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Diet selection is a fundamental aspect of animal behavior with numerous ecological
and evolutionary implications. While the underlying mechanisms are complex, the
availability of essential dietary nutrients can strongly influence diet selection behavior.
The gut microbiome has been shown to metabolize many of these same nutrients,
leading to the untested hypothesis that intestinal microbiota may influence diet selec-
tion. Here, we show that germ-free mice colonized by gut microbiota from three
rodent species with distinct foraging strategies differentially selected diets that varied
in macronutrient composition. Specifically, we found that herbivore-conventionalized
mice voluntarily selected a higher protein:carbohydrate (P:C) ratio diet, while omni-
vore- and carnivore-conventionalized mice selected a lower P:C ratio diet. In support
of the long-standing hypothesis that tryptophan—the essential amino acid precursor
of serotonin—serves as a peripheral signal regulating diet selection, bacterial genes
involved in tryptophan metabolism and plasma tryptophan availability prior to the
selection trial were significantly correlated with subsequent voluntary carbohydrate
intake. Finally, herbivore-conventionalized mice exhibited larger intestinal compart-
ments associated with microbial fermentation, broadly reflecting the intestinal mor-
phology of their donor species. Together, these results demonstrate that gut
microbiome can influence host diet selection behavior, perhaps by mediating the avail-
ability of essential amino acids, thereby revealing a mechanism by which the gut
microbiota can influence host foraging behavior.
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Proper nutrition is essential to life, and thus animals have evolved complex internal sen-
sory systems that help maintain nutritional homeostasis by regulating macronutrient
intake (1). The intestinal tract plays a critical role in this process by liberating dietary
nutrients (e.g., essential amino acids [EAAs]) that communicate meal quality to the cen-
tral nervous system by direct stimulation of enteric nerves or through postabsorptive
peripheral signals (2–4). The intestinal tract also harbors trillions of microorganisms (col-
lectively known as the gut microbiome), which have been shown to influence numerous
aspects of host behavior, most likely through metabolites that interact with host sensory
systems (5). Given the importance of dietary nutrients in the regulation of food intake
and diet selection (6), the gut microbiome may influence host foraging behavior through
metabolic processes that affect the availability of nutrients (or their derivatives) recognized
by the central nervous system (2, 7, 8). For example, a recent study showed that experi-
mental colonization of Providencia bacteria in the gut of the model organism Caenorhab-
ditis elegans resulted in divergent foraging preferences through the bacterial synthesis of
the neurotransmitter tyramine from the EAA tyrosine (9). While studies in model systems
provide powerful opportunities to dissect host–microbe interactions (10), the microbiome
field recognizes the need to address and study the complexity of these interactions in
ecologically realistic scenarios in which animals can harbor thousands of microbial taxa
(11, 12). It has been suggested that these complex microbial communities could elicit
host foraging behaviors that enrich the intestinal environment in nutrients on which they
depend (i.e., promoting their own fitness) (7), while others have posited that a positive-
feedback relationship between dietary nutrients and microbial community composition
eventually results in stable microbial communities and host foraging behaviors (8). How-
ever, these potential mechanisms operate under the assumption that the gut microbiome
influences diet selection behavior—a hypothesis that has existed for years (7, 8) but has
never been tested using complex microbial communities or within an ecological or evolu-
tionary context.
The transplantation of intestinal microbiota into germ-free mice is a powerful

approach for disentangling the effects of the gut microbiome on host phenotypes from
other potentially confounding factors (e.g., host genetics) (13). This approach has been
successfully applied using a wide range of donor species (e.g., termites, zebrafish) (14),
demonstrating that germ-free mice are a tractable model system for understanding the
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function of gut microbiota in evolutionarily distant organisms.
In one notable example, Sommer et al. (15) used fecal micro-
biome transplants from brown bears into germ-free mice (two
species separated by ∼94 million years of evolution) to show that
seasonal changes in gut microbiota influence host energy metabo-
lism. In our study, we used this approach to determine whether the
gut microbiome influences diet selection behavior. We chose three
rodent species with distinct foraging strategies as microbial donors
for germ-free mice: a carnivore/insectivore (southern grasshopper

mouse, Onychomys torridus), an omnivore (white-footed mouse,
Peromyscus leucopus), and an herbivore (montane vole, Microtus
montanus). These three species are in the same taxonomic family
(Cricetidae) and are all equally distantly related to laboratory mice
(∼27Mya;Mus musculus, family Muridae) (16). Under sterile labo-
ratory conditions, we randomly divided 30 adult male germ-free
mice into carnivore-conventionalized (Carn-CONV), omnivore-
conventionalized (Omni-CONV), and herbivore-conventionalized
(Herb-CONV) treatment groups (n = 10 mice per group), where
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Fig. 1. The gut microbiome influences host diet selection behavior. (A) Overview of experimental design. Germ-free mice were colonized with the gut micro-
biome of three species of wild rodents with distinct foraging strategies: carnivorous O. torridus (Carn-CONV), omnivorous P. leucopus (Omni-CONV), and
herbivorous M. montanus (Herb-CONV). Conventionalized mice were acclimated on an LPC diet for 7 d before day 0 blood and fecal sampling. After acclima-
tion, conventionalized mice were then given a choice between LPC and HPC diets for 11 d. Daily diet intakes were tracked via two feeder hoods, which were
rotated daily to avoid learned preferences. (B) Treatment groups differed significantly in macronutrient intake (Wilks’ λ = 0.455, Cohen’s f2 = 0.41, power =
0.98, P = 0.0007), with Herb-CONV mice voluntarily consuming fewer carbohydrates than the Omni-CONV and Carn-CONV groups (F = 9.22, P = 0.001). There
was no difference in cumulative protein intake across treatment groups (F = 1.362, P = 0.275). Dashed rails and associated P:C ratios indicate the expected
result if mice consumed only a single diet. Error bars represent the SEM (SEM). (C) PCoA of 16S rRNA inventories of wild donors (squares) and conventional-
ized recipients at day 0 (circles) using Bray-Curtis dissimilarity. Microbial community structure differed significantly among wild donors (Pseudo-F = 7.41,
P = 0.001) and recipients (Pseudo-F = 3.24, P = 0.001). All groups differed significantly from blank extraction controls (gray diamonds; Pseudo-F = 4.78,
P = 0.001). (D) PCoA analysis showing a statistically significant difference in the relative abundances of microbial KEGG modules using Bray-Curtis dissimilar-
ity (Pseudo-F = 5.96, P = 0.001). (E) PLS-DA analysis illustrating broad differences in identified plasma metabolites across conventionalized mice at day 0.
* denotes P ≤ 0.05.
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each mouse in a given group was inoculated with the cecal con-
tents of a unique, wild-caught donor individual (to better reflect
natural interindividual variation) (Fig. 1A). One recipient mouse
from the Herb-CONV group was excluded from our dataset due
to aberrant behaviors that indicated possible injury during
microbiome transplants. Conventionalized mice were acclimated
to their microbiota for 7 d, during which they were offered only
sterile water and a low protein:carbohydrate (LPC)–ratio diet (SI
Appendix, Table S1). There were no differences in daily or cumu-
lative macronutrient and food intake across treatment groups
during the acclimation period (SI Appendix, Fig. S1 and Dataset
S1). After acclimation, conventionalized mice were given a
choice between the LPC diet and one with a higher protein:car-
bohydrate (HPC) ratio; SI Appendix, Table S1) for a period of
11 d (Fig. 1A). Importantly, these diets had identical energy den-
sities (caloric content per gram).
To determine whether treatment groups differed in foraging

behavior, we employed a state-space approach known as the
Geometric Framework, in which foraging decisions are ana-
lyzed within a multidimensional nutritional space where each
functionally relevant nutrient forms a single dimension (17,
18). In this study, we defined these nutritionally explicit
dimensions as protein and carbohydrate intake, thereby allow-
ing us to measure the effect of the gut microbiome on host diet
selection. Supporting the hypothesis that the gut microbiome
influences diet selection behavior, this approach revealed statis-
tically significant differences in macronutrient intake across
groups of conventionalized mice (Fig. 1B). Treatment groups
differed significantly in daily (SI Appendix, Fig. S1) and cumu-
lative carbohydrate intake (Fig. 1B) during the diet selection
trial. Specifically, Herb-CONV mice voluntarily consumed
fewer carbohydrates than Carn-CONV and Omni-CONV
mice. This trend was most apparent after ∼1 wk of diet choice
(SI Appendix, Fig. S1), suggesting that it may take time for
internal nutritional signals to stabilize (19) and for associative
learning (20) to affect host feeding behavior. In contrast, treat-
ment groups did not differ in either daily (SI Appendix, Fig.
S1) or cumulative protein intake (Fig. 1B). Lower cumulative
carbohydrate intake among Herb-CONV mice led to their
selection of a significantly higher P:C-ratio diet compared to
Omni-CONV and Carn-CONV mice (SI Appendix, Fig. S2).
Interestingly, we also observed a significant difference in total
food intake among Herb-CONV mice compared to the other
treatment groups (SI Appendix, Fig. S1), suggesting that Herb-
CONV mice’s preference for the HPC-ratio diet may have per-
mitted them to reduce total energy intake without affecting
nutritional homeostasis (i.e., protein-leveraging) (19). Under
natural scenarios, such differences in selected P:C ratios could
be accomplished by animals incorporating different levels of
insects, seeds, or foliage into their diets. The ratio of macronu-
trients an animal consumes, rather than the total amount of
any individual nutrient, has significant effects on animal physi-
ology, life history, and reproductive fitness (21–23). The prefer-
ence of Herb-CONV mice for the HPC diet is also consistent
with previous studies showing that Microtus voles prefer high-
protein foods when available (24, 25), though a follow-up
study on the foraging preferences of M. montanus with respect
to specific dietary nutrients would more robustly support the
ecological significance of our findings. More generally, these
results are also consistent with the “nitrogen limitation hypoth-
esis,” which posits that the relative scarcity of nitrogen in plant
materials may drive the opportunistic consumption of higher
protein foods among herbivores (26–28). Interestingly, the
hindgut microbiota of herbivorous mammals are also nitrogen

limited (29), so our findings offer support to the hypothesis
that microbes may alter host foraging behaviors to enrich the
intestinal environment in necessary nutrients (7).

Next, we characterized day 0 (7 d after inoculation and just
prior to diet selection trial) gut microbial community structure,
microbiome function, and plasma metabolites of conventional-
ized mice to determine how these aspects were associated with
differential diet selection across treatment groups. The 16S
ribosomal RNA (rRNA) inventories confirmed that both
donors and recipients harbored distinct bacterial communities
that differed significantly from blank extraction controls (Fig.
1C and SI Appendix, Figs. S3 and S4). We observed significant
differences in colonization efficiency across treatment groups.
Specifically, microbial communities of Carn-CONV and
Omni-CONV recipients were significantly most similar to
those of their donors, while Herb-CONV recipients were not
significantly similar to any donor group (SI Appendix, Fig. S4).
It is expected that recipient communities would not match
donors identically, as the Mus host physiology reshapes donor
communities (30); in addition, our donor communities were
collected from individuals in the wild, and thus our design does
not account for the well-documented effects of captivity on the
microbiome (31). The comparatively lower colonization effi-
ciency among Herb-CONV mice may have been driven by the
low content of indigestible plant fibers that are primarily fer-
mented by microbes. Even in established microbiomes, differ-
ences in the content or composition of dietary fiber can result
in the extirpation of some fermentive microbes (32, 33). How-
ever, Herb-CONV mice were successfully colonized by donor
microbiota in the phylum Firmicutes (classes Bacilli and Clos-
tridia), notably those in the family Lachnospiraceae, which are
strict anaerobes known for their ability to transform plant fibers
into volatile fatty acids in the mammalian digestive tract (34).
Additionally, microbiomes from herbivorous mammals colonize
germ-free mice at a lower absolute density than microbiomes from
omnivorous or carnivorous mammals (35). More work is required
to understand differential transfer of microbiomes across species,
and we discuss this limitation in more detail below.

Bacterial amplicon sequence variant (ASV) richness and
phylogenetic diversity were similar across donor groups but sig-
nificantly lower in Herb-CONV mice compared to the other
treatment groups (SI Appendix, Fig. S4). In general, the bacte-
rial communities of conventionalized mice were dominated by
the phyla Bacteroidetes and Firmicutes (SI Appendix, Fig. S4).
Importantly, all recipient fecal samples tested negative for the
presence of pathogenic microorganisms (see Methods). Metage-
nomic analysis of recipient fecal samples revealed a statistically
significant effect of donor species on the relative abundances of
183 (51%) Kyoto Encyclopedia of Genes and Genomes
(KEGG) functional modules (Fig. 1D and Dataset S2). These
differences in microbiome community structure and function
were accompanied by concomitant differences in plasma
metabolites (Fig. 1E), with 27 identified metabolites (16%) dif-
fering significantly across treatment groups (Dataset S3).
Together, these results demonstrate that interspecific differences
in gut microbial communities across rodents with divergent for-
aging strategies translate to distinct microbial functions and
metabolite profiles independent of host diet.

There is substantial evidence that the availability of circulating
EAAs provides peripheral signals that act to regulate macronutri-
ent intake and diet selection (4, 6). Despite consuming identical
diets prior to the selection trial, treatment groups differed in cir-
culating levels of several amino acids, with Herb-CONV mice
exhibiting significantly higher amounts of the EAAs lysine,
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isoleucine, methionine, phenylalanine, and tryptophan (Fig. 2A).
While EAAs are primarily derived from the diet, bacteria can also
produce these peptides through their own metabolic processes
(36), and thus the gut microbiome may act as a source of EAAs
for their hosts. In support of this hypothesis, treatment groups
exhibited broad differences in the microbial synthesis and degra-
dation of EAAs (Fig. 2B). Notably, the microbiome of Herb-
CONV mice had a higher abundance of genes involved in the
synthesis of aromatic amino acids (phenylalanine, tryptophan,
and tyrosine) (Fig. 2B), all of which are synthesized from choris-
mate (product of the Shikimate pathway) (37). The ratios of bac-
terial genes involved in tryptophan biosynthesis (M00023) to
those involved in tryptophan degradation via the kynurenine
pathway (M00038) were significantly correlated with plasma
tryptophan (Fig. 2C). Given that conventionalized mice con-
sumed identical diets prior to blood collections, these results
demonstrate that bacterial metabolism can alter the availability of
circulating levels of plasma EAAs, consistent with recent studies
conducted in Drosophila (38).
There is emerging evidence that bacterial tryptophan metab-

olism is a key mechanism by which the gut microbiome can
influence host behavior (39, 40). This relationship is a conse-
quence of tryptophan’s role as the primary regulatory molecule
for the synthesis of central serotonin (5-hydroxytryptamine
[5-HT]) (41), which has been shown to drive foraging behavior
and diet selection in several experimental studies (42, 43).
For example, when given a choice between low- or high-
carbohydrate meals, rats receiving hypothalamic injections of

5-HT significantly reduced their carbohydrate intake (44).
Importantly, serotonin synthesis is extraordinarily sensitive to
plasma tryptophan availability, and thus plasma tryptophan is
generally considered a reliable proxy for central serotonin (45).
Therefore, we predicted that plasma tryptophan would be asso-
ciated with differences in diet selection among conventionalized
mice. Indeed, we found a statistically significant correlation
between day 0 plasma tryptophan and subsequent voluntary
carbohydrate intake (Fig. 2C ). More recent work has argued
that serotonin synthesis is affected by the availability of trypto-
phan relative to the large neutral amino acids (LNAAs; Leu, Ile,
Phe, Tyr, and Val) that compete for transport across the
blood–brain barrier (46). Consistent with these studies, we
found a statistically significant correlation between day 0
Trp:LNAA ratios and cumulative carbohydrate intake (Fig.
2C ). Further, the ratios of tryptophan biosynthesis and degra-
dation KEGG modules were also statistically significant predic-
tors of carbohydrate and P:C intake (Fig. 2C ). Overall, these
results support the hypothesis that bacterial tryptophan metab-
olism influences host diet selection behavior.

Interspecific differences in foraging behavior are generally
associated with diet-specific adaptations to intestinal physiology.
For example, herbivores generally maintain an enlarged cecum
(fermentation chamber) that enhances the digestibility of low-
quality, carbohydrate-rich foods (47). Given that the gut micro-
biome can profoundly alter host intestinal gene expression and
physiology (48–50), divergent microbial communities may drive
differences in intestinal morphology across feeding strategies. At
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Fig. 2. Day 0 plasma tryptophan availability and bacterial tryptophan metabolism are associated with differential macronutrient intake across treatment groups.
(A) Heatmap illustrating broad differences in plasma levels of EAAs across treatment groups, with Herb-CONV mice exhibiting significantly greater levels of lysine
(χ2 = 6.13, P = 0.047), isoleucine (χ2 = 11.42, P = 0.003), methionine (χ2 = 6.13, P = 0.047), phenylalanine (χ2 = 6.13, P = 0.047), and tryptophan (χ2 = 9.10, P =
0.011) compared with Carn-CONV and Omni-CONV mice. Columns represent individual conventionalized mice for each treatment group. * denotes P ≤ 0.05, and
color indicates the treatment group with greatest circulating plasma levels (red = Carn-CONV, blue = Omni-CONV, and yellow = Herb-CONV). (B) Heatmap illustrat-
ing broad differences in the abundances of microbial genes associated with metabolism of EAAs (Dataset S2). * denotes P ≤ 0.05, and color indicates the treatment
group with greatest relative abundance. (C) Correlation plot summarizing relationships between plasma tryptophan availability (Plasma Trp, Plasma Trp:Large
Neutral Amino Acids), bacterial tryptophan metabolism (Trp Synthesis, Trp Degradation, Trp Synthesis:Degradation), and host diet selection (Carbohydrate Intake,
Protein Intake, P:C Intake) among conventionalized mice. The direction and color of the ellipses indicate whether correlations were positive or negative, and aster-
isks indicate whether Spearman’s correlations were statistically significant (* denotes P ≤ 0.05, ** denotes P < 0.01, and *** denotes P < 0.001).
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the conclusion of the diet selection trial (day 11), we quantified
intestinal morphology with the prediction that conventionalized
mice would exhibit differences that broadly reflected that of their
donor species. While there was no change in body mass over the
duration of the experiment (F = 1.01, P = 0.377), treatment
groups differed significantly in empty colon mass (Fig. 3B), with
Herb-CONV mice exhibiting comparatively larger colons than
those in other treatment groups. There were no significant differ-
ences in cecum mass (Fig. 3A) or colon length (Fig. 3C). In gen-
eral, the comparatively larger colons observed in Herb-CONV
mice are consistent with evolutionary adaptations observed in
herbivorous animals, which generally maintain larger hindguts to
promote digestion (47). The gut is a highly dynamic organ that
can rapidly change in mass and length in response to environ-
mental conditions, often through altered rates of cellular prolifer-
ation in intestinal crypts and cell loss through sloughing or
apoptosis at the ends of intestinal villi, but also through the
change in the size of individual enterocytes (51). In the future,
histological analyses could be conducted to investigate whether
these changes in gut size are driven by hyperplasia (increase in
cell number) and/or hypertrophy (increase in cell size) and to rule
out the possibility for these differences to be driven by intestinal
inflammation.
While the observed differences in gut size are consistent with

adaptations observed in herbivores, our study only tested the
microbiome of a single species from each feeding strategy. A
more robust test of whether the microbiome recapitulates the dif-
ferences in gut size observed across feeding strategies would
require several donor species from each dietary strategy. Another
question is whether the gut microbiome affected intestinal mor-
phology directly or via differential diet selection. While our
experimental design makes it difficult to disentangle the effects of
differential diet selection from those of microbiome, it is worth
noting that previous work has demonstrated that laboratory mice
fed LPC-ratio diets had larger intestinal compartments (e.g.,
colon) compared to those fed higher P:C diets (50). In our study,
we observed the opposite—Herb-CONV mice, which consumed
a HPC-ratio diet (Fig. 1B), exhibited larger colon masses (Fig. 3).
These results contradict the generally accepted model of adaptive
physiological responses to dietary carbohydrates, suggesting that
the gut microbiome may drive interspecific differences in host
intestinal physiology to some extent, independent from the effects
of diet and genetics.

Here, we present evidence for an effect of the gut micro-
biome on host diet selection behavior; however, it is important
to recognize that our approach has several substantial limita-
tions. For example, the relative differences in nutrient composi-
tion between diets have been shown to greatly influence
animals’ ability to distinguish and differentially feed (19), sug-
gesting that our differential diet selection results may have been
more pronounced if we had used diets with greater differences
in macronutrient content. Further, previous work has shown
that the evolutionary distance between donor species and germ-
free mice can affect the efficacy of microbiome transplants (14).
While our selected donor species were similarly distant to
M. musculus, there were significant differences in colonization
success across donor species, suggesting that cecal microbiota
may be specifically adapted to their hosts. While differences in
colonization efficiency may limit our ability to robustly connect
our study to the ecology of donor species, this limitation should
not diminish our major finding that conventionalized germ-free
mice harboring compositionally and functionally distinct
microbiotas differing in microbial diversity exhibited different
feeding preferences. Overall, our approach is stronger than
comparing conventional mice with the highly artificial state of
germ-free mice, and the complex microbial communities that
we used better reflect reality, which is recognized as a pressing
need in the field of host–microbe interactions (11, 12).

In this study, we found that conventionalized germ-free mice
harboring distinct gut microbiota exhibited significant differences
in diet selection behavior, providing support for our core hypoth-
esis that microbiota can influence foraging decisions. Specifically,
our study provides evidence that variation in the gut microbiota
alters host nutrient availability and can yield significant differ-
ences in the diet selection of conventionalized mice in just 11 d,
likely through differential bacterial metabolism and downstream
availability of EAAs, especially tryptophan. These findings are
largely consistent with recent mechanistic work in model systems
(9, 38) but address the natural variation in microbial communi-
ties that exist among individuals and across species (11, 12).
Therefore, this study not only represents a contribution to a large
body of work showing that the gut microbiome is a key player in
host physiology and performance (52) but also more broadly sup-
ports the hypothesis that the gut microbiota can influence ecolog-
ical and evolutionary processes shaping animal behavior. Foraging
strategies and feeding behaviors can influence many aspects of an

Fig. 3. Treatment groups exhibit differences in intestinal morphology. (A) Empty cecum mass did not differ significantly across treatment groups (F = 2.18,
P = 0.133). (B) Empty colon mass differed significantly across treatment groups (F = 6.91, P = 0.004), with Herb-CONV mice exhibiting a greater colon mass
than Carn-CONV mice (FDR-adj. P = 0.003). (C ) Colon length did not differ significantly across treatment groups (F = 2.03, P = 0.151). ** denotes P ≤ 0.01.
FDR-adj, false discovery rate–adjusted.
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animal’s ecology [e.g., the need to obtain specific nutrients while
also avoiding predators (53)], and animal feeding can also shape
the structures of entire plant and animal communities (54).
Thus, there may be an underexplored role for gut microbes in
influencing far-reaching aspects of animal and ecosystem ecology
through influencing the feeding behavior of their hosts.

Materials and Methods

Donor Collections. Wild O. torridus were collected in August 2018 from field
sites in Green Valley, Pima County, AZ (31.802834, -110.891172), P. leucopus in
May 2018 near Murray, Calloway County, KY (36.686582, -88.221204), and
M. montanus in July 2018 at Timpie Springs Waterfowl Management Area, Dug-
way, Tooele County, UT (40.753708, -112.639903). Ten individuals from each spe-
cies were collected using baited Sherman live traps under the following state
permits: O. torridus (Arizona Game and Fish Department, SP627958), P. leucopus
(Kentucky Department of Fish and Wildlife, SC1911097), and M. montanus (Utah
Division of Wildlife Resources, 1COLL5194-2). Animals were euthanized within
12 h and immediately dissected under Institutional Animal Care and Use Commit-
tee (IACUC) protocols registered at The University of Utah (16-02011 to D. Dearing),
Murray State University (2018-026 to T. Derting), and The University of Alabama
(18-04-1159 to S. Secor). Cecum contents for microbiome transplants were trans-
ferred to 1.7-mL Eppendorf tubes using sterile instruments and temporarily frozen
at�20 °C in the field before long-term laboratory storage at�80 °C.

Microbiome Transplants. Donor cecum contents were diluted at 100 mg/mL
in sterile phosphate-buffered saline containing 0.2 g/L Na2S and 0.5 g/L cysteine
as reducing agents (55, 56). Under sterile laboratory conditions, 30 adult (aged
6 to 8 wk) male germ-free C57BL/6 mice (Taconic Biosciences, Inc.) were ran-
domly divided into Carn-CONV, Omni-CONV, and Herb-CONV groups
(n = 10 mice per group), where each mouse in a given group was colonized by
oral gavage of 200 μL of fecal slurry from a unique, wild-caught donor individ-
ual. Conventionalized mice were then singly housed in sterile static cages (Inno-
vive, Inc., MSX2-AD) modified by the addition of two feeder hoods (Laboratory
Products, Inc., 2110S) that prevent mice from caching powdered diets, thus
enabling the tracking of daily macronutrient intake (see below). Due to a lack of
similar studies on this topic, we were unable to conduct an a priori power analy-
sis to justify the number of donor/recipient mice per group. Instead, we decided
on n = 10 per group based on the number of animals typically used in studies
involving germ-free mice, the vast majority of which used 5 to 10 individuals
per group (13). One recipient mouse from the Herb-CONV group (V57) was
excluded from our dataset due to aberrant behaviors that indicated possible
injury during microbiome transplants. All recipient fecal samples were screened
for 21 of the most common rodent pathogenic microorganisms using PCR tests
conducted by a third-party diagnostic company (Charles River Research Animal
Diagnostic Services, Wilmington, MA).

Diet Selection Experiment. After colonization, conventionalized mice were
acclimated for 7 d [to allow the gut microbiome to stabilize (55)], during which
they were offered only sterile water and an LPC-ratio diet (0.27; SI Appendix,
Table S1), as this diet is rather similar to standard mouse chow. After acclimation
(day 0), mice were briefly removed from their cages for a 200-μL blood draw for
metabolomics analysis (see details below). Mice were weighed (rounded to near-
est hundredth) and returned to empty cages to facilitate the collection of fresh
fecal samples for 16S rRNA microbial inventories and shotgun metagenomics
(see details below). Conventionalized mice were then presented with a choice
between two isocaloric diets (SI Appendix, Table S1): 1) the LPC (0.27) diet
offered during acclimation and 2) a diet with an HPC ratio (HPC [0.71]). The posi-
tions of these two diets were rotated daily to avoid learned preferences. Diets
were designed by Teklad/Envigo and were powdered prior to sterilization to be
visually indistinguishable from each other and to prevent food caching. Daily
food consumption was calculated as the difference between the mass (rounded
to nearest thousandth) of each diet presented (∼8 g) and the mass of each diet
remaining after a 24-h period. After diet preferences were tracked for 11 consec-
utive days, animals were euthanized and dissected to investigate differences in
the empty masses (rounded to nearest thousandth) of intestinal compartments.
Conventionalized mice were maintained on a 12:12-h light:dark cycle, with

21 °C ambient temperature and 40% humidity for the duration of the experi-
ment. Animal experiments were conducted at the University of Pittsburgh Plum
Borough Primate Facility under IACUC protocol 19074445.

Metabolomics. Blood plasma was analyzed for primary metabolites (amino
acids, hydroxyl acids, carbohydrates, sugar acids, sterols, aromatics, nucleosides,
amines, and miscellaneous compounds) by the West Coast Metabolomics Center
at the University of California, Davis, which performed all sample preparation,
data acquisition, and data processing as previously described (57). Briefly,
metabolites were extracted using a mixture of acetonitrile:isopropanol:water
(3:3:2, vol/vol/v) as well as 1:1 acetonitrile:water for removal of protein from
serum. Dried metabolite extracts were resuspended in methoxyamine hydrochlo-
ride in pyridine for derivatization before being analyzed using gas chromatogra-
phy–time-of-flight (GC-TOF) using a LECO Pegasus IV mass spectrometer
equipped with automated liner exchange (ALEX; Gerstel Corporation) and cold
injection system (CIS; Gerstel Corporation) for data acquisition. The CIS tempera-
ture was set at 50 °C to 250 °C final temperature at a rate of 12 °C s�1. Raw
GC-TOF mass spectrometry data were preprocessed with ChromaTOF (version
2.32), and apex masses were used to identify metabolites using the BinBase
database. Values were reported as peak height for the quantification ion
(m/z value) at the specific retention index, which is more precise than peak area
for low abundant metabolites. All database entries that were positively detected
in more than 10% of the samples of a study design class for unidentified metab-
olites were reported. Raw peak heights were vector normalized to reduce the
impact of between-series drifts of instrument sensitivity caused by machine
maintenance status and tuning parameters.

DNA Extractions. DNA was extracted from donor cecal contents and day 0 con-
ventionalized mouse feces using the Qiagen PowerFecal DNA Kit (Qiagen,
12830) following the manufacturer’s instructions.

16S rRNA Microbial Inventories. Extracted DNA from conventionalized mice
and donor cecum contents was amplified and sequenced by the Genome
Research Core of the University of Illinois at Chicago as previously described
(58). Briefly, PCR was used to amplify a portion of the bacterial 16S rRNA gene
for Illumina sequencing using the Earth Microbiome Project primers 515F
(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) targeting
the V4 region of microbial small subunit ribosomal RNA gene (59). Amplicon
libraries were sequenced using a 2 × 251 paired-end run on an Illumina MiSeq.
In addition to donor and recipient fecal samples, we sequenced five “blank”
extractions to control for the possibility of microbial contamination during the
extraction procedure and microbial DNA present in commercial extraction kits
(60). A total of 1,398,994 raw Illumina sequencing reads (mean of 22,206 per
sample (n = 63) ± 1,111 SE) were paired and quality filtered via the DADA2
pipeline (61) in QIIME2 (version 2020.4) (62) using default parameters. Sequen-
ces that passed the quality filter were clustered into ASVs, which were identified
using the SILVA reference database (release 138) (63). Identified ASVs were fil-
tered to exclude nonbacterial sequences (archaea, chloroplast, eukaryote, and mito-
chondria), reducing our total number of reads to 1,396,450 (mean of 22,166 per
sample ± 1,112 SE) and 4,359 ASVs. We detected a total of 4,118 ASVs in donor
and recipient fecal samples, 19 (0.46%) of which were also detected in blank
extractions (total of 260 ASVs from 27,807 reads with mean of 5,561 per sample
± 1,419 SE). As recommended by McMurdie and Holmes (64) in 2014, we used
unrarefied ASV tables for comparisons of colonization efficiency (Bray-Curtis distan-
ces), alpha diversity (ASV richness and Faith’s phylogenetic diversity), and beta
diversity [Bray-Curtis and unweighted/weighted UniFrac distances (65)].

Shotgun Metagenomics. Extracted DNA from conventionalized mice was sent
to CoreBiome, Inc. (St. Paul, MN) for shotgun metagenomic analysis using Boos-
terShot. Briefly, sequencing libraries were prepared using a procedure adapted
from the Illumina Nextera Library Prep Kit (Illumina, 20018705) and sequenced
on an Illumina NovaSeq using single-end 1 × 100 reads with the Illumina Nova-
Seq SP reagent kit (Illumina, 20027464). A total of 122,190,150 raw sequence
reads [mean of 4,213,453 per sample (n = 29) ± 151,158 SE] were filtered for
low-quality (Q-Score <30) and length (<50), trimmed of adapter sequences,
and converted into a single fasta using SHI7 (version 0.99) (66). Sequences
were then trimmed to a maximum length of 100 bp and aligned using BURST
(version 0.99.8) (67) at 97% identity against CoreBiome’s Venti database
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consisting of all RefSeq bacterial genomes with additional manually curated
strains as well as a bacterial KEGG (68) annotated database created from derepli-
cating the bacterial genes within the Venti database. KEGG orthology counts
were converted to relative abundance within a sample and collapsed into KEGG
modules for statistical analysis.

Statistics. Differences in macronutrient and total diet intake across treatment
groups were tested using a multivariate analysis of variance (MANOVA) while
controlling for the effects of body mass. A post hoc power analysis for MANOVA
was conducted using G*Power (69) (version 3.1) to confirm that statistical power
was sufficiently greater than the widely accepted minimum threshold of 0.80
(70). Microbial community structure (from 16S rRNA inventories) was visualized
using principal coordinates analysis (PCoA) on ASV relative abundances, which
were then assessed for differences (controlling for multiple comparisons using
false discovery rate–corrected P values) across treatment groups using nonpara-
metric permutational multivariate analysis of variance (PERMANOVA), analysis of
similarity, and permutational analysis of dispersion in QIIME2 (62). Microbiome
function was visualized using PCoA on KEGG module relative abundances and
analyzed for differences across treatment groups with PERMANOVA in QIIME2.
Differences in the relative abundance of functional KEGG modules across
conventionalized mice were tested using the nonparametric Kruskal-Wallis test
and linear discriminant analysis in LEfSe using the “one-against-all” strategy for
multiclass analysis (71). Identified plasma metabolites were filtered (based on
mean intensity and interquartile range) and auto-scaled before nonparametric

median tests were used to identify metabolites that varied significantly across
treatment groups and visualized using supervised partial least square discrimi-
nant analysis (PLS-DA) in MetaboAnalyst (version 4.0) (72). Nonparametric Spear-
man rank correlations between plasma Trp availability, Trp KEGG modules, and
macronutrient intake were conducted using nonparametric Spearman’s test (con-
trolling for the effect of donor species) in the R package ppcor (version 1.1) (73)
and visualized using corrplot (version 0.85) (74). Differences in empty cecum
mass, empty colon mass, and colon length across treatment groups were tested
using ANOVA with body mass as a covariate and were corrected for multiple com-
parisons using Tukey’s post-hoc test. Unless otherwise noted, all statistical tests
were two-sided and were conducted in JMP Pro version 14.1.0 (SAS Institute
Inc.). For all statistical analyses, P values ≤ 0.05 were defined as significant.

Data Availability. Sequencing data have been deposited in the National
Center for Biotechnology Information Sequence Read Archive Database and are
publically available at BioProject (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA629007/) (75).
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