
Original Article
ASOptimizer: Optimizing antisense
oligonucleotides through deep
learning for IDO1 gene regulation
Gyeongjo Hwang,1,5 Mincheol Kwon,2,5 Dongjin Seo,1 Dae Hoon Kim,2 Daehwan Lee,1 Kiwon Lee,1 Eunyoung Kim,2

Mingeun Kang,1,3 and Jin-Hyeob Ryu2,4

1Spidercore Inc, 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea; 2BIORCHESTRA Co., Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea;
3Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea;
4BIORCHESTRA US., Inc., 1 Kendall Square, Building 200, Suite 2-103, Cambridge, MA 02139, USA
Recent studies have highlighted the effectiveness of using anti-
sense oligonucleotides (ASOs) for cellular RNA regulation,
including targets that are considered undruggable; however,
manually designing optimal ASO sequences can be labor inten-
sive and time consuming, which potentially limits their broader
application. To address this challenge, we introduce a platform,
the ASOptimizer, a deep-learning-based framework that effi-
ciently designs ASOs at a low cost. This platform not only se-
lects the most efficient mRNA target sites but also optimizes
the chemical modifications for enhanced performance. Indole-
amine 2,3-dioxygenase 1 (IDO1) promotes cancer survival by
depleting tryptophan and producing kynurenine, leading to
immunosuppression through the aryl-hydrocarbon receptor
(Ahr) pathway within the tumor microenvironment. We used
ASOptimizer to identify ASOs that target IDO1 mRNA as po-
tential cancer therapeutics. Our methodology consists of two
stages: sequence engineering and chemical engineering. During
the sequence-engineering stage, we optimized and predicted
ASO sequences that could target IDO1 mRNA efficiently. In
the chemical-engineering stage, we further refined these
ASOs to enhance their inhibitory activity while reducing their
potential cytotoxicity. In conclusion, our research demon-
strates the potential of ASOptimizer for identifying ASOs
with improved efficacy and safety.
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INTRODUCTION
Antisense oligonucleotides (ASOs) have emerged as a promising class
of drugs that have the potential to target and modulate genes associ-
ated with various diseases.1–3 ASOs offer a unique approach to preci-
sion medicine by selectively suppressing target gene expression,
which offers a promising treatment for a wide range of genetic and
rare diseases.4–8 Despite these advantages, designing the structure
of therapeutic ASOs remains a significant challenge because of the
intricate interplay between RNA sequence, structure, and func-
tion.9–11 Conventionally, researchers have heavily relied on their
molecular biology expertise along with empirical observations to
generate potential ASO candidates. However, the complexity of
Molecula
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ASO design is evident when one considers the vast chemical space
of RNA sequences, in which each position is occupied by any of
the four nucleotide bases (A, U/T, G, or C). For ASOs of length l;
this results in 4l potential combinations, which becomes an astro-
nomical number for lR 20. The complexity is further increased
when chemical modifications, such as linkage and sugar modifica-
tions, are considered.

To navigate the vast search space of RNAs, researchers often resort to
using ASO sequences that are fully complementary to the target gene,
employing a gapmer design approach. Gapmers refer to ASOs that
satisfy specific design criteria: (1) the central segment of the ASO ex-
hibits complete complementarity to the target DNA/RNA in the anti-
sense direction, and (2) chemically modified RNA regions, known as
wings, are positioned at both ends of the sequence to enhance
nuclease resistance and binding affinity.10 This simplified strategy en-
ables one to focus on a subset of candidates that exhibit improved
pharmacokinetics and toxicity profiles12–15 compared with plain
phosphorothioate (PS) ASOs with no modifications. However,
this reduced search space results in ASOs with significantly subopti-
mal performance in terms of both inhibition rate and cytotox-
icity,12,13,15,16 motivating the need for a more systematic way to
ASO design beyond standard gapmers. The inherent complexity of
RNA mechanisms coupled with the extensive search space of RNAs
requires a paradigm shift toward computational approaches.

There is a substantial body of prior work regarding the statistical
analysis of therapeutic RNAs and their performance, which has pri-
marily focused on small interfering RNAs (siRNAs). For example,
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several groups have proposed initial protocols for the design of
siRNAs,17–20 which were later expanded to consider off-targets and
other variables.21,22 Based on these rules, screening algorithms were
developed to filter out less-promising candidates23,24 and several
computational models were proposed to predict the regulatory effi-
cacy of input siRNAs.25–28 Moreover, in the context of exon-skipping
ASOs, similar studies have been made to identify factors contributing
to the regulatory performance,29,30 leading to the development of
computational algorithms that predict exon-skipping efficacy for
input ASOs.31,32 However, even with the extensive literature and
availability of online software,33–37 the challenge of optimizing ther-
apeutic RNAs with respect to chemical modifications remains un-
solved. Indeed, this aspect poses one of the most crucial hurdles in
designing effective therapeutic ASOs. Hence, our study addresses
this problem by focusing primarily on RNase H-mediated ASOs.
We propose a data-driven strategy, aiming to unlock the full potential
of ASOs for precision medicine.

Our contribution lies in the development of a novel and holistic
framework, the ASOptimizer, which enables the optimization of ther-
apeutic ASOs at both the sequence and molecular level. To achieve
this, we establish a two-stage approach: (1) we create a linear factor
model based on early studies of microRNA (miRNA)-binding
sites.38–42 The model characterizes the relationship between the mod-
ulation performance of ASO and input variables, such as Gibbs free
energy and the secondary structure of the target, to screen out top
k promising candidates. (2) We build a deep graph neural network
that accepts the molecular graph of ASOs as input and predicts the
regulatory efficacy, thus guiding the chemical modification of the
top k ASOs to enhance their potency. To validate our approach, we
conducted in vitro experiments using indoleamine 2,3-dioxygenase
1 (IDO1) mRNA. The protein product of this gene has an important
role in cancer cell survival,43,44 as it has the ability to reduce trypto-
phan levels and produce kynurenine to suppress the immune sys-
tem.45–48 Our results demonstrate that the proposed ASOs exhibit
superior inhibition of IDO1 expression levels and lower cytotoxicity
by ASO structure compared with standard gapmers.

RESULT
In this section, we show the in silico validation on ASOptimizer, fol-
lowed by in vitro experiments on the recommended ASOs, with the
goal of demonstrating the therapeutic potential of the proposed
framework. Both in silico and in vitro results demonstrate the
outstanding performance of our model compared with the currently
available baselines.

Dataset for computational models

We built a database of experimental observations from granted pat-
ents and scientific papers, which included both in vitro and in vivo ex-
periments. Patents were gathered through Lens,49 a search platform
specialized for such a purpose. Using the keyword “ASO,” we
compiled more than 1,000 results and extracted tabular data from
the documents. The in vitro data included various cell culture condi-
tions, such as the target gene, cell line, density (cells/well), transfec-
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tion, dose amount (nM), treatment period (hours), and other relevant
factors considered in the literature. In addition to the cell culture de-
tails, each sample also contained information on the ASO sequence,
type/position of chemical modifications, and the inhibition rate
against the target mRNA measured by real-time qRT-PCR. The
database consisted of 187,090 unique samples for 67 distinct target
mRNAs.

Since we aimed to validate our approach through IDO1 gene regula-
tion, we also extracted a few samples50 from our database in which the
target was IDO1 mRNA (GenBank: NM_002164). This subset con-
tained 155 samples. Note that this subset was used for the first stage
of our approach in finding the best location for a therapeutic ASO to
bind to, whereas the entire database was used for optimizing chemical
modifications. For clarity in the following sections, we refer to the
entire dataset as D and the subset as DIDO1.

ASO-mediated gene regulation can partially be explained by thermo-
dynamic stability and structural accessibility.

We conducted the proposed linear model and obtained the parame-
ters that minimize the sum of squared residuals (see Equation 2 in
section “materials and methods”) using the subset DIDO1. As pre-
sented in Table S1, the coefficients exhibited strong statistical signif-
icance with p values of 1.20e�08, 2.88e�02, and 2.96e�10 for change
in Gibbs free energy after a complementary ASO binds to the target
gene, average change in Gibbs free energy after the ASO binds to
off-target genes, and geometric accessibility of the binding region
considering the secondary structure of the target gene, respectively.
This indicates the validity of our model design; especially the thermo-
dynamic and structural features as inputs variables.

In Figures 1A and 1B, the scatterplots on experimental inhibition rates
(y) versus predicted inhibition rates (by) are presented and annotated
with Pearson’s correlation. From Figure 1A, a moderate level of statis-
tical correlation (r = 0:57;MSE = 0:0435) is evident, whereas a rela-
tively stronger association ðr = 0:72;MSE = 0:0644Þ is evident in
Figure 1B, when considering longer sequences only. A Pearson corre-
lation of r = 0:72 is associated with a case in which 52% of the varia-
tion in the experimental inhibition can be explained by the predicted
inhibition.We found that our linearmodel explained the experimental
data better when the input ASO was relatively longer. In Figures 1C
and 1D, we also show contour plots of Pearson correlation. By
observing the large slope along the y axis, the importance of consid-
ering secondary structure in themodel can be seen. In contrast, the ef-
fect of considering the thermodynamic stability between the ASO and
off-target genes is relatively marginal, as shown by the smaller slope
along the x axis. This marginal gain becomes even less under longer
sequences. We believe that our results are consistent with a recent
finding that long ASOs tend to suffer less from off-target effects.51

In silico comparison with a baseline

We compared the proposed linear model with a currently available
baseline: Sfold.33 Sfold is one of the early works used for the design
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Figure 1. Graphical illustration of the result

(A and B) Experimentally observed inhibition rates (x axis)

and their predicted values (y axis). r on the bottom right of

each graph represents the Pearson correlation coefficient.

In (A), we show the scatterplot using 155 samples from

datasetDIDO1,while (B) employs 40 long sequences that are

17-mer or longer. In (C) and (D), we show the surface of

Pearson correlation (r), represented by contour plots.

On the x and y axes, we vary the values of normalized

(divided by a1Þ a3 and a2 (See Equation 1 in section

“materials and methods”), respectively, and the correlation

between model predictions and experimental inhibition

rates are depicted as different colors at each coordinate.

That is, we display the change in Pearson correlation due

to the shift in the coefficients of our model. The yellow

circles indicate the points that achieve the maximum

correlation (i.e., a� ). The green and orange circles indicate

the x and y intercepts, each representing a case where

either one of a3 or a2 is neglected; (C) employs DIDO1,

while (D) employs only long sequences.
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of siRNAs, ASOs, and trans-cleaving ribozymes, which is still avail-
able. The algorithm computes the antisense oligo binding energy
using the weighted sum of DNA/RNA stacking energy for hybridiza-
tion.52 We chose this as a single baseline to make a comparison as
other baselines did not fit our setting. For instance, computational
models other than Sfold are mainly focused on siRNAs,25–28 which
require thermodynamic stability of the double strand itself as an input
feature. On the other hand, ASO-specific models accept features such
as the distance between the binding region and the closest skipping
exon.31,32 Note that such features are not considered in our problem
context, where the primary focus is RNase H-mediated ASOs. Hence,
computational models for neither the siRNAs nor exon-skipping
ASOs are appropriate as baselines.

We split DIDO1 into training and test sets at an 8:2 ratio and found
linear model parameters (see Equation 2 in section “materials and
methods”) using the training set. We then compared our model
with the baseline on the remaining test set. We found that our model
achieved Pearson correlation and mean squared error (MSE) of r =

0:66 and MSE = 0:0297;respectively, while Sfold achieved r = 0:50
and MSE = 0:0361. We believe that the results are plausible, given
that our model considers more factors compared with Sfold, such as
off-targets and secondary structure.

In silico validation through external data

To show the generalizability of our linear model, we also conducted a
simple in silico study as follows: we prepared a dataset consisting of
experimental results on PLP1, APOL1, and IDO1. We used PLP1
and APOL1 samples as training data while IDO1 samples were used
Molecu
as test data. In this case, no information about
IDO1 can be inferred from training samples. Un-
der this external validation setting, we found that
our model attained 0.6016 (±0.1326) Pearson cor-
relation and 0.0356 (±0.0086) MSE on the IDO1 test set. Compared to
test performance using internal samples as training data, the compro-
mise in performance was relatively modest, proving the robustness of
our linear model.

The trained model produces rankings of complementary ASO

sequences based on the predicted IDO1 inhibition

Using the trained linear model, we computed the scores for candidate
ASOs of 19 bases in length that were complementary to the IDO1
mRNA. Note that the sequence length is a design parameter that is
determined by bio-scientists, as in many other software tools avail-
able.33–37 Our choice of 19 bases in length was based on our familiarity
with ASOs of length 19–22, and our finding thatmodel predictions are
more consistent with experimental data on longer sequences. Also, we
set the number of considered off-target genes to 50, in contrast to the
10 used in the in silico analysis, in order to account for more off-target
genes in the in vitro validation (see x2 in Equation 1 in section “mate-
rials and methods”). We argue that our model is not sensitive to the
number of off-target genes parameter as shown by a simple ablation
study in Figure S1. One can use any values less than 500, since the pre-
diction performance does not change significantly.

Using this setting, we identified six ASO candidates that exhibited
the highest prediction scores in the population of complementary
sequences of 19 bases in length. As presented in Figure S2, the
top six candidates are positioned at the right end of the distribu-
tion, over m+ 2s. These examples were selected for further testing
in in vitro experiments. More detailed information is listed in
Table S2.
lar Therapy: Nucleic Acids Vol. 35 June 2024 3
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Figure 2. Performance comparison of ASOpt sequences versus PS-ASOs and gapmers

(A) Visualization of targeting regions of the six PS-ASOs. There are notably two distinct locations in themRNA; one near the 50 end and the other in the coding sequence (CDS).

(B) The qRT-PCR results indicate that the expression of IDO1 mRNA was reduced by 300 nM PS-ASOs after 48 h in HeLa cells. (C) Kynurenine production resulting from

reduced cellular IDO1 activity by 300 nM PS-ASOs after 48 h in HeLa cells. (D) WB result indicating that the expression of IDO1was reduced by 300 nMPS-ASOs after 48 h in

HeLa cells. (E) A dose-dependent reduction in the expression of IDO1 was determined by WB. (F) Schematic diagram of the structures of PS-ASO, gapmer, and ASOpt. (G)

Kynurenine production resulting from reduced cellular IDO1 activity by 300 nMPS-ASO (PS), gapmer (Gap), and ASOpt after 48 h in HeLa cells. (H) Normalized graphs versus

b � actin.WB results indicating that the expression of IDO1was reduced by 300 nM of PS-ASO, gapmer, and ASOpt for 48 h in HeLa cells (We conducted three independent

experiments and drew the bar graphs with error bars using means and standard deviations, *p < 0.05, **p < 0.01 vs. rIFN-g-treated negative control).
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The six ASO sequences recommended by ASOptimizer were synthe-
sized using the PS backbone. Named after the backbone, we refer to
them as PS-ASO-1 through PS-ASO-6. We first determined whether
they could reduce IDO1 mRNA and the corresponding protein at
300 nM in HeLa cells. The targeting sites of PS-ASOs in IDO1
mRNA are illustrated in Figure 2A. Figures 2B and 2C showed the
inhibitory effects on IDO1 from the qRT-PCR and cellular kynure-
nine production. All PS-ASOs successfully reduced IDO1 expression
compared with the recombinant interferon (rIFN)-g-treated negative
control. In particular, PS-ASOs 1, 2, 5, and 6 exhibited superior mod-
ulation performance to PS-ASOs 3 and 4, with higher statistical sig-
nificance. To confirm the reduction of IDO1 protein expression we
performed western blot (WB) assay. As shown in Figure 2D, PS-
ASOs 1, 2, 5, and 6 resulted in a large decrease in cellular IDO1
expression. In Figure 2E, the inhibition performance at different con-
centrations was also identified (10, 30, 100, 300 nM). We display the
dose-response curve, in which intermediate data points were interpo-
lated using GraphPad Prism 10. Half-maximal inhibitory concentra-
tion (IC50) values for each PS-ASO were also estimated using the
same software listed in Table S3. These results demonstrate that the
ASOs derived from ASOptimizer effectively target IDO1.

In silico validation on the chemical-engineering module

suggests that ASOptimizer can improve upon PS-ASOs

As previously described, we generated training and test pairs, Dtrain
pairs

and Dtest
pairs, respectively, for the Edge-augmented Graph Transformer

(EGT)53-based deep neural network in the chemical-engineering
4 Molecular Therapy: Nucleic Acids Vol. 35 June 2024
phase. For in silico validation, we measured the predictive accuracy
of the model trained on Dtrain

pairs against the remaining test set Dtest
pairs (ac-

curacy in predicting the superior one from a pair of positive and nega-
tive samples). This resulted in a 73.39% accuracy, indicating the
considerable potential for identifying which chemical modification
is better on unknown examples. We further compared our chemi-
cal-engineering module with a currently available baseline.13 See
the Figures S3 and S4 for an in-depth analysis of the results.

Next, we applied the trained model to find more preferred chemical
modifications to the six PS-ASOs found in the sequence-engineering
phase. Here, we constrained the space of chemical variants to PS and
locked nucleic acids (LNAs), since the majority of the samples in our
database use only a single type of chemical modification in a sequence
and LNA accounts for the largest portion in chemical modifications.
The reduced chemical space also helps us simplify the in vitro valida-
tion process, decreasing the unnecessary complexity from the exper-
iments. Similar to the previous stage, we tested the model with all
possible PS-vs-LNA combinations, resulting in 24 = 16 cases for
each wing of five nucleotides (RNAs at positions 2–5 were modified,
respecting the design rule in related work13). This amounts to a total
of 28 = 256 distinct LNA modification patterns for each sequence.
From the ranking of the predicted scores, we identified the modifica-
tion with the highest score for each of the PS-ASOs (see Figure S5). In
Table 1, we summarize the sequence information of the optimized
ASOs. For a graphical abstraction of the sequence information, see
Figure 2F.



Table 1. The top six ASO sequences obtained through the sequence-engineering module

Index PS-ASO Gapmer ASOpt

1 caaggcgctgtgacttgtg CAAGGcgetgtgacTTGTG CAAGgcgctgtgacttGTG

2 ctagacgtgcaaggcgctg CTAGAcgtgcaaggCGCTG CTAgacgtgcaaggcGCTG

3 caaactcacggactgaggg CAAACtcacggactGAGGG CaAActcacggactgaGGG

4 cggactgagggatttgact CGGACtgagggattTGACT CgGActgagggatttgACT

5 actcacggactgagggatt ACTCACggactgagGGATT ACTCacggactgagggATT

6 cgctgtgacttgtggtctg CGCTGtgacttgtgGTCTG CGCTgtgacttgtggtCTG

Bold and uppercase, LNA; lowercase, DNA.
PS-ASO denotes phosphorothioate antisense oligonucleotides, gapmer has LNA modifications on both 50 and 30 ends (5-9-5), and ASOpt represents chemically optimized ASOs
derived from the chemical-engineering module of ASOptimizer.

www.moleculartherapy.org
In vitro results prove that ASOptimizer indeed improves the PS-

ASOs via optimized chemical modifications

We synthesized the six chemically optimized ASOs (named ASOpt)
found above and tested their performance in vitro. As shown in Fig-
ure 2G, we compared the cellular IDO1 enzyme activity measured by
kynurenine levels in HeLa cells between the six PS-ASOs, 5-9-5
gapmers, and ASOpt-1 through ASOpt-6. Here, PS-ASO-i, gapmer-i,
and ASOpt-i share a common nucleotide sequence but have distinct
chemical modifications. As shown in the bar graph in Figure 2G,
gapmers tended to outperform their PS-ASO counterparts, with
gapmer-2 and -6 representing exceptions to the trend. Interestingly,
the ASOpt sequences exhibited even stronger inhibitory effects
compared with the gapmers. This trend was more evident for
ASOpt-1, ASOpt-2, and ASOpt-6, whereas the others did not show a
strong improvement over the gapmers. A similar observation was
made in experiments to test the expression levels.WBand qRT-PCR re-
sults indicated that the expression of IDO1 was decreased significantly
for ASOpt-1, ASOpt-2, and ASOpt-6 (Figures 2H and S6A). We drew
the same conclusion from experiments conducted on U87-MG cells.
See Figure S6B for the results on U87-MG cells, in which we also
observed even better improvements over the PS-ASOs and gapmers.

One noteworthy aspect of the experiment was that the PS-ASO-3 ap-
peared ineffective, suggesting that the binding site found by our
sequence-engineering module may not be working. However, after
applying chemical modifications, both gapmer-3 and ASOpt-3 sup-
pressed the IDO1 expression. This highlights the importance of opti-
mizing a therapeutic RNA at the molecular level.

We also generated the dose-response curves for the candidates, as
shown in Figure 3A. Similar to above, ASOpt-1, 2, and 6 exhibited
the most noticeable improvement compared with the PS-ASOs and
gampers with respect to the dose-dependent inhibitory performance.
ASOpt-3, which initially showed no activity in the PS-ASO, exhibited
remarkable inhibitory activity upon chemical modification. As shown
in Table 2, the IC50 values determined by GraphPad Prism 10 and the
corresponding fold changes are presented. We observed an approxi-
mate 6.19-fold improvement for ASOpt-3 against PS-ASO-3, and a
4.02-fold change for ASOpt-3 against gapmer-3. The other candidates
showed different scales of fold values, yet mostly over the threshold of
1 (indicating improvement), except for sequence 5. These findings
confirmed that our holistic framework ASOptimizer has the potential
to find effective ASO sequences and their chemical modifications.

Enhanced cell viability with chemically optimized ASOs

Another intriguing yet unexpected observation was that the cytotox-
icity levels were markedly decreased with all chemically optimized
ASOs compared with PS-ASOs and gapmers. Specifically, we admin-
istered 1,000 nM PS-ASOs, gapmers, and ASOpts to HeLa cells for
48 h, and measured lactate dehydrogenase (LDH) levels. As shown
in Figure 3B, PS-ASOs exhibited the strongest cytotoxicity in all six
candidates and was in contrast to the ASOpt-1 through ASOpt-6,
which showed reduced cytotoxicity of more than 50%. Because our
chemical-engineering module was not trained to estimate the cyto-
toxicity of an input ASO, but inhibitory efficacy, we could not expect
such improvement. One probable interpretation of the result is that,
as our model prediction removes one or more LNA-modified nucle-
otide bases in each wing, toxicity is enhanced due to reasons explained
in a recent study.15 An in-depth analysis on the results is presented in
the “discussion” section.

Chemically optimized ASOs improve THP-1 M1 differentiation

Macrophages are immune cells capable of differentiating into either
M1 or M2 phenotypes based on the surrounding environment. M1
differentiation is induced by internal cytokines, such as rIFN-g and
tumor necrosis factor (TNF)-a, as well as external pathogens, such
as lipopolysaccharide (LPS).54,55 However, the presence of IDO1
inhibits M1 differentiation, even in response to rIFN-g and LPS stim-
ulation.56 Since M1 macrophages function as killer cells when target-
ing cancer, the induction of M1 differentiation is one of the potential
strategies for developing anti-cancer drugs.57 This prompted us to
determine whether the ASOs discovered by ASOptimizer can reduce
IDO1 expression in THP-1 macrophages, resulting in improved M1
differentiation. A schematic representation of the experimental pro-
cedures is depicted in Figure 4A. In M1-differentiated THP-1 cells,
IDO1 mRNA was significantly suppressed by gapmer and ASOpt se-
quences compared with PS-ASO treatment (Figure 4B). Conversely,
the expression of M1 macrophage markers, TNF-a and CXCL10
mRNA, exhibited a proportional increase in response to the reduction
of IDO1 expression (Figure 4C). These findings indicate that ASOs
Molecular Therapy: Nucleic Acids Vol. 35 June 2024 5
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Figure 3. Dose-dependent and cytotoxicity analysis

(A) Dose-dependent analysis for comparative evaluation and IC50 determination of ASO sequences. These results were obtained by treating HeLa cells with PS-ASO,

gapmer, and ASOpt at concentrations of 10, 30, 100, and 300 nM for 48 h, followed by quantification of IDO1 protein levels. Red line, PS-ASO; yellow line, gapmer; green line,

ASOpt. (B) Reduced cytotoxicity following ASOpt treatment compared with PS-ASO and gapmer in HeLa cells. The results were obtained by treating HeLa cells with

PS-ASO, gapmer, and ASOpt at concentration of 1,000 nM for 48 h (Bar graphs with error bars were drawn using means and standard deviations from three independent

experiments, *p < 0.05, **p < 0.01 vs. PS-ASO).
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discovered by ASOptimizer can effectively reduce IDO1 expression in
immune cells, thereby promoting M1 differentiation. This supports
their potential use in inducing cancer-killing M1 macrophages.

DISCUSSION
We proposed a holistic framework for optimizing RNase H-mediated
ASOs, not only at the sequence level but also at the molecular level.
The proposed platform, ASOptimizer, consists of two sequential
components: (1) a sequence-engineering module based on a linear
factor model that relates the regulatory performance of an ASO to
its thermodynamic features and secondary structure, and (2) a chem-
ical-engineering module based on a deep graph neural network that
predicts the regulatory performance of an input ASO. Primarily
focusing on suppression of the IDO1 mRNA, the biological relevance
of ASOptimizer was validated through multiple experiments. Here,
we briefly summarize the two components along with detailed discus-
sions and future research directions.

Sequence engineering

We trained the proposed linear model using a dataset DIDO1 of
experimental inhibition rates against the IDO1 gene, which is a sub-
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set of the entire database D. The trained linear model was used to
sort complementary ASOs of 19 bases in length, resulting in six can-
didates positioned at the right end of the histogram of prediction
scores (see Figure S2). ASOs 1, 2, and 6 target locations near the
50 end, while the others target the CDS region (Figure 2A). These
sequences with a PS backbone, PS-ASOs, were tested in vitro and
their effectiveness in modulating the IDO1 expression was con-
firmed (Figures 2B–2E).

The linear model can be improved

Although our model parameters achieved statistically significant
p values (Table S1), the overall goodness of-fit was not satisfactory:
a Pearson correlation of 0.72 for longer sequences only. More com-
plex models that are possibly non-linear or more input features are
needed to better describe the input ASO as in previous studies of
siRNAs and exon-skipping ASOs. We also considered such exten-
sions as presented in the supplemental information (Tables S4–
S6), although it was not easy to confirm a significant performance
improvement. However, we believe that considering a wider range
of features with increased dataset size will bring advantage for
more complex models.



Table 2. IC50 and fold changes between the ASOs targeting IDO1 mRNA

Index

IC50 Fold change

PS-ASO (nM) Gapmer (nM) ASOpt (nM)
PS-ASO/
ASOpt

Gapmer/
ASOpt

1 84.9 71.6 69:9� 1.21 1.02

2 213.1 277.9 53:2� 4.01 5.22

3 556.3 360.9 89:8� 6.19 4.02

4 1,450.9 1;782:4 943.6* 1.54 1.89

5 249.0 241:4� 396.9 0.63 0.61

6 346.8 221.3 94:1� 3.69 2.35

The asterisks indicate the best results among PS-ASO, gapmer, and ASOpt.

www.moleculartherapy.org
Another direction to enhance the linear model is to use more
advanced and sophisticated estimation models for the input features.
For example, instead of using miRanda,38 one may resort to other al-
gorithms that produce more accurate predictions of Gibbs free en-
ergy. This applies to the prediction of secondary structure as well,
in which the Zuker-style algorithm58 may be replaced by modern
deep-learning-based predictive models.59–61 In particular, for RNase
H-mediated ASOs, we stress the need to utilize more robust and ac-
curate structure prediction algorithms to enhance the reliability of the
current model. Indeed, we display the change in Pearson correlation
resulting from the different secondary structure prediction algo-
rithms in Figure S7.

Finally, a feature that we can introduce into the linear model is the
possibility of incorporating non-complementary ASOs.We narrowed
the search space of nucleotide sequences down to a set of complemen-
tary sequences against IDO1 mRNA; however, there may be many
ASO sequences that are not fully complementary yet have greater
therapeutic potential in the entire space of 4l combinations. One
can also use a different optimization scheme that utilizes genetic algo-
rithms or reinforcement-learning algorithms, which have been shown
to perform well in discrete spaces.

Chemical engineering

We trained an EGT53-based graph neural network using the pairwise
loss function (see Equation 5 in section “materials and methods”), to
avoid the need of incorporating environmental variables, such as
transfection, dose, and cell line. Using the trained model, we sorted
the predicted results of all possible LNA modifications on the six
ASOs to screen out the top performer, resulting in the ASOpt-1
through ASOpt-6 (Table 1). Experiments demonstrated that chemi-
cally optimized ASOs can outperform PS-ASOs and gapmers,
which are the conventionally used baselines (Figures 2 and 3A).
The performance increase was most noticeable for ASOpt-1, 2, and
6. Furthermore, we also observed that all six ASOpt sequences
induced significantly less cytotoxicity (Figure 3B). Although the
precise reason remains to be determined, we suspect that it is
due to a reduction in LNA modifications, as a reduction in LNA
yields decreased cytotoxicity.15 ASOpt sequences were also found
to improve THP-1 M1 differentiation, indicating their potential to
activate cancer-killing M1 macrophages (Figure 4).

Future extensions to the chemical-engineering module

We can extend our model to predict other pharmacokinetic proper-
ties. For example, once we modify the loss function to include an ab-
sorption ratio prediction term, we can obtain a model that provides
rankings based on modulation and absorption performances. This
is relatively a straightforward extension of ourmodel, but it will mark-
edly increase the usefulness of our second module.

The fact that our experiments were limited to the LNA modifications
also suggests a future research direction. Since our model was trained
with a database containing various chemical modifications, the model
has the capability, at least computationally, of providing meaningful
recommendations on the variety of modifications; however, such a
capability must be thoroughly tested by biological experiments in
the future. Besides the sugar modifications, one can also explore addi-
tional possibilities, such as linkage modifications (e.g., PS, phospho-
diester, and stereochemistry), to broaden the scope of our approach
further. These extensions must be accompanied with well-designed
in vitro experiments and even in vivo experiments where possible.

In conclusion, our novel framework, ASOptimizer, successfully
provides ASO sequences with non-trivial chemical modifications,
highlighting the potential of this computational approach to optimal
ASO design.

MATERIALS AND METHODS
The proposed platform, ASOptimizer, consists of two sequential
components: (1) sequence engineering and (2) chemical engineering.
For the former, we used a linear factor model that captures the rela-
tionship between several features of an ASO and its modulation
efficacy. This model was able to guide us in choosing the best possible
binding sites on the target mRNA, thus resulting in candidate ASOs
with complementary sequences. Then, using a deep graph neural
network, we modified the candidate ASOs to improve their regulatory
performances. The parameters of the two models were learned from
experimental data gathered from patents and scientific publications.
An overview of the entire process is presented in Figure 5. In this sec-
tion, we explain the details of data gathering, preprocessing, the two
computational models, and our experimental methodology.

Database construction

Building an appropriate database is always the first step toward a suc-
cessful learning-based model. Hence, we mainly gathered published
data samples of in vitro experiments from Lens.org. Specifically, we
conducted the following iterative steps:

(1) Selection of genes. Initially, we screened which genes to collect in
our database. This step was essential because data gathering is
highly labor intensive. Our main criteria here was howmany rele-
vant documents with a sufficient number of experimental sam-
ples could be found.
Molecular Therapy: Nucleic Acids Vol. 35 June 2024 7
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Figure 4. Increased M1 differentiation by ASOpt treatment compared with PS-ASO and gapmer in THP-1 cells

(A)Changes inTHP-1M1differentiationandgeneexpressionpatterns afterASO treatment. (B) qRT-PCR results indicating that the expressionof IDO1mRNAwas reducedbyPS-

ASO,gapmer, andASOptat concentrationsof300nMafter 48h inM1-differentiatedTHP-1cells. (C) qRT-PCR results showing that theexpressionsofTNF-a andCXCL10mRNA

were increased by PS-ASO, gapmer, and ASOpt at concentrations of 300 nM for 48 h inM1-differentiated THP-1 cells (Bar graphs with error bars were drawn usingmeans and

standard deviations from three independent experiments, *p < 0.05, **p < 0.01 vs. M1-differentiated negative control).
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(2) Search in Lens.org. To access a diverse range of relevant patent
documents and publications, we mainly utilized Lens.org. Using
this platform, we conducted targeted searches with specific key-
words related to gene modulation, such as “modulators,” “mod-
ulation,” “expression,” or “compounds,” in conjunction with the
selected target genes. For instance, we might use a query “modu-
lators of IDO1.”

(3) Data extraction frompatent documents and publications. Once we
identified pertinent documents, we systematically extracted rele-
vant information; especially tabular data containing nucleotide
sequences and inhibition performance metrics. The extraction
process could be carried out either manually or programmatically,
depending on the availability and format of the data.

(4) Extraction of additional experimental details. In addition to
sequence and inhibition data, we also extracted supplemental in-
formation, such as details about chemical modifications applied
to ASOs and experimental conditions. This encompassed infor-
mation about cell lines, culture conditions, and other relevant
experimental parameters.

(5) Repetition. We repeated steps (1)–(4) until we had a sufficient
number of data samples to train a deep neural network. Collect-
ingmore data samples was crucial to ensure that our database was
8 Molecular Therapy: Nucleic Acids Vol. 35 June 2024
comprehensive and representative of the various ASOs and their
modifications.

To obtain the final database, five researchers spent a few hundred
man-hours throughout the 3 months. This laborious and demanding
task served as a stepping stone toward a learning-based optimization
of ASOs and their chemical modifications.
Sequence engineering

To identify the optimal binding sites for ASOs, we propose a linear
factor model that relates the gene expression level with three input pa-
rameters: (1) change in Gibbs free energy after a complementary ASO
binds to the target gene, (2) average change in Gibbs free energy after
the ASO binds to off-target genes, and (3) geometric accessibility of
the binding region considering the secondary structure of the target
gene. The reasoning behind the selection of these features is based
on previous studies on miRNA-binding sites. The importance of
sequence complementarity and thermodynamic stability of the
RNA-target heteroduplex has been repeatedly emphasized in the
literature.38–42 Therefore, we took DG into account as the first feature
of our approach. Taking one step further, we considered the ther-
modynamic stability of the heteroduplex hypothetically formed

http://Lens.org


Figure 5. A schematic representation of ASOptimizer

The framework consists of a database and two computational models. (1) Database sourced from 187,090 samples of experimental observations fromUS patents.Within the

entire dataset, denoted as D, we retrieve a subset DIDO1 that contains ASOs targeting the IDO1 gene. (2) Sequence engineering that trains a linear model using the filtered

dataset DIDO1 to suggest candidate ASO sequences capable of regulating the target mRNA at a sequence level. (3) Chemical engineering deepens the investigation to a

molecular level using the entire datasetD and pairwise matching. In the chemical-engineering phase, a transformer-based deep neural network is trained to identify chemical

modifications with superior regulatory performance.
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A

B

Figure 6. Visualization of the chemical-engineering module’s functionality

The ASO sequences are given as inputs. DNAs are indicated with black letters and LNAs are in red. The sequences are transformed into SMILES strings and then reshaped

into molecular graphs, which are provided as inputs to a graph transformer model. (A) Training phase: the model fqð $Þ is trained with a pair of ASOs (positive and negative

instances) that share the same nucleotide sequence but differ in chemical modifications. The model is trained to assign higher values for the positive instance over the

negative counterpart. (B) Inference phase: for a given nucleotide sequence, the trained model generates all possible combinations of chemical variants and evaluates the

rankings of the combinations. The ranking information is used to identify the pattern with the highest score.
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with off-target genes. Because there may be multiple off-targets, we
took the average of the Gibbs free energy change over all possible
cases of heteroduplexes formed with different off-target genes. Also,
we took the secondary structure of the target gene into account since
locally open regions are more accessible than closed and hybridized
regions for therapeutic RNAs.62 Instead of this simple model, one
may consider using more complex models. Our choice of a linear
function as a regression model is mainly due to the lack of samples
for the IDO1 gene. In such data-scarce scenarios, complex models
run the risk of overfitting, while simpler models perform more
robustly. We found that this was the case. See the supplemental infor-
mation for a detailed explanation and ablation studies on this.

More formally, letDIDO1 = fðxðiÞ; yðiÞÞgni = 1 be our dataset of n exam-
ples, where xðiÞ = ð1; xðiÞ1 ; xðiÞ2 ; xðiÞ3 Þ˛R4 represents the four dimen-
sional feature vector of the i-th ASO sequence and yðiÞ ˛ R represents
the in vitro knockdown efficacy of the i-th ASO sequence against the
IDO1 gene. Note that the constant value in the first dimension x0 = 1
introduces a bias term into the model. We let x1 be the difference in
Gibbs free energy DGtarget before and after the formation of the ASO-
target heteroduplex computed from an off-the-shelf software,
miRanda.38 For the second feature x2, using the same software and
a list of mRNAs from the RefSeq database,63 we simply computed
the statistical average of the Gibbs free-energy change E½DGoff -target�
over a set of chosen off-target genes. The set of off-target genes con-
sisted of 10 mRNAs from the RefSeq database that showed the largest
change in Gibbs free energy with the input ASO. Finally, we defined
and computed x3 as the ratio of non-hybridized nucleotides in the
10 Molecular Therapy: Nucleic Acids Vol. 35 June 2024
binding region of the target mRNA over the length of ASO, given
the predicted secondary structure of the target. We employed a
Zuker-style algorithm58,64 to produce the structure predictions.

In this setting, the proposed linear model is:

by = a0 + a1x1 + a2x2 + a3x3 (Equation 1)

or equivalently, by = aTx for a = ða0;a1;a2;a3Þ. Here the coefficients
a0;.; a3 determine the relative importance between different input
features. The optimal model parameter a� = ða�0; a�1; a�2; a�3Þ was
determined by minimizing the sum of squared residuals as in stan-
dard linear regression:

a� = argmin
a

Xn

i = 1

�cyðiÞ � yðiÞ
�2

(Equation 2)

Using our prediction model with a�, we could prioritize the comple-
mentary ASOs, resulting in the top k candidates.
Chemical engineering

Next, we further engineered the candidate ASOs to obtain better in-
hibition efficacy through deep learning. As shown by a few recent
works, even a tiny structural difference in an oligonucleotide, such
as the choice of backbone modification, results in a significant change
in pharmacological properties.12,13 Thus, we propose a computational
task of predicting modulation performance, in which a model outputs
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the score of gene regulation for an input ASO. This type of model
can be used to prioritize ASO candidates with different chemical
modifications according to their inhibition efficacy and possibly cyto-
toxicity. See Figure 6 for a graphical overview of our chemical-engi-
neering module. In the module, we considered chemical variants,
including LNAs, 20-O-ethyl, 20-OMe, and 20-F base modifications.
To illustrate our deep-learning approach, we first describe our data-
preprocessing method and our neural network architecture. Then,
we discuss the training and inference procedures along with the im-
plementation details.
Data preprocessing and neural network architecture

First, we converted our ASO data into molecular graphs. A molec-
ular graph G is formally defined as a pair of two sets: a set of atoms
V (V from vertices) and a set of bonds between two atoms E (E
from edges). Here, the set of bonds E is a subset of the Cartesian
product V� V. As chemical bonds are undirected, molecular
graphs are treated as undirected graphs; if eij = ðvi; vjÞ˛ E,
then eji = ðvj; viÞ˛E. One equivalent representation of E involves
a binary symmetric matrix known as the adjacency matrix A˛
f0; 1gN�N , where N is the number of atoms in the molecule. In
the adjacency matrix, each entry Aij holds the value 1 if ðvi; vjÞ˛
E, and 0 otherwise.

To obtain a proper input representation for the graph neural network,
we first transformed the ASO sequences into the Simplified
Molecular-Input Line-Entry System (SMILES) format using an online
software, ChemDraw.65 Then, the Python library RDKit66 enabled us
to change the SMILES strings into molecular graphs. Finally,
following the approach introduced by Open Graph Benchmark
(OGB),67 we retrieved relevant feature vectors of dimensions 9
and 3 for the atoms and bonds, respectively, together with the adja-
cency matrix of the graph. As a result, we obtained a dataset D =

fxðiÞ; yðiÞgmi = 1 of m examples for chemical engineering, where each
xðiÞ = ðVðiÞ; EðiÞ;AðiÞÞ was the triplet for the i -th ASO and yðiÞ was
the experimentally observed inhibition rate.

For the neural network architecture, we employed Edge-augmented
Graph Transformer,53 a transformer-based model,68 which achieves
state-of-the-art performances in multiple graph-related tasks as
shown by recent works.69,70 The EGT model with parameters q, fq,
takes x = ðV; E;AÞ as an input and computes the embeddings for
the atoms and bonds in the molecule. Specifically, for the atoms
fv1; v2;.; vNg in x, we obtain the corresponding atom embeddings
fh1; h2;.; hNg, where each hl ˛Rdh is an embedding for the l-th
atom in the sample and dh is the embedding dimension. Similarly,
for bonds eij ˛ E, we obtain the bond embeddings Hij ˛ RdH , where
dH is the dimension of the bond embeddings. All of these are sequen-
tially updated through the EGT layers to produce the final embed-

dings fh½L�o

��� o = 1;.;N g and fH½L�
ij j for eij ˛Eg, where L is the

number of layers in the model. See Table S7 for a more detailed
description of the data preprocessing and model architecture.
Training and inference

One straightforward way to train our deep graph neural network fq is
to solve the regression problem of predicting knockdown efficacy.
More formally, one can optimize the model parameter q by mini-
mizing the mean-squared error:

min
q

1
m

Xm
i = 1

�
fq
�
xðiÞ

� � yðiÞ
�2

(Equation 3)

where fqðxðiÞÞ and yðiÞ are the predicted and experimental knockdown
efficacies, respectively. Note, however, that our databaseD is a collec-
tion of multiple sources of experimental results and that inhibition
rates differ by the environmental conditions, such as cell line, uptake,
transfection, dosage, and cell density (cells/well), under which the
experiment is conducted. Therefore, it is inappropriate to consider
such optimization in our problem setting, where the input xðiÞ does
not contain environmental factors but molecular features only.

Instead, we trained fq in a learning-to-rank fashion,71 a technique
widely used in the ranking community.72,73 Simply put, learning to
rank tries to learn a model fq that preserves the ordering in the orig-
inal data: fqðxðiÞÞ> fqðxðjÞÞ if yðiÞ > yðjÞ. To this end, we fed the model
two samples at a time and forced it to choose the more probable
one. This comparison-based strategymakesmore sense under a clever
choice of a pair of samples. For example, we can randomly sample two
instances that have the same experimental setups and nucleotide
sequence, but with different chemical modifications. In this
controlled scenario, a model can be trained to choose the more prom-
ising chemical modification, hiding the effects of experimental setups
in the knockdown efficacy. We refer to the instance with higher reg-
ulatory efficacy as xpos and the other as xneg. Under this setting, we
used the hinge loss on a pair of examples:

L
�
q; xpos; xneg

�
= max

�
0; t + fq

�
xneg

� � fq
�
xpos

��
(Equation 4)

where fqðxnegÞ � fqðxposÞ captures the pairwise difference in model
predictions between the negative and positive samples. t is the
threshold for the margin in the hinge loss. We obtained the q� that
minimized the following loss function:

q� = argmin
q

Xmpairs

i = 1

max
�
0; t + fq

�
xðiÞneg

�
� fq

�
xðiÞpos

��
(Equation 5)

We split the entire datasetD into training and test sets at an 8:2 ratio
based on the nucleotide sequences. Note that samples with a common
nucleotide sequence, but different chemical modifications, were in the
same set. To produce training pairs, we first chose one nucleotide
sequence and then selected two samples from the same experimental
setup, but with distinct chemical modifications, in which the differ-
ence in inhibition rates was larger than 10%. This process was
repeated for all possible examples and pairs in the training set to yield
Dtrain

pairs. Similarly, we generated a test setDtest
pairs. The number of pairs in

Dtrain
pairs and Dtest

pairs were 34,055 and 4,027, respectively. See Tables S8
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and S9 for a statistical summary of the pair dataset used for chemical
engineering.

During model training, we employed L2 regularization and early
stopping to prevent overfitting. In detail, we used regularization
strength 10� 2 and we terminated the training iteration when the
test accuracy plateaued over five training epochs. See Figure S8 for
a sample learning curve where early stopping was applied.

Once our EGT-based model was trained using Equation 5, we utilized
the model on a set of unseen examples to produce the rankings. Based
on the rankings, we sorted out the most promising chemical modifi-
cation candidates for further in vitro experiments.
Implementation details

The computational models were implemented in Python with
TensorFlow 2.5.74 The maximum number of atoms in our ASO data-
base wasN = 516. Our EGTmodel had L = 12 number of layers, and
the embedding dimensions were dh = 64 and dH = 64. The model
parameters were initialized under Xavier’s rule75 and updated with
an RMSProp optimizer76 during training, with a constant learning
rate of 10� 5. All these hyper-parameters were found based on a grid
search, which involved training the EGT-based model using all
possible combinations of hyper-parameters considered. After three
repeated training run for each hyper-parameter combination, we as-
sessed the combination based on the hinge loss in Equation 5, on
the test examples the corresponding model achieved; the best hyper-
parameters were chosen based on the lowest test hinge loss. Types
and respective ranges of hyper-parameters considered are summarized
in Table S10. All experiments were conducted on a server with Intel
Xeon Silver 4114 CPU @ 2.20 GHz and Nvidia TITAN RTX GPU.
Cell line and culture conditions

HeLa (cervical cancer) cells were purchased from the American Type
Culture Collection (ATCC, USA) and maintained in DMEM (Wel-
gene, Korea), which contains 10% FBS (Hyclone, USA) and 1% peni-
cillin-streptomycin (P/S, 10,000 U/mL, Gibco, USA). THP-1 (acute
monocytic leukemia) cells were obtained from Korean Cell Line
Bank (KCLB, Korea) and maintained in RPMI-1640 (Welgene, Ko-
rea) that contains 10% FBS and 1% P/S. The cells were incubated in
a humidified CO2 incubator and subcultured every 3 days using
0.05% Trypsin-EDTA (Gibco, USA) once confluent.
Cell culture and THP-1 differentiation

HeLa cells and THP-1 cells were seeded in 24-well plates at a density
of 3:5� 104 and 2� 105 cells/well, respectively. The THP-1 cells
were treated with 100 nM 12-O-tetradecanoyl phorbol-13-acetate
(PMA; Sigma-Aldrich, USA) for 72 h to induce differentiation into
M0 macrophages and the medium was replaced with fresh medium
after washing with PBS three times. To differentiate THP-1 cells
into M1 macrophages, the PMA-treated THP-1 cells were incubated
with 20 ng/mL rIFN-g (Thermo Fisher, USA) and 10 ng/mL LPS
(Sigma-Aldrich, USA) for 48 h.
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HeLa cells, U87-MG cells, and THP-1 cells were transiently transfected
with indicated concentrations of PS-ASO, gapmer, or ASOpt using lip-
ofectamine RNAiMAX (Invitrogen, USA) based on themanufacturer’s
instructions. After incubating for 48 h, the cells were harvested with a
scraper (SPL, USA), centrifuged at 1,500 rpm for 3 min, and lysed with
radioimmunoprecipitation assay (RIPA) buffer (iNtRON, USA). The
lysates were centrifuged at 13,000 rpm for 10 min and the supernatant
was transferred to a new 1.5-mL tube. The protein levels were quanti-
fied with the BCA Protein Assay Kit (Thermo Scientific, USA). The
protein samples were incubated in 5� SDS-PAGE loading buffer
(Biosesang, Korea) at 95+C for 10 min and separated on 10% Tris-
glycine gels for 90 min at 100 V. The proteins were transferred onto
Amersham Protran 0.45 NC membranes (Cytiva, USA) for 1.5 h
at 300 mA on ice. The membranes were blocked in 5% Bovine Serum
Albumin (GenDEPOT, USA) for 30 min at room temperature and
washed three times with 1� Tris-buffered saline containing 0.1 %
(w/v) Tween� 20 Detergent buffer (TBST; 20 mM Tris, 150 mM
NaCl, pH 7.6) (MERK, USA). The membranes were incubated with
primary IDO1 antibody (H-11, Santa Cruz Biotechnology, USA) for
2 h at room temperature and washed five times with 1� TBST. The
membranes were then incubated with HRP-linked secondary antibody
(Cell signaling, USA) for 1 h at room temperature and washed with 1�
TBST five times. The images of bands were captured using the
ImageQuant LAS-500 and an analysis of the normalized band density
was performed with the ImageJ software.

qRT-PCR

HeLa and THP-1 cells were transiently transfected with the indicated
concentrations of PS, gapmer, or ASOpt using lipofectamine
RNAiMAX based on the manufacturer’s instructions. After incu-
bating for 48 h, the cells were harvested with a scraper, centrifuged
at 1,500 rpm for 3 min, and lysed with TRIzol Reagent (Invitrogen,
USA). The lysates were mixed with chloroform (Sigma-Aldrich,
USA) and were centrifuged at 13,000 rpm for 10 min. The superna-
tant was transferred to a new 1.5-mL tube and mixed with
2-propanol EMSURE (Merk, USA). The mixtures were centrifuged
at 13,000 rpm for 10 min and then washed with 70% ethanol. After
removing the ethanol completely, the RNA pellet was dissolved in
UltraPure DNase/RNase-Free distilled water (Invitrogen, USA).
The concentration of the samples was measured using NanoDrop
(Thermo Scientific, USA). The total RNA was synthesized into
cDNA using a TOPscript RT DryMIX (Enzynomics, Korea). The
expression levels of interesting genes were analyzed using TOPreal
qRT-PCR 2� PreMIX (Enzynomics, Korea) on a CFX connect system
(Bio-Rad, USA). The primers are listed in Table S11.

Cellular IDO1 enzyme assay

HeLa cells were seeded in 24-well plates at a density of 3� 104 cells/
well. The cells were stimulated with human rIFN-g (50 ng/mL, R&D
Systems, USA) and treated with PS-ASO, gapmer, and ASOpt, which
were transfected by RNAiMAX at the indicated concentrations, or a
negative control (only RNAiMAX) for 48 h in complete DMEM.
Next, the supernatant (125 mL) from each well was transferred to a
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new 96-well plate, and 25 mL of trichloroacetic acid (30%) was added.
The mixtures were heated at 65+C for 15 min, and the plates were
centrifuged at 4,000 rpm for 15 min. The supernatant (100 mL) was
carefully transferred to a new 96-well plate. p-Dimethylaminobenzal-
dehyde (2%, v/v) in acetic acid (100 mL) was added to the plates and
the absorbance was read at a wavelength of 480 nm using a
SpectraMAX-190 ELISA plate reader (Molecular Devices, USA).

Cytotoxicity assay

HeLa cells were transfected with the indicated concentrations of PS,
gapmer, or ASOpt using lipofectamine RNAiMAX based on the man-
ufacturer’s instructions. Cytotoxicity was measured by the release of
LDH using an LDH Assay Kit (Abcam, USA). Briefly, after incubating
with the ASOs for 48 h, the 100 mL of medium from each well was har-
vested and centrifuged at 2,000 rpm for 3 min to remove debris. The
centrifuged cells were carefully transferred to a new 96-well solid white
plate (Corning, USA), and 100 mL LDH reaction mixture was added to
each well. After incubating for 30min, the absorbance wasmeasured at
450 nmwavelength using a SpectraMAX-190 ELISA plate reader. Data
analysis function: cytotoxicity (%) = (test sample – low control)/(high
control – low control) � 100; low control, non-treated sample; high
control, cell lysis solution-treated sample.

Statistical analysis

Experimental results were analyzed using GraphPad Prism 10 soft-
ware. All data are presented as the mean ± standard deviation and
computed from at least three independent trials. We consider our
findings statistically significant if the p values were in the range
�p < 0.05, � � p < 0.01, using an unpaired two-tailed student’s t test.
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