a direct-repeat recombination construct,

pIREC (Figure 6A). It consists of two GFP truncated repeats

sharing 200-bp of homology and placed under the control of the

doxycycline inducible tet promoter that were stably integrated into

the genome (HeRG) (see Materials and Methods). Recombinants

in this assay could be detected by FACS analyses as GFP positive

Figure 4. Gene expression defects in stable cell lines depleted of THOC1. A) Immunoblot showing THOC1 expression in HeLa stable cell
lines with an inducible shTHOC1 (HeTH cells) with (+DOX) or without doxycycline (2DOX). A scheme of the system used to induce THOC1 shRNA
expression is shown. B) Effect of THOC1 depletion in transcription elongation of endogenous genes (PTBP1, LIG3 and UTRN) as determined by RT-
qPCR. The relative amount of nascent mRNA in HeTH-4 cells is plotted. C) Nucleocytoplasmic polyA+ RNA distribution in HeLa-derived HeTH-4 cells in
which THOC1 depletion was induced with doxycycline and HeLa cells transiently transfected with the indicated shRNAs. More than 50 cells per group
were subjected to in situ hybridization with Cy3-oligo dT50 probe. Scale bar refers to 25 mm. Ratio of cytoplasmic and nuclear signals as quantified in
each knockdown cell is represented below. Average and standard error of 3 independent experiments are shown. When the P value of the difference
with the siC control calculated with the Student’s t test (for results shown in B) or the Annova-Newman and Keuls (for results shown in C) is
statistically significant it is indicated with an asterisk (* for P,0.05).
doi:10.1371/journal.pgen.1002386.g004

Figure 5. Genome instability in stable cell lines depleted of THOC1. A) 53BP1 foci formation in HeTH-4 cells (2DOX) and HeTH-4 cells
depleted of THOC1 (+DOX). Immunofluorescence of THOC1 and 53BP1 are depicted. Nuclei were stained with DAPI. The percentage of cells with
53BP1 foci in the presence (2DOX) or absence (+DOX) of THOC1 is plotted. B) DNA breaks measured by the Comet assay in HeTH-4 cells with or
without doxycycline. The graph shows the increase in the tail moment as indicative of DNA breaks occurring after THOC1 depletion. Average and SE
from three independent experiments are shown (number of cells analyzed as in Figure 2 and Figure 3). When the P value of the difference with the
control calculated with the Mann & Whitney test is ,0.05, it is indicated with an asterisk (*).
doi:10.1371/journal.pgen.1002386.g005

R-Loop–Dependent Genome Instability
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cells. As can be seen in Figure 6 in both the HeRG stable cell line

transfected with siRNA to deplete THOC1 (Figure 6B) and in

HeTH4 cells (+DOX) transfected with the pIREC system

(Figure 6C), the spontaneous recombination frequency increased

with respect to their respective controls, consistent with an increase

in DNA breaks and subsequent recombination events taking place

upon THO depletion.

Genome instability in THOC1 depleted cells is R-loop–
dependent

Next we wondered whether DNA breaks in THO-depleted

human cells were a consequence of R-loop formation. THOC1-

depleted HeTH-4 cells (+DOX) were transfected with vectors

expressing RNaseH (RNH1 and/or RNH2), which degrades the

RNA strand of DNA-RNA hybrids, and the 53BP1 foci formation

was measured. Overexpression of RNH1, RNH2 or both reduced

53BP1 foci to values close to control levels, consistent with R-loop

formation, although we can not rule out other sources of genome

instability (Figure 7A). To further confirm this result, we tested

whether human AID, a cytidine deaminase which works in single-

stranded DNA as those formed in R-loops, increased DNA breaks

in THOC1-depleted cells, an assay that has been used successfully

in yeast [9]. As shown in Figure 7B AID expression in HeTH-4

cells (+DOX) increased the percentage of cells containing

cH2AX foci 1.8-fold. Indeed, it is worth noting that after AID

overexpression we detected PARP degradation in THOC1-

depleted cells as determined by western (Figure 7C), suggesting

that under these conditions a cell death program could be induced.

According to these data an increase in the number of apoptotic

cells, as measured by sub-G1 DNA content, was detected

(Figure 7D).

Class-switching enhancement in THOC1-depleted murine
CH12 cells

Class switching is a natural phenomenon of recombination that

is dependent on R-loop formation at the switch S regions of

Immunoglobulin genes [33]. If THO-depletion facilitates R-loop

formation in mammalian cells, we reasoned that in B cells AID

would enhance its spectrum of action. To test this possibility class

switching was assayed in murine CH12 cells derived from B cell

lymphoma that were depleted of different subunits of murine

THO by siRNA against different exons of THOC1. As can be

seen in Figure 8B, there is a clear and consistent increase of class

switching, in both unstimulated and stimulated cells, as deter-

mined by IgM to IgA conversion measured by FACS analyses (see

Materials and Methods). The enhancement of the basal level of

class switching detected in unstimulated cells can be explained by

the direct action of AID on the S region, as it has been previously

reported that AID induction augments class switching of

unstimulated CH12 cells, which are known to express germline

transcripts even without stimulation [34,35]. In agreement with

these data we detected AID and Im transcripts in unstimulated cells

as determined by RT-PCR (Figure S6). The increase in class-

switching in CH12 cells after THOC1 depletion support our

hypothesis that THO-depletion could enhance the ability of

mammalian cells to form recombinogenic R-loops.

Replication fork progression alterations in THOC1-
depleted cells

One main function of recombination is to repair the DNA

breaks that occur spontaneously as a consequence of DNA

replication stalling or collapse. We asked whether the breaks and

hyper-recombination of THOC1-depleted cells were accompanied

by replication defects. Therefore, HeLa cells were transfected with

siTHOC1 and siC and pulse-labeled with CldU (Chlorodeoxyur-

idine) to monitor replication by DNA combing. This analysis

revealed that CldU tracks, which visualize newly replicated

regions, are longer in siTHOC1 cells (54.5 kb) than in the siC

control cells (34.0 kb) (Figure 9), suggesting that replication was

30% faster in THOC1-depleted cells. Similar frequency of

replication initiation, as inferred from the distance between the

centers of two CldU tracks, were observed in THOC1-depleted

siTHOC1 (101.1 kb) and siC control cells (92.5 kb) (Figure 9). To

measure replication elongation, cells were pulse-labeled with IdU

and CIdU and the distance covered by individual forks during the

pulse was determined. Results showed that replication forks travel

at an apparent faster speed in THOC1-depleted siTHOC1

(2.3 kb/min) than in siC (1.6 kb/min) cells (Figure 9). Similar

results were obtained with the stable cell line HeTH-4 (Figure S7).

Instead, no clear differences were observed in the frequency of

origin firing, as the inter origin distance in siTHOC1 was similar

to that of control cells (Figure 9). It seems therefore clear that

THOC1 depletion alters the progression of replication fork.

Discussion

In this study we provide evidence that in human cells the THO/

TREX complex has a role in mRNP biogenesis that connects

transcription elongation, mRNA export and genetic instability.

Figure 6. Recombination is increased after THOC1 depletion. A)
Scheme of the pIREC direct-repeat recombination construct used to
generate stable HeLa cell lines. B) Recombination analysis using the
HeRG stable cell line depleted of THOC1 by siRNA. C) Recombination
analysis in the HeTH-4 stable cell lines (2DOX and +DOX) transfected
with the plasmid pIREC-direct repeat containing vector. The recombi-
nation frequency was measured by FACs analysis as GFP positive cells,
96 h after transfection (B and C). Average and SE from three
independent experiments are shown. When the P value of the
difference with the siC control calculated with the Mann & Whitney
test is ,0.05, it is indicated with an asterisk (*).
doi:10.1371/journal.pgen.1002386.g006
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Reducing the expression of human THO/TREX components by

RNA interference experiments results not only in a reduction of

gene expression and mRNA export, but also in an impairment of

transcription elongation. Moreover, we show that human THO

depletion increases instability associated with DNA breaks, as

determined by hyper-recombination and cH2AX and 53BP1 foci

accumulation. Notably, such instability is dependent on R-loop

formation, as determined by different in vivo approaches, and

correlates with an alteration of global replication patterns as

determined by DNA combing. Altogether these data suggest that

human THO is a key player for mRNP formation and genome

integrity that connects transcription elongation with genome

dynamics and reveals that the connection of transcription and

mRNP biogenesis with genome instability is more conserved than

previously anticipated.

Human THO/TREX functions at the interface of
transcription elongation and mRNA export

Our analyses of a tandem transcription reporter construct, and

nascent mRNAs from different endogenous genes by RT-qPCR

(Figure 1, Figure S1 and Figure 4) indicate that THO has a role in

transcription elongation. The impact of THO depletion seems to

be general and direct. The microarray analysis does not identify a

significant reduction of expression of genes involved in mRNP

biogenesis that could explain the results (Table S2). Different

results have been reported for THO/TREX co-precipitation with

the transcription apparatus [12,31,36], but our data suggests that

THO/TREX have a functional role coupled to transcription

elongation. Consistently, an early recruitment of THO to the 59

end of mRNAs has been shown in a splicing- and cap-dependent

manner [13]. This recruitment requires the cap-binding subunit

CBP80, which interacts with the ALY/REF subunit of human

TREX, and could explain that mRNA export takes place through

the nuclear pore in a 59 to 39 direction.

RNA interference and biochemical studies in metazoans and

genetic analyses in yeast indicate that the conserved THO/TREX

complex functions in mRNA export [15,20] (Figure 4C; [21]).

However, in Drosophila the nuclear export of only a subset of

mRNAs is affected by depletion of the THO subunits, which

depends on the subunit depleted [11,19]. In light of these results, the

existence of various nuclear mRNA export pathways in multicel-

lular eukaryotes has been suggested, which may be dictated by

different adaptor RNA binding proteins. Consistently, it has been

shown that THOC5, a subunit of the metazoan THO complex with

no apparent orthologue in yeast, is not required for bulk mRNA

export. However, it interacts with TAP-p15 and ALY, and functions

in the export of specific mRNAs such as HSP70 [20].

The number of factors working at the interface transcription

elongation and mRNA export reveals an increasing importance of

the tight association between transcription and RNA biogenesis

steps. Thus, Drosophila THO and ENY2/Sus1, a component of

the histone-acetyltransferase complex SAGA/TFTC involved in

transcription activation, interacts with the THSC/TREX-2

complex, required for mRNA export [14]. Also the human

hnRNP CIP29 protein, the ortholog of yeast Tho1 hnRNP

functionally related with THO, has been shown to be recruited

to THO and to participate in mRNA export [37]. Spt6, a

transcription elongation factor and histone H3 chaperone, binds to

the Ser2P CTD of RNAPII and recruits Iws1 and the REF1/Aly

mRNA export adaptor to facilitate mRNA export [38]. Iws1,

which recruits the HYPB/Setd2 histone methyltransferase to the

RNAPII elongation complex forms a megacomplex that affects

mRNA export as well as the histone modification state of active

genes in yeast [39]. Also noteworthy is the association of

transcribed genes with the nuclear pore complex [40–43]. Our

data, therefore, indicate that the human THO/TREX complex

is another important factor in the coupling of transcription

elongation with mRNA export.

Human THO/TREX is a key player for genome integrity
One key feature of the yeast THO complex is its functional

relevance in maintaining genome integrity, in particular by

limiting the co-transcriptional formation of R loops. A similar R-

loop-dependent co-transcriptional genome instability is observed

in mammalian cells with loss of the splicing factor ASF/SF2

[25,44,45]. A recent genome-wide siRNA screening performed to

identify genes involved in genome stability by monitoring

phosphorylation of the histone variant H2AX suggests that a

specific class of RNA processing factors may help prevent genome

instability [26]. In a number of cases the accumulation of cH2AX

foci are suppressed by RNase H overexpression, as would be

expected if they were mediated by R-loops, whether completely or

partially. The relevance of R-loops in the origin of chromosome

instability has been studied at the S regions of the Immunoglobulin

genes of B cells. In this case the R-loop provides the substrate for

the action of the AID deaminase, which specifically acts on the

ssDNA displaced by the DNA:RNA hybrid [33]. Interestingly, an

involvement of THO in genome instability had not been shown in

humans. This is of key importance, as it would clarify whether

human THO/TREX functions in vivo during transcription to

prevent R-loop formation and whether its function would be

related to the co-trancriptional formation of an mRNP. Our study

clearly shows an increase in DNA damage, as determined as a

larger percentage of cells with cH2AX and 53BP1 foci, in cells

depleted of human THO/TREX (Figure 2 and Figure S2).

Accumulation of cH2AX foci of THO-depleted HeLa cells is

suppressed by overexpresssion of RNAse H (Figure 7A) and

enhanced by overexpression of the human cytidine deaminase

AID (Figure 7B). These results are explained by the formation of

DNA:RNA hybrids, implying that the nascent mRNA could

interact with the transcribed region behind the advancing RNAPII

in the absence of human THO. This analysis demonstrates that

indeed THO prevents R-loop formation in human cells

(Figure 10). It is worth noting that a previously reported

genome-wide analysis [26] failed to identify THO/TREX

components among the affected RNAi-depleted cells leading to

the accumulation of DNA breaks. THOC1 and THOC2-depleted

cells appeared as showing a low proportion of cells (2–2.7%) with

Figure 7. Genome instability in THOC1 is mediated by R-loop formation. A) Suppression of the increase in the number of cells with 53BP1
foci in HeTH-4 cells (+DOX) by RNaseH overexpression. Cells were transfected with pcDNA3 (ø), pcDNA3-RNaseH1 (RH1) and/or pcDNA3-RNaseH2
(RH2). Merge images of DAPI nuclei stained and 53BP1 immunofluorescence are shown. B) Immunofluorescence of cH2AX and AID pictures are
depicted. Nuclei were stained with DAPI. Graph shows the increase in the percentage of cells with foci in the condition of THOC1 depletion and AID
expression. Average and SE from three independent experiments are shown (more than 100 cells were analysed per group). C) Analysis of the effect
of AID expression on apoptosis in THOC1-depleted cells as determined by Immunoblot of HeTH-4 cell extracts using anti-PARP antibody. D) Analysis
of the effect of AID on apoptosis in THOC1-depleted cells as determined by FACS analysis of cell displaying subG1-DNA content. Average and SE from
three independent experiments are shown. When the P value of the difference with the control calculated with the Mann & Whitney test is ,0.05, it is
indicated with an asterisk (*).
doi:10.1371/journal.pgen.1002386.g007
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cH2AX foci. We believe that this could be due to the limitation of

such a genome wide-analysis on cells depleted of essential factors

that strongly affects their proliferation capacity, as is the case of

THO-depleted human cells.

High levels of DNA breaks have been determined with the

comet assay in cell lines depleted of different subunits of the

THO/TREX complex (Figure 3A, 3B). The high accumulation

of DNA breaks correlated with a hyper-recombination effect

Figure 8. Depletion of THOC1 in CH12 murine B cell line enhances class switch recombination. CH12 cells were transfected with a
pSUPER vector containing GFP and the indicated shRNA (lower case letters indicate shRNAs against different gene exons). A) Relative THOC1 mRNA
levels. B) IgA expression was measured 72 h after transfection in GFP positive cells by FACs in unstimulated and stimulated cells (treated with
cytokines for 12 h, as detailed in Material and Methods). When the P value of the difference with the control calculated with the Mann & Whitney test
is ,0.05, it is indicated with an asterisk (*). C) A representative graph of the FACs experiments.
doi:10.1371/journal.pgen.1002386.g008
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observed in the direct-repeat recombination construct pIREC

after THOC1 depletion (Figure 6). Such a hyper-recombination

phenotype was in any case lower than that of yeast THO mutants,

which may be due to the fact that DSBs in mammals are more

efficiently repaired via Non Homologous End Joining. Class

switching, which is linked to transcription and R-loop formation at

the S regions of the Ig genes [33], increased significantly in murine

CH12 cells transfected with different siRNAs against THOC1

(Figure 8), consistent with a function of human THO preventing

formation of R-loops and DSBs. Interestingly, THOC5 has

Figure 9. Combing assay showing that replication fork progression is altered in cells depleted of THOC1. Single-molecule analysis of
DNA replication. siC (control) and siTHOC1 transfected HeLa cells were pulse-labeled for 20 min with CldU and fibres were stretched by DNA
combing. Red: DNA, Green: CldU. Bar: 100 kb. Distribution of CldU tracks length in HeLa cells. Box: 25–75 percentile range. Whiskers: 10–90 percentile
range. Medians are indicated in kb. Distribution of centre-to-centre distances between CldU tracks, replication fork velocity and inter-origin distance
in HeLa cells transfected with siC and siTHOC1 siRNAs are shown. When the P value of the difference with the siC control calculated with the Median
test is ,0.05, it is indicated with an asterisk (*).
doi:10.1371/journal.pgen.1002386.g009

Figure 10. Model to explain the role of THO/TREX in the prevention of R-loop formation. THO/TREX contributes to the co-transcriptional
formation of an optimal mRNP particle preventing hybridization of the nascent mRNA with the DNA template and formation of an R-loop. In THO-
depleted human cells, R-loops are formed leading to a single-stranded DNA that is more susceptible to be damaged spontaneously by genotoxic
agents or by AID. R-loop removal by RNase H over-expression would alleviate DNA damage and genome instability caused by THO depletion.
doi:10.1371/journal.pgen.1002386.g010
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recently been re-isolated in a screening of genes with a potential

effect in CSR [46]. Altogether these data suggest that THO could

play a role during normal B cell development, although further in

vivo analysis would be needed to confirm this possibility. THO

could contribute to the mRNP packaging of S regions. However,

the structure and the G-richness of these S regions might make

them difficult to assemble as an optimal ribonucleprotein even in

the presence of THO. Consequently a basal level of R-loops could

form at the S regions and promote the events necessary for normal

development [9].

Finally, consistent with the idea that DNA breaks in THO-

depleted human cells are linked to replication failures, we provide

evidence in this study of an alteration in the pattern of replication

in THOC1 depleted cells determined by DNA combing (Figure 9).

This is consistent with the observation that transcription-

associated recombination (TAR), as most forms of homologous

recombination, is highly dependent on replication both in yeast

and mammalian cells [47–49]. Highly transcribed genes are

impediments for replication fork progression [50] and TAR may

be linked to collisions between DNA replication and transcription

machineries [51]. Thus, Topoisomerase I suppresses genome

instability in mammalian cells by preventing conflicts between

transcription and DNA replication [52]. Interestingly, however, our

DNA combing analyses show that replicons seem longer. One

possibility could be a putative incapacity of THOC1-depleted cells

to trigger the S-phase or DNA damage response checkpoint and/or

an incapacity to finish replication properly, leading to an apparent

higher speed and longer replicons of THOC1-depleted cells.

Indeed, yeast THO mutants activate the S-phase checkpoint and

require an active S-phase checkpoint for viability under replicative

stress [53]. Another plausible explanation of the longer replicons

could be a reduction in the levels of transcribing RNAPII on the

DNA, due to abortive transcription elongation. Faster replication

forks have been detected for yeast sgs1D cells, which also show

hyper-recombination [54]. Further molecular analyses of replica-

tion in THO-depleted human cells would be needed to understand

the molecular basis for the DNA combing pattern observed.

In summary, our work shows that human THO controls

transcription elongation at the interface with RNA processing and

export, implying a physical connection with active chromatin.

THO prevents the formation of R-loops that can compromise

genome integrity by altering replication progression and leading to

an accumulation of recombinogenic DNA breaks (Figure 9). This

works, therefore, provides experimental evidence for a role of

mRNP biogenesis factors in genome integrity in humans and

reveals that the functional interconnection between mRNP

biogenesis and the maintenance of genome integrity is more

conserved than previously anticipated.

Materials and Methods

Antibodies
Commercial antibodies used were anti-ß actin, anti-THOC1

(Abcam), anti-cH2A (clone JBW301 Upstate), anti-53BP1 (NB100-

304 Abyntec Biopharma), and mouse and rabbit polyclonal

antibodies. For immunobloting, anti-mouse or anti-rabbit antibod-

ies conjugated with horseradish peroxidase were used as secondary

antibodies.

Plasmids
pSUPER-RETRO GFP was used to clone specific DNA

sequences for shRNA with BglII and HindIII and as indicated by

the manufacturer (OligoEngine VEC-PRT-0005/0006). The

TAN 1 system and the method for the measurement of luciferase

and renilla activities have been described [28]. pcDNA6/TR

(Invitrogen) and pTER [55] were used to generate stable inducible

shRNA cells. pcDNA3-RNaseH1 and pcDNA3-RNaseH2 were

kindly provided by F. Baas [56]. For the plasmid pIREC, the

mutated EGFP from the vector pI [57] was replaced for GFP

repeats generated by PCR. pcDNA3 (Invitrogen) was used to

clone the open reading frame of human AID.

Cell cultures and transfection
All cell lines used in this study, except CH12, were maintained

in DMEM (Gibco) supplemented with 10% heat-inactivated fetal

bovine serum at 37uC (5% CO2). Transient transfection of plasmid

(4 mg) or siRNA (100 nM) was performed using Lipofectamine

2000 (Invitrogen, Carlsbad, CA) according to the manufacturer’s

instructions.

HeLa stable cell lines with THOC1 shRNA were established by

Lipofectamine 2000-mediated transfection of pTER-THOC1, a

TetR-expressing construct, pCDNA6TR, followed by selection

with 5 mg/ml blasticidin and 100 mg/ml of zeocin. The two

positive clones selected were named HeTH-1 and HeTH-4. The

shRNA target sequence is available upon request. CH12 cell line

was maintained in RPMI 1640 supplemented with 10% FBS,

10 mM of 2-mercaptoetanol and 5% NCTC (Invitrogen).

HeRG stable cell lines were established by Lipofectamine 2000-

mediated transfection of the pIREC plasmid in a HeLa stable cell

line carrying pcDNA6TR (a TetR-expressing construct), followed

by selection with 5 mg/ml blasticidin and 500 mg/ml of G418. The

construction was verified treating the cells with different drugs as

camptotecyn and neocarzinostatin.

Analysis of apoptosis
Hypodiploid apoptotic cells were detected by flow cytometry

according to published procedures [58]. Basically, cells were

washed with phosphate-buffered saline (PBS), fixed in cold 70%

ethanol, and then stained with propidium iodide while treating

with RNase. Quantitative analyses of sub-G1 cells were carried out

in a FACScan cytometer using the Cell Quest software (BD

Biosciences).

Real-time qPCR
cDNA was synthesized from cytoplasmic RNA (1 mg) by reverse

transcription using Super-Script TM First strand synthesis for RT-

PCR (Invitrogen) and random primers. RT-qPCR was performed

with SYBR qPCR Mix (Applied Biosystems) and analyzed on an

ABI Prism 7000 (Applied Biosystems, Carlsbad, CA). Primers sets

for this analysis are described in Table S1.

Genome-wide gene expression analysis
Six independent microarray expression experiments were

conducted. Affymetrix array experimental procedures were per-

formed according to manufacturer’s instructions at the CABI-

MER’s Genomic Unit. Human Gene 1.0 ST array (Affymetrix,

Santa Clara, USA) were used. The probe set signals were calculated

using the Affymetrix GeneChip Operating Software 1.4.0.036.

Linear fold-change cutoffs were analyzed at 95% confidence

levels (p-values,0.05) in 1.5-fold down-regulated or up-regulated

genes of THOC1-depleted cells. The microarray data were sub-

mitted to Gene expression Omnibus (GEO; accession number:

GSE27091).

Immunofluorescence in situ analysis
Cells cultured on glass coverslips were transfected with

siRNA or plasmids (30% or 60–80% of confluency, respectively).
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After transfection, cells were cultured for 48 h, fixed in 2%

formaldehyde in phosphate-buffered saline (PBS) and treated with

Ethanol 70% for 5 min at 220uC, 5 min at 4uC, and washed

twice in PBS. After blocking with 3% bovine serum albumin (BSA)

in PBS, the coverslips were incubated with primary antibodies in

3% BSA in PBS followed by secondary antibodies conjugated

withTexas Red goat anti-mouse or Alexa Fluor 568 goat anti-

rabbit (Invitrogen). DNA was stained with DAPI.

RNA fluorescence in situ hybridization
RNA in situ hybridization was carried out as described [20].

Cells cultured on glass coverslips were either transfected with

plasmid shRNA or treated with doxycycline (in the case of stable

shRNA clones). Samples were processed after 48 h and 96 h

respectively. Cells were fixed in 4% formaldehyde in phosphate-

buffered saline (PBS). Quantitation of the nuclear-cytoplasmic

distribution of poly(A)+ RNA was done using the Multiwave-

length-MetaMorph v7.5.1.0. software. The cellular periphery was

defined with phase contrast images and the nucleus with DAPI

staining. The cytoplasmic: nuclear ratio of the mean fluorescence

intensities was determined. All experimental analyses were

performed with 7.5 104 cells for both HeLa or HeTH-4 cell lines

Comet assay
DNA DSBs were analyzed using a commercial comet assay

(Trevigen, Inc.) following the manufacturer’s protocol. For

quantification, comet-positive cells were scored in random fields

of cells. More than 100 cells from each sample were scored. The

quantitative analysis was performed with the Comet-score

software (version 1.5).

Class-switching measurements
CH12 cells were transfected with pSUPERshRNA targeting

THOC1 using Nucleofector (Amaxa). CH12 cells were stimulated

for 12 h by adding 1 ng/ml of TGFB (R&D Systems), 5 ng/ml of

IL4 (Bionova) and 0.5 mg/ml of anti-CD40 (Pharmigen). Surface

IgA was stained with anti-mouse IgA-RPE antibody (AbDSerotec)

and analyzed by flow cytometry 72 h after transfection. Double

positive GFP-RPE cells were counted.

DNA combing
DNA combing was performed as described [59]. Briefly, DNA

fibres were extracted from cells in agarose plugs immediately after

CldU labeling and were stretched on silanized coverslips. DNA

molecules were counterstained with an anti-ssDNA antibody

(MAB3034, Chemicon; 1/500) and an anti-mouse IgG coupled to

Alexa 546 (A11030, Molecular Probes, 1/50). CldU and IdU were

detected with BU1/75 (AbCys, 1/20) and BD44 (Becton

Dickinson, 1/20) anti-BrdU antibodies, respectively. DNA fibres

were analysed on a Leica DM6000 microscope equipped with a

DFC390 camera (Leica). Data acquisition was performed with

LAS AF (Leica). Representative images of DNA fibers were

assembled from different microscopic fields of view and were

processed as described [60].

Supporting Information

Figure S1 Analysis of transcription defects in THO/TREX

depleted cells. A) THO/TREX depletion impairs gene expression.

HPRT expression determined by RT-PCR after 96 h of depletion

with siRNAs (hHpr1/THOC1, THOC5, UAP56 and ALY). a-

amanitin was used as a positive control of transcription inhibition.

B) qRT-PCR analysis of the mRNA levels of FLUC is shown in

the upper panel and the FLUC:RLUC ratio of mRNA levels in

cells depleted of different THO/TREX subunits is shown below.

Other details as in Figure 1.

(TIF)

Figure S2 shRNA interference of THO/TREX stimulates the

cellular DNA damage response. A) Relative expression of THO/

TREX components after shRNA transfections is shown. HeLa

cells were transiently transfected with a pSUPER vector for

shRNA expression that carries a GFP gene reporter. shTM was

used as a control (for more details see Materials and Methods). B)

Quantification of c-H2AX and 53BP1 foci in GFP positive cells.

C) Immunofluorescence of cH2AX and 53BP1 48 h after

transfection with the indicated shRNAs. Nuclei were stained with

DAPI. Other details as in Figure 2.

(TIF)

Figure S3 Effect of THOC1 and THOC5 depletion in DNA

damage response in MRC5 cells. Quantification of the tail

moment at 72 h after siRNA depletion. Error bars indicate

standard errors of the mean from three independent experiments.

Other details as in Figure 3.

(TIF)

Figure S4 Depletion of THOC1 affects growth rate in HeTH

cells. Growth rate of HeTH-1 and HeTH-4 in the presence or

absence of doxycycline.

(TIF)

Figure S5 Effect of a-amanitin in transcription of PTBP1. Effect

of a-amanitin treatment in transcription of the endogenous gene

PTBP1 as determined by RT-qPCR. The relative amount of

nascent mRNA in HeTH-4 cells is plotted. The cells were treated

with 5 mg/ml of a-amanitin (24 hours before collecting cells for

RNA extraction); other details as in Figure 4.

(TIF)

Figure S6 Quantitative PCR analysis for Im and AID transcripts

in unstimulated and stimulated CH12 cells. mRNA levels were

normalized respect to CD3 expression levels.

(TIF)

Figure S7 DNA combing assay in the stable cell line HeTH4.

Replication fork velocity in the presence or absence of doxycy-

cline. Other details as in Figure 9.

(TIF)

Table S1 Table of Primers: The name and the sequence of

primers used in Real-Time qPCR analyses are shown.

(TIF)

Table S2 Deregulated genes in THOC1 depleted cells (HeTH-

4+DOX). THOC1-depleted cell genome-wide gene expression

profile was analyzed on a high density oligonucleotide microarray

(Human Gene 1.0 ST arrays, Affimetrix, Santa Clara, SA). Down-

regulated and up-regulated well-annotated genes with $1.5 linear

fold change and p-values#0.05 are shown.

(TIF)
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