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Summary

The panzootic caused by A/goose/Guangdong/1/96-lineage highly pathogenic avian

influenza (HPAI) A(H5) viruses has occurred in multiple waves since 1996. From 2013

onwards, clade 2.3.4.4 viruses of subtypes A(H5N2), A(H5N6), and A(H5N8) emerged to

cause panzootic waves of unprecedented magnitude among avian species accompanied

by severe losses to the poultry industry around the world. Clade 2.3.4.4 A(H5) viruses

have expanded in distinct geographical and evolutionary pathways likely via long distance

migratory bird dispersal onto several continents and by poultry trade among neighboring

countries. Coupled with regional circulation, the viruses have evolved further by

reassorting with local viruses. As of February 2019, there have been 23 cases of humans

infected with clade 2.3.4.4 H5N6 viruses, 16 (70%) of which had fatal outcomes. To date,

no HPAI A(H5) virus has caused sustainable human-to-human transmission. However,
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due to the lack of population immunity in humans and ongoing evolution of the virus,

there is a continuing risk that clade 2.3.4.4 A(H5) viruses could cause an influenza pan-

demic if the ability to transmit efficiently among humans was gained. Therefore, multi-

sectoral collaborations among the animal, environmental, and public health sectors are

essential to conduct risk assessments and develop countermeasures to prevent disease

and to control spread. In this article, we describe an assessment of the likelihood of clade

2.3.4.4 A(H5) viruses gaining human-to-human transmissibility and impact on human

health should such human-to-human transmission occur. This structured analysis

assessed properties of the virus, attributes of the human population, and ecology and

epidemiology of these viruses in animal hosts.
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avian influenza, zoonosis, zoonotic influenza

1 | INTRODUCTION

Influenza A viruses infect a wide spectrum of animal species preclud-

ing global eradication. Genetically diverse viruses circulate among wild

aquatic birds, which are considered to be their natural reservoir and

experience no or only mild signs of disease when infected. In birds,

the viruses typically replicate in the intestinal and respiratory tracts

and are shed in the environment where other hosts become infected.

Viruses from the aquatic wild bird reservoir may infect other avian

species including terrestrial poultry, such as chickens and quail, and

domesticated waterfowl, such as ducks and geese. Following circula-

tion in these densely populated host species, avian influenza viruses

may then transmit to mammalian hosts, including humans, pigs,

horses, dogs, and marine mammals.1

Globalization and industrialization over the past decades have con-

tributed to the emergence of novel influenza viruses that threaten animal

and human health. Once they emerge and become transmissible between

humans, influenza viruses can rapidly spread worldwide. Current vaccines

which take 6 months to distribute from strain selection in the current

influenza manufacturing cycle are unlikely to be available to contain the

first wave of human infections of a pandemic. Therefore, it is strategically

important to risk-assess and prioritize animal influenza viruses with pan-

demic potential to initiate possible responses, including preparatory devel-

opment of vaccines, and antiviral drug efficacy testing. The World Health

Organization (WHO) Global Influenza Programme (GIP) developed a Tool

for Influenza Pandemic Risk Assessment (TIPRA)2 based on the Influenza

Risk Assessment Tool (IRAT)3 developed by the WHO Collaborating Cen-

tre at the United States Centers for Disease Control and Prevention

(CDC) and in consultation with experts in the WHO Global Influenza Sur-

veillance and Response System (GISRS) and other institutions and acade-

mia. Since TIPRA was launched in 2016, it has provided a framework for

influenza A virus risk assessment through a standardized approach for

evaluating the likelihood of pandemic emergence and associated impact

of a novel virus. In this risk assessment process, the WHO, the World

Organization for Animal Health (OIE), and the Food and Agriculture Orga-

nization (FAO) tripartite collaboration brings together multiple

stakeholders worldwide, including public and animal health practitioners

and influenza researchers from different sectors within the “One Health”

concept, and strengthens interdisciplinary global collaboration.4

Because the emergence of the highly pathogenic avian influenza

(HPAI) A(H5) viruses of the A/goose/Guangdong/1/96 (gs/GD) hemag-

glutinin (HA) lineage, there have been 883 officially reported human

infections by viruses of this lineage: 860 by A(H5N1) and 23 by A(H5N6)

viruses.5 The dominant HA clades of H5 viruses vary temporally and spa-

tially, with some achieving a wide geographical spread. Infections among

humans and other mammals,6–8 however, have been restricted to the ini-

tial index cases or a small number of close contacts. Because HPAI A(H5)

viruses bearing an HA of clade 2.3.4 were identified in China in 2008,

they have evolved into further subgroups including clade 2.3.4.49 and

have acquired various neuraminidase subtypes, including N1, N2, N5,

N6, and N8, by reassortment with other avian influenza viruses enzootic

in different regions. In addition, the geographic spread of clade 2.3.4.4

A(H5) viruses has been unprecedented, resulting in regional epizootics in

poultry, increasing the opportunities for avian-to-human transmission.

Although human-to-human transmission of clade 2.3.4.4 A(H5) viruses

has not been observed to date, the pandemic potential of these viruses

remains unpredictable. Given the lack of population immunity to A(H5)

subtype viruses, the ongoing evolution of clade 2.3.4.4 A(H5) viruses,

and sporadic human infections, the pandemic potential of these viruses

cannot be ignored. In this review, we focus on the three clade 2.3.4.4

subtypes, A(H5N2), A(H5N6), and A(H5N8), that have the greatest fre-

quency of global detections, and describe their biological features and

the use of TIPRA in risk asessment.2

2 | GLOBAL SPREAD OF HPAI CLADE
2.3.4.4 A(H5) VIRUSES

The clade 2.3.4.4 A(H5N8) viruses were first reported in migratory

ducks and curlews in Shanghai, China in 2013 by retrospective

surveillance,10 followed by outbreaks in the Republic of Korea

(ROK) in January of 2014.11–14 During the outbreaks in ROK, two
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distinct genetic groups were identified: a group represented by

A/broiler duck/Korea/Buan2/2014 and the WHO candidate vaccin

e virus (CVV) recommended by WHO,15 A/gyrfalcon/Washington

/41088-6/2014 (referred to as “group A” by Lee et al16), and another

group represented by A/breeder duck/Korea/Gochang1/201414 and the

CVV, A/Fujian-Sanyuan/21099/2017 (referred to as “group B” by Lee

et al16) (Figure 1a). A group of viruses represented by A/gyrfalcon/-

Washington/41088-6/2014 (hereby A/gyrfalcon/Washington

/41088-6/2014 group) likely spread eastwards, to North America via

Beringia by long-distance migratory birds17–22 (Figure 1b). In November

2014, these viruses reassorted with avian influenza viruses from North

American wild birds generating an A(H5N2) virus that was the cause of

an outbreak in poultry farms in British Columbia.23 From March through

mid-June of 2015, HPAI A(H5N2) viruses caused widespread outbreaks

in commercial poultry flocks mainly in the Pacific, Western, and North

Central regions of the United States.24 The spread of the virus in the Un

ited States was accompanied by multiple reassortment events between

HPAI A(H5) viruses and low pathogenicity avian influenza (LPAI) viruses

from wild and domestic birds.25 The United States Department of Agri-

culture (USDA) documented that during the outbreaks 50.4 million birds

died or were culled in the 15 affected states.17,20,26–28 After the initial

wave of outbreaks in North America, detections of the HPAI A(H5) virus

declined; it has not been detected in poultry since June 16, 2015 or in

wild birds since December 16, 2016 in North America25,29,30 (Supplemen

tary Table 1). In parallel with the spread of clade 2.3.4.4 A(H5N8) viruses

to North America, related A/gyrfalcon/Washington/41088-6/2014--

group viruses had also moved into Europe and were widespread by the

end of 2014.31–35 Nevertheless, it is noteworthy that sporadic outbreaks

of A/gyrfalcon/Washington/41088-6/2014-group A(H5N2) and

A(H5N8) viruses continue to be detected among poultry with the latest

outbreak caused by A(H5N2) viruses in a chicken farm in April 2019.36

Although the A/gyrfalcon/Washington/41088-6/2014-group

viruses were disseminated from Asia to other continents, a group of

viruses represented by A/Fujian-Sanyuan/21099/2017 (hereby

A/Fujian-Sanyuan/21099/2017 group) did not initially appear to

spread outside Asia.37 However, this changed in mid-2016 when

these A(H5N8) viruses were detected in wild birds at Tyva Republic

near Uvs-Nuur Lake in Russian Federation38–40 and Qinghai Lake in

China.41 This group subsequently spread, presumably by wild birds, to

many other countries19,22,42 in Africa,43–45 Asia,46–50 Europe,51–57

and the Middle East58–62 (Figure 1b). As was seen with the earlier

spread of A(H5N8) viruses in North America, multiple reassortment

events with local wild bird viruses occurred generating additional

NA subtypes.63,64 According to the OIE, between mid-2016 and

October 2018, 51 countries in Africa, Asia, and Europe reported

clade 2.3.4.4 A(H5N8) viruses in either poultry or wild birds.65

From 2017-2018, A(H5N6) viruses with HA gene of the A/Fujian-

Sanyuan/21099/2017 group were isolated from birds in the

Netherlands,66 the United Kingdom,67 Germany, Greece, Republic

of Georgia, and Denmark and Eastern Asian countries48,68,69

(Supplementary Table 1).

In contrast to the A/gyrfalcon/Washington/41088-6/2014-group

and A/Fujian-Sanyuan/21099/2017-group viruses, which were

characterized by global spread, other genetic groups of clade 2.3.4.4

A(H5) viruses have to date remained more limited in geographic range.

One group represented by the WHO CVVs, A/Hubei/29578/2016,

A/chicken/Vietnam/NCVD-15A59/2015, and A/duck/Hyogo/1/2016

(referred to as “group C” by Lee et al16 and hereby

A/Hubei/29578/2016 group), is comprised mainly A(H5N6) viruses

that have been maintained among avian species since 2013 in

China,70,71 Japan,72–74 Lao People's Democratic Republic,75 ROK,76

and Vietnam77 (Figure 1a and b). The viral ancestors to several groups

of clade 2.3.4.4 A(H5) viruses described herein are represented by the

WHO CVV, A/Sichuan/26221/2014 (referred to as “group D” by Lee

et al16 and hereby A/Sichuan/26221/2014 group). This group of pri-

marily A(H5N6) viruses were identified in China as early as 2010,78–81

but have not been detected since 2015.

3 | INFECTIONS IN MAMMALS AND IN
ANIMAL MODELS

Clade 2.3.4.4 A(H5N2), A(H5N6), and A(H5N8) with genetic groups

have been identified from both poultry and wild birds.82,83 Detections

of A(H5N6) viruses in cats and pigs have been reported6–8; at least

two of these had epidemiological links with infected poultry or an

infected human.6,7 In one instance, an A(H5N6) virus was detected

from a dead cat found in proximity to the residence of a patient

infected with an A/Sichuan/26221/2014-group A(H5N6) virus in

Sichuan province, China.6 An A(H5N6) virus was also isolated from a

nasal swab taken from a pig in Guangdong province, China, in 2014

and was found to be closely related to A(H5N6) viruses isolated from

ducks in the area at the same time.7 In addition, an A(H5N6) virus iso-

lated from a cat carcass in Zhejiang province, China, in 2016 was

found to share three gene segments, HA, NA, and PA, with

A/Hubei/29578/2016-group A(H5N6) viruses co-circulating in east-

ern and southern China in 2013-2016; the other five genes were

closely related to A(H9N2) and A(H7N9) viruses.8 In contrast to the

A(H5N6) viruses, natural infections of mammalian species by clade

2.3.4.4 A(H5N2) and A(H5N8) viruses have not yet been detected.

Several studies have documented the enhanced virulence of

some clade 2.3.4.4 A(H5) viruses in experimentally infected

mammals.84–87 An A(H5N6) virus isolated from a patient who had

underlying medical conditions and recovered from severe pneumonia,

A/Guangzhou/39715/2014, with the E627K substitution in the PB2

protein, produced severe pneumonia in ferrets inoculated intra-

tracheally with 106 TCID50 of the virus.86 However, in several reports,

clade 2.3.4.4 A(H5) viruses showed mild disease with no mortality in

experimentally inoculated ferrets.88–91 Two studies showed that the

pathogenicity of clade 2.3.4.4 A(H5N8) viruses in ferrets were milder

than control HPAI A(H5N1) viruses.91,92 Although the ferret model

has an advantage of displaying similar clinical manifestation of influ-

enza virus infection to those of humans, there are limited experimen-

tal data available due to disadvantages such as high cost and laborious

handling. Although susceptibility to influenza virus infection of mice

varies with their genetic background and its clinical manifestations are
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dissimilar to those of typical influenza virus infection of humans, mice

are an established model to assess the pathogenicity of influenza

virus. An A(H5N8) A/Fujian-Sanyuan/21099/2017-group virus cau-

sed 100% mortality in mice when intra-nasally inoculated at a dose of

106.0 EID50, despite the lack of the well characterized mammalian

pathogenicity markers PB2 627K and 701N.87 Although some clade

2.3.4.4 A(H5) viruses can cause severe disease in experimentally

infected mammals, several studies showed considerable variation in

F IGURE 1 (a) Geographical regions in the world that
confirmed to have isolated clade 2.3.4.4 A(H5) viruses
from animals; mammals and avian species. Geographical
regions colored in brown, Africa; green, Asia; pink,
Europe; orange, Middle East; and blue, North and South
America. (b) Phylogenetic relationships of HA genes of
A(H5) highly pathogenic avian influenza viruses. Of 3685
HPAI A(H5) viruses isolated from animals including
mammals and avian species available in Global Initiative

on Sharing All Influenza Data (GISAID) and GenBank
between 2013 and 2018, arbitrarily chosen 1134 strains
were analyzed. The open reading frame of HA genes
A(H5) virus was used for phylogenetic analysis. Multiple
sequence alignment of A(H5) viruses was performed
together with alignment of genetic sequence data (GSD)
downloaded from GISAID using BioEdit 7.2. A maximum-
likelihood tree using the 1134 A(H5) HA genes and
242 representative A(H5) HA genes135 rooted to
A/goose/Guangdong/1/96 was constructed for MEGA
7 with 1000 replicate
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pathogenicity.93–95 One A/Hubei/29578/2016-group A(H5N6) virus

showed enhanced virulence in mice with a mortality rate of 80%,

whereas mice infected with three other viruses of the same subtype

and group survived the 14-day observation period.94 Similarly, Zhao

et al. showed that three A(H5N6) viruses exhibited different pathoge-

nicity in mice following intra-nasal inoculation with 106 EID50 of virus;

two viruses caused 60% mortality, whereas the other was not lethal.95

Dogs intra-nasally inoculated with 106 EID50 of an A(H5N6) virus

shed virus for 7 days with no mortality, similar to what was observed

with a control HPAI A(H5N1) virus.96 However, the extent to which

common laboratory mammalian models can predict the pathogenicity

of influenza viruses in humans or even the replication in human cells

remains unclear. For example, Grund et al. demonstrated that a

A/Fujian-Sanyuan/21099/2017-group A(H5N8) virus was highly

pathogenic for mice without prior adaptation; however, the same

virus replicated poorly in human lung explants.97

4 | HUMAN INFECTIONS WITH CLADE
2.3.4.4 A(H5N6) VIRUS

The first human infection caused by a clade 2.3.4.4 A(H5N6) virus

was reported by China in April 2014.98–102 As of February 2019, a

total of 23 human infections with A(H5N6) viruses were reported

to WHO, 16 (70%) of which had fatal outcomes. Eighteen of the

total human infections (78%) were reported in 2014-2016, one in

2017, and four in 2018. Most infections occurred in the southern

China provinces. According to the self-reported exposure history of

people infected with HPAI A(H5N6) virus, 19 of 23 had exposure to

poultry, which therefore suggested that contact with poultry or

contaminated poultry market environments was the source of

infection.100,103–108 The hospitalized patients initially showed

influenza-like symptoms including fever, sore throat, headache,

chills, cough, and myalgia, then developed into shortness of breath

due to severe pneumonia and progressed to acute respiratory dis-

tress syndrome (ARDS) and multiple organ failure (MOF) in the

deceased patients.99–101,103–110 Bi et al. indicated that A(H5N6)

patients were observed to have significantly higher levels of 11 cyto-

kines and 5 chemokines among the 48 markers tested, compared to

individuals with A(H7N9) or A(H1N1)pdm09 infections.103 No

human infections with A(H5N2) or A(H5N8) viruses have been

reported to date.

Although virologic surveillance is typically not designed to detect

cases that are not severe such as influenza-like illness, serologic stud-

ies can estimate the frequencies of less severe and mild infections.

Two studies have looked for evidence of seroconversion to clade

2.3.4.4 A(H5) viruses in poultry farmers.111,112 In a study involving

523 farmers exposed to poultry during the 2016-2017 ROK A(H5N6)

outbreaks, no evidence for infection was found when using a micro-

neutralization assay to detect seropositivity.111 In another study,

61 of 760 sera from poultry farmers in the Russian Federation had

hemagglutination inhibition titers greater than 20 against an A(H5N8)

virus.112 In terms of preexisiting antibodies to A(H5) viruses in the

general population, Freidl et al. were unable to detect reactivity

against A(H5N1) antigens both before and after the A(H1N1)pdm09

pandemic in 6896 blood samples collected from 11 countries in Asia,

Europe, and North America as tested with an HA protein microar-

ray.113 Zhao et al. also showed that no neutralizing antibody against

the A(H5N1) virus, A/Vietnam/1194/2004, was detected among

35 healthy volunteers in China.114 These data support the premise

that there is a lack of immunity in the general population, which con-

stitutes a significant risk, should the clade 2.3.4.4 A(H5) virus gain effi-

cient human-to-human transmissibility.

The 22 A(H5N6) viruses from human cases for which genetic

sequence data (GSD) are available in the EpiFlu database of GISAID were

all classified as clade 2.3.4.4 A(H5) viruses. Subgroups within clade

2.3.4.4 to which the human viruses belong have changed over time: a

virus collected in February 2014 belonged to the

A/Sichuan/26221/2014-like group, 20 viruses collected between April

2014 and November 2017 belonged to the A/Hubei/29578/2016

group, and a virus in the A/Fujian-Sanyuan/21099/2017 group was

detected in 2017 (Table 1). GSD of the most recent viruses are not yet

available. With the exception of the 2014 virus, of available data so far,

all human viruses had a NA stalk deletion at amino acid positions 58-68,

which is known to be an adaptation to terrestrial poultry and has been

associated with enhanced virulence in mice presumably by altering the

HA-NA balance of the virus. Although all human infections were with

A(H5N6) viruses, a number of different genotypes were involved con-

taining a variety of internal genes originating from A(H5N1) and

A(H9N2) viruses circulating in poultry, as well as A(H3) viruses circulating

in ducks.98,102,104,115 Multiple amino acid substitutions associated with

mammalian adaptation were found in viral proteins, particularly in inter-

nal proteins. Amino acid substitutions that confer oseltamivir resistance

(H274Y and N294S by N2 numbering) were not found in the human

A(H5N6) virus isolates, consistent with their low frequency in avian ori-

gin viruses. Some strains of A(H5N6) from human cases did, however,

have the M2 S31N mutation associated with adamantine resistance.

5 | RECEPTOR BINDING PROPERTIES OF
CLADE 2.3.4.4 A(H5) VIRUSES

The specificity of the viral HA for the host cell receptor molecule reg-

ulates virus entry into cells. Human influenza A viruses preferentially

bind to receptors with sialic acid linked to galactose by an α2,6 linkage

(Sia-α2,6Gal), which is abundantly displayed in the upper respiratory

tract of humans.116 In contrast, most avian influenza A viruses have a

binding preference for receptors with Sia-α2,3Gal, which is sparse in

the upper respiratory tract of humans, but abundant in the intestinal

mucosa of birds.116 The difference in receptor binding preference is

considered to be one of the main reasons why avian viruses rarely

infect and transmit poorly in humans and human influenza viruses do

not replicate well in birds.

Among 1994 clade 2.3.4.4 A(H5) viruses isolated between

January 2013 and October 2018 with GSD available in the EpiFlu

database of GISAID, 1988 (99.7%) had an HA-160A (H3 numbering)
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amino acid residue and 1295 (64.8%) had HA-227R amino acid resi-

due (Supplementary Table 2). The HA-160A substitution results in

lack of a glycosylation motif in combination with residues 158-160 of

HA1, which facilitate airborne transmission in ferrets (HA-N158D by

Imai et al. and HA-T160A by Herfst et al. in H3 numbering).117–119

Amino acid residues at positions 222 and 227 play important roles in

binding sialyl Lewis X (30SLeX), which is abundant on the epithelial

cells of the chicken trachea.120 Overall, there was no notable differ-

ence in the GSD of the HA receptor binding site among A(H5N2),

A(H5N6), and A(H5N8) viruses despite only A(H5N6) viruses being

found in human infections (Supplementary Table 2). Among the stud-

ies that examined receptor binding specificity of clade 2.3.4.4 A(H5)

viruses, 13 isolates including two A(H5N2), seven A(H5N6), and four

A(H5N8) viruses had receptor binding specificity for both Sia-α2,6Gal

and Sia-α2,3Gal (Table 2). In general, the viruses that exhibited affinity

for human-type receptors also maintained a high affinity for avian-

type receptors. It is thought that a human transmissible virus could

only have low affinity for the avian-type receptor. Most of the

13 viruses with dual receptor specificity had HA amino acids 128P,

137A, and 160A, but not all viruses possessing these amino acids had

dual-receptor specificity (Table 2). Additional amino acid substitutions

needed to cross the species barrier likely vary with the makeup of the

HA gene. Biophysical assays such as glycan arrays, solid-phase binding

assays, and HA assays using sialidase-treated red blood cells have

been mainstream methods to analyze the receptor binding specificity

of influenza viruses. Virus tropism in ex vivo cultures of human bron-

chus has also been suggested to be an alternative experimental model

to assess receptor binding of animal viruses to the human respiratory

tract.121 Only a few glycans present in glycan arrays are present on

the human respiratory tract.122 Similarly, A/environment/Korea/

W541/2016 (H5N6), although not possessing known molecular

markers associated with mammalian adaptation (namely PB2 627K,

271A, 590S, 591R, 147T, 339T, or 588T), replicated well in human

NHBE cells and ex-vivo lung tissues.84 Moreover, A/Guang-

zhou/39715/2014 A(H5N6), which was shown to predominantly bind

to Sia-α2,3 Gal and possessed PB2 627K, grew comparably to an

A(H1N1)pdm09 virus in ex vivo human bronchus and lung culture123

(Table 2). A/Fujian-Sanyuan/21099/2017-like A(H5N8) viruses, in

contrast, replicated poorly in ex vivo cultures of human lung

explants.97

6 | ASSESSMENT OF THE
TRANSMISSIBILITY OF THE CLADE 2.3.4.4
A(H5) VIRUSES IN ANIMAL MODELS

Several studies have been conducted to assess the transmissibility of

the clade 2.3.4.4 A(H5) viruses. These included assessing direct con-

tact and respiratory droplet transmission using multiple animal

models, namely ferrets, pigs, guinea pigs, and

dogs84,86,88–92,95–97,124,125 (Table 3). Five clade 2.3.4.4 A(H5) viruses,

including one of which preferentially bound to Sia-α2,3 Gal84 and one

of which showed dual-receptor specificity,124 were transmitted via

direct contact in guinea pig or ferret models84,95,124,125 (Table 3). An

A(H5N6) virus A/environment/Korea/W541/2016, which grew well

in human cells despite having strong affinity to avian-type receptors,

transmitted to two of three ferrets co-housed with infected animals.84

The high proliferation competency of this virus strain in human NHBE

cells and ex vivo lung tissues might have facilitated its transmission

via direct contact. Herft et al. demonstrated that the HA of A/Guang-

zhou/39715/2014 A(H5N6) showed less acid stability than an

A/Indonesia/5/2005 A(H5N1) virus adapted for airborne-transmission

between ferrets and an H3N2 seasonal influenza virus, A/Nether-

lands/213/2003.86 Correspondingly, A/Guangzhou/39715/2014

A(H5N6), which exclusively bound to Sia-α2,3 Gal, did not transmit

among ferrets via respiratory droplets. The individual infected with

this A(H5N6) virus had underlying disease and exposure to infected

poultry which might have promoted virus replication competency in

human cells and infection. Airborne or respiratory droplet transmis-

sion of clade 2.3.4.4 A(H5N2), A(H5N6), and A(H5N8) viruses has not

been demonstrated in any animal model examined, which is consistent

with the epidemiology of the virus in humans (showing no evidence of

human-to-human spread) (Table 3).

Receptor binding affinity is a prerequisite, but insufficient alone

to promote airborne transmission of A(H5) avian viruses. Several stud-

ies have shown that compensatory mutations in HA are required to

counteract the HA instability caused by human-type receptor-binding

mutations.117,118,126 Additional mutations are also involved to

increase viral proliferation and transcription.117,119 Identified compen-

satory mutations to enhance thermostability and facilitate membrane

fusion at a lower pH are located in both the globular head and stalk

regions of the HA.119,127 Chen et al. suggested that optimization of

HA, NA, and internal genes is a requirement for efficient transmis-

sion.128 They demonstrated that an A(H5N1) reassortant virus with

Sia-α2,6 Gal preferential binding (amino acid substitutions Q196R,

Q226L, G228S) coupled with the NA of a human seasonal A(H3N2)

virus was transmitted via respiratory droplets among ferrets, whereas

the same virus combined with the NA of the avian A(H5N1) virus was

not transmitted.128 Furthermore, internal genes also contribute

undetermined functions that lead to efficient transmission. Zhang

et al. demonstrated that the NS gene of the A(H1N1)pdm09 virus

enabled a reassorted A(H5N1) virus to efficiently transmit among

guinea pigs via respiratory droplets but the avian NS gene did not.126

A scenario in which a clade 2.3.4.4 A(H5) virus reassorts with a human

seasonal influenza virus may facilitate transmission among mammals,

although further adaptations would likely be needed for optimal

spread. Taken all together, and reassuringly, clade 2.3.4.4 A(H5N2),

A(H5N6), and A(H5N8) viruses have so far shown limited ability to

infect and transmit efficiently in mammalian species.

7 | DISCUSSION

The experimental data generated to date has not detected differences

in receptor binding specificity and transmission capability among

mammals between clade 2.3.4.4 A(H5N2), A(H5N6), and A(H5N8)
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viruses despite that only the A(H5N6) subtype of the clade 2.3.4.4

A(H5) viruses among three has been found in humans. Dual-receptor

binding specificity, viruses that show equal binding in vitro to both

human and avian receptor analogues, has been observed in viruses of

all three subtypes, and some of the viruses were transmitted via direct

contact among ferrets or guinea pigs. However, no studies have iden-

tified receptor binding profiles showing a preference for binding to

human receptor analogues, or animal model transmission patterns,

showing spread via the aerosol route, consistent with a virus adapted

to transmit in humans. What is less clear is precisely which molecular

changes would lead to such adaptation.

A/Hubei/29578/2016-group clade 2.3.4.4 A(H5) viruses, which

are primarily A(H5N6) viruses, have been confined to Asia. In contrast,

A/gyrfalcon/Washington/41088-6/2014-group A(H5N2) and

A(H5N8) viruses and A/Fujian-Sanyuan/21099/2017-group A(H5N8)

viruses spread from Asia to North America, Europe, the Middle East,

and the African continent and gave rise to numerous outbreaks

among poultry and wild birds following reassortment with viruses

from local avian species. Despite significant exposure to A(H5N2),

A(H5N6) or A(H5N8) infected poultry, so far only the A(H5N6) sub-

type viruses have caused human infection. What then differentiates

the zoonotic potential of the A(H5N6) viruses from that of the other

two subtypes?

Several possible reasons can be considered here. First, biosecurity

systems vary across countries. A/Fujian-Sanyuan/21099/2017-group

A(H5N8) and A/gyrfalcon/Washington/41088-6/2014-group

A(H5N2) and A(H5N8) viruses were detected in poultry in multiple

places in the United States and in Europe, resulting in severe impacts

on the poultry industries. The majority of affected countries executed

a systematic stamping-out strategy.129 If outbreaks of the same mag-

nitude as the A(H5N2) outbreaks in the United States during

2014-2015 had happened in regions where biosecurity and precau-

tionary strategies were less stringent, the risks of human infection

might have been higher. Perhaps more importantly, live poultry mar-

kets, which are a significant source of human exposure in Asia, are

rare in the United States and Europe, limiting highly contaminated

environments inhabited by birds with humans in close contact. Sec-

ond, more controversially, inadequate or improper vaccination in poul-

try can also complicate eradication of HPAI. Between 2002 and 2010,

15 countries implemented vaccination in poultry against HPAI

A(H5N1) or A(H7) avian influenza viruses as food security and animal

health measures within a long-term control program.130 In one exam-

ple, when vaccines were antigenically similar with the targeted

A(H5N1) viruses and were properly applied with production of a

protective immune response in ≥60% of the poultry population, a

reduction in virus infection and transmission was achieved and out-

breaks declined.131 When a protective immune response was pro-

duced in <60% of the poultry population or the vaccine was

antigenically less similar to the field viruses, the A(H5N1) viruses

were able to breakthrough vaccinated population and result in addi-

tional outbreaks.131 In the latter scenario, A(H5N1) infected birds

with no disease signs had been sent to market, resulting in infection

and propagation of the virus within the market environment raising

the risk of human infection. In 2017, after the emergence of the

HPAI A(H7N9) variants, China added an H7 antigen to the existing

monovalent H5 vaccines used in poultry. The bivalent H5/H7 vac-

cine was introduced in Guangdong and Guangxi provinces in July

2017, followed by introduction into other regions by the winter of

2017-2018. The number of reported human A(H7N9) cases were

reduced by 92% after the enhanced poultry vaccination campaign,

and only one human H7N9 infection has been reported to WHO

since 2019 to the present.132 However, some countries lack the

financial and human resources for a comprehensive stamping-out

program.

Last, although different exposures to infected poultry may have

contributed to human infections with the specific subtype A(H5N6), it

is also possible that biological features of A(H5N6) viruses also con-

tributed to occurrence of human infections. In a study conducted by

Chen et al., an A(H5N1) reassortant virus with several amino acid sub-

stitutions in HA and the NA gene of a human seasonal A(H3N2) virus

(A/Brisbane/10/2007) was transmitted via respiratory droplets

between ferrets, but an A(H5N1) reassortant virus with the same HA

gene and the NA gene of a human seasonal A(H1N1) virus

(A/Brisbane/59/2007) was not transmitted.128 Additional studies,

including gain-of-function (GOF) research, are instrumental to better

elucidate the potential mechanism that allows some viruses to cross

species barriers.

The importance of continued monitoring of the ecology and

ongoing evolution of potentially zoonotic avian influenza viruses

should not be underestimated. Some of the fundamental and impor-

tant activities such as surveillance programs in diverse animal reser-

voirs, including wildlife, are not always a high priority and properly

funded. Several studies on poultry outbreaks caused by clade 2.3.4.4

A(H5) viruses in the United States and the Netherlands suggested that

the viruses were introduced from wild birds rather than farm-to-farm

transmissions.29,133 In a review, Morin et al. has warned that acceler-

ated warming of the Arctic by climate change has the potential to

affect migratory patterns, the timing of biological events, and habitats

of migratory birds, resulting in the potential to impact virus transmis-

sion dynamics among avian species.134 The surveillance activities

should incorporate a component of how environmental changes may

affect influenza virus hosts and the distribution and genomic constel-

lations of influenza A viruses.

8 | CONCLUSION

Because their emergence, the clade 2.3.4.4 HPAI A(H5) viruses

have evolved through point mutations and reassortment with cir-

culating local viruses following global expansion via distinct path-

ways. So far, these viruses have caused only sporadic human

infections and are unable to transmit efficiently among humans.

Studies have shown that some clade 2.3.4.4 A(H5) viruses have

dual-receptor specificity and can transmit between ferrets in

direct contact. Furthermore, some A(H5N6) viruses isolated from

humans have molecular signatures related to mammalian
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adaptation. It is uncertain what other changes are necessary for

these viruses to become transmissible among humans. Their wide-

spread distribution, ongoing evolution, and periodic infection of

mammalian hosts increase the chances that efficient transmissibil-

ity is possible to be acquired. This calls for surveillance of influ-

enza viruses in domestic and wild birds to be enhanced to allow

for timely development and updating of veterinary and public

health countermeasures and to reduce the threats of zoonotic

and pandemic influenza.

9 | GENOMIC ANALYSIS

HA genetic sequence data (GSD) of HPAI viruses isolated from ani-

mals, including mammals and avian species, that possessed multi-

basic amino acids at the HA cleavage site between 2013 and

February 2019 and available in the EpiFlu database of Global Initia-

tive on Sharing All Influenza Data (GISAID) were analyzed. Between

2013 and February 2019, 2553 A(H5) HPAI viruses were available.

The open reading frame of the HA genes of A(H5) viruses was used

for phylogenetic analysis. Multiple sequence alignment of H5

viruses was performed using BioEdit 7.2. A maximum-likelihood

tree was constructed for MEGA 7 with 1000 replicates. The

242 virus GSDs were used as the reference for the nomenclature

of A(H5) HA systematized by World Health Organization/World

Organization for Animal Health/Food and Agriculture Organization

(WHO/OIE/FAO) H5 Evolution Working Group.135 The phyloge-

netic tree is available upon request. Among the 2553 H5 viruses,

1994 H5 viruses, which belonged to clade 2.3.4.4, were used fur-

ther analysis.
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