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Abstract Cells possess a multiplicity of non-membrane-bound compartments, which form via

liquid-liquid phase separation. These condensates assemble and dissolve as needed to enable

central cellular functions. One important class of condensates is those composed of two associating

polymer species that form one-to-one specific bonds. What are the physical principles that underlie

phase separation in such systems? To address this question, we employed coarse-grained

molecular dynamics simulations to examine how the phase boundaries depend on polymer valence,

stoichiometry, and binding strength. We discovered a striking phenomenon – for sufficiently strong

binding, phase separation is suppressed at rational polymer stoichiometries, which we termed the

magic-ratio effect. We further developed an analytical dimer-gel theory that confirmed the magic-

ratio effect and disentangled the individual roles of polymer properties in shaping the phase

diagram. Our work provides new insights into the factors controlling the phase diagrams of

biomolecular condensates, with implications for natural and synthetic systems.

Introduction
Eukaryotic cells are host to a multiplicity of non-membrane-bound compartments. Recent studies

have shown that these compartments form via liquid-liquid phase separation (Brangwynne et al.,

2009; Li et al., 2012; Molliex et al., 2015). The phase-separated condensates enable many central

cellular functions – from ribosome assembly, to RNA regulation and storage, to signaling and metab-

olism (Shin and Brangwynne, 2017; Banani et al., 2017). Unlike conventional liquid-liquid phase

separation, for example water-oil demixing, the underlying interactions that drive biomolecular

phase separation typically involve strong one-to-one saturable interactions, often among multiple

components (Ditlev et al., 2018). As a result, the phase diagrams of biomolecular condensates are

complex and are sensitive to a variety of physical properties of the biomolecules, included number

of binding sites, binding strengths, and additional nonspecific interactions. Importantly, these physi-

cal parameters can be subject to biological regulation, and can thus directly impact the organization

and function of the condensates. It is therefore crucial to understand how the physical properties of

the components shape the phase diagram of biomolecular condensates.

Biomolecular condensates typically contain tens to hundreds of types of molecules. Yet, when

characterized in detail, only a small number of components are responsible for condensate formation

(Ditlev et al., 2018). One class of such condensates are those formed by the association of two

essential components. In the simplest case, each component consists of repeated domains/stickers

that bind in a one-to-one fashion with the domains of the other component (Figure 1A and B;
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Choi et al., 2019; Xu et al., 2020). Such two-component condensates have been observed in both

natural and engineered contexts. For example, the pyrenoid, an organelle responsible for carbon fix-

ation in the alga Chlamydomonas reinhardtii, is a condensate of the CO2-fixing enzyme Rubisco with

the linker protein Essential PYrenoid Component 1 (EPYC1). EPYC1 consists of five evenly-spaced

Rubisco-binding regions, while Rubisco holoenzyme has eight specific binding sites for EPYC1. Multi-

valent interactions between Rubisco and EPYC1 are responsible for pyrenoid formation

(Freeman Rosenzweig et al., 2017; Wunder et al., 2018; He et al., 2020). Promyelocytic leukemia

(PML) nuclear bodies are condensates of PML proteins. PML is SUMOylated at three main positions

and several minor sites. These modifications and a C-terminal SUMO Interaction Motif (SIM) found in

most PML isoforms contribute to the formation of these bodies (Shen et al., 2006). Engineered pol-

ySUMO and polySIM proteins (10 repeats of Small Ubiquitin-like Modifier [SUMO] and SIM, respec-

tively) phase separate when mixed together, but not as individual components (Banani et al., 2016;

Ditlev et al., 2018).

Previous simulations (Freeman Rosenzweig et al., 2017; Xu et al., 2020) of average cluster size

in such two-component systems revealed a striking phenomenon – for sufficiently strong binding,

the formation of large clusters is suppressed when the valence of one species equals or is an integral

multiple of the valence of the other species, favoring the formation of small stable oligomers instead

of a condensate. The phenomenon reminiscent of the exact filling of atomic shells leading to the

unreactive noble gases was termed the ‘magic-number’ effect. A similar effect was found in a ternary

system modeling the clustering of nephrin, Nck, and NWASP proteins which regulates cell-cell adhe-

sion in podocyte cells of the kidney (Chattaraj et al., 2019). However, cluster size may reflect a sol-

gel percolation transition rather than a thermodynamic phase transition (Harmon et al., 2017), and
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Figure 1. Phase behavior of sticker and spacer associative polymers. (A) Schematic of multivalent associative

polymers. Each polymer consists of complementary domains (stickers) connected by flexible linkers (spacers). A

and B denote the polymer type and m and n denote their valences (number of stickers). (B) Association of stickers

drives phase separation, leading to the formation of a dense, network phase coexisting with a dilute phase of

small oligomers (depicted by a dimer). (C) The phase diagram depends on variety of biologically tunable

parameters. In this study, we focus on the effects of sticker-sticker binding strength, sticker:sticker concentration

ratio (i.e. stoichiometry), and polymer valences. (D) Schematic of a representative 3D phase diagram of an An : Bn

system as a function of temperature (inverse of binding strength) and A and B sticker concentrations. The dilute-

phase concentration displays anomalous dependence on the binding strength and sticker concentrations in the

strong binding regime. This is the ‘magic-ratio’ effect which we explore here in detail.
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thus provides at best a qualitative measure of phase separation. Moreover, these previous studies

focused on equal sticker stoichiometry, whereas biomolecular condensates cover a broad range of

stoichiometries both in vitro (Li et al., 2012; Banani et al., 2016) and in vivo (Sanders et al., 2020).

Here, we directly delineate the full phase diagram of such two-component systems. Using coarse-

grained molecular dynamics simulations, we explore systematically how phase boundaries depend

on valence, stoichiometry, and binding strength of two associating polymers (Figure 1C and D). Our

studies reveal an unanticipated effect – when the numbers of polymers of the two types have a ratio-

nal stoichiometry (1:1, 1:2, etc.), phase separation can be strongly suppressed, which we call the

‘magic-ratio’ effect (Figure 1D, phase diagram at low temperatures). To understand the magic-ratio

effects better, we develop a two-component sticker theory à la Semenov and Rubinstein

(Semenov and Rubinstein, 1998). We model the system as dominated by polymer dimers in the

dilute phase and by a condensate of independent stickers in the dense phase (Figure 1B). The
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Figure 2. Coarse-grained molecular-dynamics simulations of two-component multivalent associative polymers. (A)

The system consists of two types of polymers A (blue) and B (red) of varying lengths and concentrations. Depicted

are A and B polymers of length 10, denoted as A10 and B10. Each polymer is modeled as a linear chain of spherical

particles connected by harmonic bonds. Stickers of different types interact pairwisely through an attractive

potential, while repulsion between stickers of the same type prevents them from overlapping and thus ensures

one-to-one binding of stickers of different types (see Appendix 1 for details). (B) Snapshots of dimers formed by

A10 and B10 with one-to-one bonds. (C) Snapshot of a simulation with 125 A10 and 125 B10 polymers. The system

phase separates into a dense phase (middle region) and a dilute phase (two sides) in a 250 nm�50 nm�50 nm

simulation box with periodic boundary conditions. (D) Same as C but with 138 A10 and 112 B10 polymers, yielding

an overall sticker concentration ratio 1.23. (E) Sticker concentration profiles of A10:B10 systems at various overall

sticker stoichiometries (total global sticker concentration fixed at 6.64 mM), each with the center of the dense

phase aligned at x ¼ 0 and averaged over time and over ten simulation repeats (see Appendix 1). All simulations

performed in LAMMPS (Plimpton, 1995).
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resulting analytical theory captures the magic-ratio effect discovered in simulations, and allows us to

disentangle the individual roles of valence, stoichiometry, specific-bond strength, and nonspecific

attraction in determining the phase boundaries of two-component multivalent systems. Living cells

regulate the valence and interactions of biomolecules through chemical modification, or on a slower

timescale, tune the stoichiometry via synthesis/degradation or sequestration, and over evolutionary

time, adapt the strength of specific and nonspecific interactions through mutation of molecular

sequences. Understanding the individual roles of these biologically tunable variables thus brings

new insights into possible cellular strategies for regulating the formation and dissolution of biomo-

lecular condensates.

Results

Coarse-grained molecular-dynamics simulations
We perform coarse-grained molecular-dynamics simulations using LAMMPS (Plimpton, 1995) to

determine the phase boundaries of two-component multivalent systems (Figure 2). Briefly, we

model the two polymer species as flexible linear chains of beads connected by harmonic springs

(Figure 2A). Each bead represents one associative domain/sticker of the polymer. To ensure associa-

tive domains of different polymer types bind in a one-to-one fashion, we impose a finite-ranged

attractive interaction between beads of different types. This, however, could lead to more than one-

to-one associations. Therefore, to avoid such unwanted associations, we impose strong repulsive

interactions between beads of the same type over a large enough range to prevent other beads

overlapping with a bound pair, thus preventing multiple-to-one binding (Figure 2B and Appen-

dix 1—figure 1), see Appendix 1 for details.

To find the binodal phase boundaries, we simulate hundreds of polymers of types A and B with,

respectively, m and n stickers (an Am : Bn system) in a box with periodic boundary conditions

(Figure 2C and D). We initialize the system by constructing a dense slab of polymers in the middle

of the box (Dignon et al., 2018). The system evolves and relaxes according to Langevin dynamics

(Langevin, 1908). After the system has achieved equilibrium, two phases coexist: a dilute phase con-

sisting of dimers and other small oligomers, and a dense phase of an interconnected polymer con-

densate. We measure the corresponding density profile (Figure 2E) and calculate the dilute- and

dense-phase concentrations by averaging the density profile over the regions (x � �100 nm or

x � 100nm) and (�10nm � x � 10 nm), respectively. See Appendix 1 for simulation details.

Effect of valence
It was shown previously that for equal sticker stoichiometry in the strong-binding regime, clustering

is substantially suppressed when the number of binding sites on one polymer species is an integer

multiple of the number of binding sites on the other, as this condition favors the assembly of small

oligomers in which all binding sites are saturated (Freeman Rosenzweig et al., 2017; Xu et al.,

2020). What does this magic-number effect imply for the actual phase diagram? To address this

question, we fix the valence of polymer A at 14 and systematically vary the valence of polymer B

from 5 to 16 while keeping the two sticker concentrations the same, that is, at equal global sticker

stoichiometry.

Figure 3A and B show simulation results for the total sticker concentrations of the dilute and

dense phases for A14:B5 to A14:B16 systems. In the strong binding regime, for magic-number cases,

that is when the valence of B is 7 or 14, the dilute-phase concentration shows pronounced peaks

(Figure 3A, black curve). What is the origin of the peak at A14:B14? Intuitively, when the dilute phase

of the two-component system is dominated by dimers (for systems A14:B12 to A14:B16, as supported

by cluster size analysis in Appendix 1—figure 2), each of these dimers has high translational

entropy, whereas polymers in the dense condensate have low translational entropy. For A14:B14, all

binding sites can pair up in a dimer just as well as in the condensate, so the energy per polymer is

not necessarily lower in the condensate. Why then is the condensate still competitive with the dilute

phase? In a dimer, the binding sites of A14 must match all the binding sites of B14, leading to a

reduced overall conformational entropy. By comparison, the polymers in the condensate are more

independent, binding to multiple members of the other species and enjoying a relatively higher

overall conformational entropy. Because the translational entropy of each dimer decreases as their
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concentration goes up, the condensed phase eventually becomes more favorable and so the system

phase separates with increasing concentration. Therefore, phase separation in A14:B14 is primarily

driven by a competition between translational entropy and conformational entropy.

By contrast, for A14:B13 and A14:B15, one of the stickers in the dimer cannot be paired, and for

A14:B12 and A14:B16, two stickers per dimer cannot be paired. Therefore, forming a condensate not

only increases the conformational entropy but more importantly lowers the energy of these systems.

This significantly tilts the balance in favor of condensation. As a result, the dilute-phase concentra-

tion is sharply peaked at A14:B14, falling off rapidly for increasingly unequal polymer lengths. We

note that the dense-phase concentration shows no such feature (Figure 3B), indicating that the peak

at A14:B14 does not arise from differences in the internal structure of the dense phase.

The dilute phase of two-component systems is not always dominated by dimers (Appendix 1—

figure 2). For example, the dilute phase of the A14:B7 system is dominated by fully-bonded trimers

with 1 A14 and 2 B7, the dilute phase of A14:B8 is dominated by trimers with 1 A14 and 2 B8, which

has two unpaired stickers per trimer, and the dilute phase of A14:B6 is dominated by oligomers with

3 A14 and 7 B6, which although fully-bonded is not small (Figure 3D). Consistent with the above

logic, we find another peak in the dilute-phase concentration at A14:B7 (Figure 3A). More generally,

in contrast to the magic-number systems, the dilute phases in other cases are dominated by oligom-

ers which are not capable of being fully bonded (high energy) and/or not small (low translational

entropy) (Appendix 1—figure 2). The dilute-phase concentration is therefore lower in these non-

magic-number cases.
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Figure 3. Simulations of associative polymers reveal a magic-number effect with respect to relative valence. Total

sticker concentrations (type A plus type B) in (A) dilute and (B) dense phases for simulated polymer systems at

different binding strengths. U0 denotes the depth of the potential well, in units of kBT (see Appendix 1 for details).

The valence of polymer A is 14, and the valence of polymer B ranges from 5 to 16. Global sticker stoichiometry is

one and total global sticker concentration is 6.64 mM. Histograms of cluster size in (C) A14:B14 and (D) A14:B6

systems, for U0 ¼ 14. ‘Counts’ refer to number of clusters. Cluster size is measured in stickers. Red dots indicate

the dominant oligomer in the dilute phase.
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Effect of binding strength
How do the phase boundaries depend on the strength of binding? Figure 3A shows that, for non-

magic-number systems, the dilute-phase concentration decreases monotonically with increasing

binding strength, whereas for magic-number systems the dependence can be non-monotonic. This

difference is attributed to the distinct underlying driving forces for phase separation. For non-magic-

number systems, as clustering allows a larger fraction of binding sites to be paired, the stronger the

binding, the more the energy is lowered by condensate formation. Therefore, the dilute-phase con-

centration drops as binding strength increases (or as temperature decreases). Such energy-depen-

dence is expected for conventional phase-separation models, such as Flory, 1942; Huggins, 1941.

Interestingly, for the magic-number system A14:B14, the dilute-phase concentration first decreases

with increasing binding strength in the weak binding regime, similar to non-magic-number systems.

However, as the binding energy is increased further, most of binding sites pair up in both dilute and

dense phases. Phase separation is then primarily driven by a competition between conformational

and translational entropy. The pairing up of binding sites reduces the conformational entropy of

both the dense and dilute phases. By contrast, the translational entropy of the dilute-phase compo-

nents is almost unaffected. Consequently, the dilute phase becomes more competitive relative to

the condensate, so the dilute phase boundary shifts to higher concentration.

By comparison, the dense-phase concentration increases monotonically with increasing binding

strength for all systems (Figure 3B). This follows because the stronger the binding, the more stickers

are paired, which tightens the condensate structure. We note that at substantially higher binding

energies than studied here, essentially all the binding sites are satisfied in both magic-number and

non-magic-number systems, and the phase boundaries become independent of binding energy.
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Figure 4. Simulations of associative polymers reveal a magic-ratio effect with respect to polymer stoichiometry.

Sticker concentrations in (A) dilute and (B) dense phases for equal polymer length systems (i.e. An : Bn) at different

global sticker stoichiometries. Sticker concentrations in (C) dilute and (D) dense phases for systems where polymer

B is one sticker shorter than polymer A (i.e. An : Bn�1) at different global sticker stoichiometries; black dots indicate

cases where the number of polymers of each type is the same. Interaction strength U0 ¼ 14 and total global sticker

concentration 6.64 mM.
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Effect of sticker stoichiometry
How do the phase boundaries depend on overall sticker stoichiometry? Figure 4A and B show total

sticker concentrations of the dilute and dense phases for magic-number systems A8:B8 to A14:B14 at

different global sticker stoichiometries. For each system, the dilute-phase concentration peaks at

equal sticker ratio, falls off initially as the ratio deviates from 1, and then curves back up. What is the

origin of the peak at equal sticker stoichiometry? Recall that, in the strong binding regime, phase

separation of magic-number systems is primarily driven by a competition between translational

entropy and conformational entropy. Now consider starting with a system at equal sticker concentra-

tion, and adding more of one polymer species to the system. At the beginning, the added polymers

readily enter the dense phase, which relaxes the conformational constraint that every sticker in the

condensate has to pair with a partner. This increase of the conformational entropy of the condensate

makes it more competitive, so the dilute-phase concentration decreases. However, as the ratio

between the two polymers is increased further, it becomes possible to form a spectrum of dilute-

phase oligomers which typically contain one extra polymer of the majority type (Appendix 1—table

1). These new oligomers have more relaxed structures than fully bonded dimers, which raises the

conformational entropy of the dilute phase. Therefore, the dilute phase is favored over the conden-

sate and its concentration curves back up.

Figure 4A also reveals that the dilute-phase concentration decreases with increasing polymer

valence. This follows in part because translational entropy in the dilute phase is per dimer center of

mass, whereas conformational entropy in both phases scales with the number of stickers. The entro-

pic gain of joining the dense phase is therefore more on a per sticker basis for longer polymers, so

the dilute-phase concentration decreases with increasing valence. As a less apparent yet important

point, Figure 4A also shows that increasing polymer valence enhances both the width and relative

height of the peak in the dilute-phase concentration. The inferred phase diagram for the A8:B8 sys-

tem at U0 ¼ 14kBT is shown in Appendix 1—figure 3 together with the homogeneous gelation/per-

colation threshold obtained at U0 ¼ 8kBT. We also report in Appendix 1—figure 5C the volume

fraction of the polymers in the dense phase, which is ~10%, comparable to the volume fraction of

proteins in the cell cytoplasm.

Figure 4C and D show total sticker concentrations of the dilute and dense phases for unequal

valence polymers A8:B7 to A14:B13 at different global sticker stoichiometries. The dilute phase

boundary shows a symmetric minimum around equal stoichiometry for A8:B7, yet surprisingly, the

phase boundary becomes asymmetric and then peaks at equal polymer stoichiometry with increasing

polymer length (Figure 4C). What is the origin of these peaks? Taking the A14:B13 system as an

example, its dilute phase is dominated by dimers with an unpaired A sticker. This strongly disfavors

the dilute phase in the strong binding regime at equal sticker stoichiometry. However, as the overall

A:B sticker stoichiometry increases, the excess As cannot be paired anyway. In particular, at equal
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Figure 5. Simulations of associative polymers reveal a magic-ratio effect. Sum of concentrations of stickers A and

B in (A) dilute and (B) dense phases for systems A14:B12-16 at global sticker stoichiometries 14:12-16. Parameters:

interaction strength U0 ¼ 14 and total global sticker concentration 6.64 mM.
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polymer stoichiometry (denoted as black dots in Figure 4C), forming dimers is no longer energeti-

cally costly. Therefore, to the left of the A14:B13 peak at equal polymer stoichiometry, the dilute-

phase concentration is low because dimers are energetically disfavored as more bonds can be satis-

fied in the condensate. By contrast, to the right of the peak, the dilute-phase concentration is low

for a different reason – because the condensate is entropically favored, similar to the peak with

respect to stoichiometry for magic-number systems. Eventually, the dilute-phase concentration

curves back up due to formation of higher oligomers in the dilute phase, as discussed for magic-

number systems.

We note that for all these systems the dense-phase concentration shows no such striking features.

Rather, the concentration decreases monotonically as the global sticker stoichiometry departs from

one and as the valence of polymers decreases (Figure 4B and D).

Effect of valence and stoichiometry
Above, we considered the role of both relative valence and relative stoichiometry. By plotting phase

boundaries as joint functions of valence and stoichiometry, we obtain a unified picture: Figure 5A

and B show the dilute- and dense-phase concentrations for systems A14:B12-16 at global sticker stoi-

chiometries 14:12-16. Notably, the dilute-phase concentration is peaked along the diagonal

(Figure 5A), that is at equal polymer stoichiometry, which we term the ’magic-ratio’ effect because

it occurs for rational ratios of associative polymers. Intuitively, all cases along the diagonal favor 1:1

polymer dimers: the dimers enjoy high translation entropy and there is no energy penalty involved in

their formation. Thus, a dilute phase of dimers is strongly favored at equal polymer stoichiometry.

As for the dense phase concentration, it decreases monotonically as the global sticker stoichiom-

etry departs from one and as the valence of polymers decreases (Figure 5B). This again indicates

that the anomalous dependence of the dilute-phase concentration on valence and stoichiometry

does not arise from special properties of the dense phase.

Dimer-gel theory
While our simulations have revealed that a magic-ratio effect influences the boundaries of phase sep-

aration for associating polymers, we desire a deeper understanding of the interplay of factors such

as overall valence, stoichiometry, and interaction strength. To this end, we develop a mean field the-

ory of two-component associative polymers à la Semenov and Rubinstein (Semenov and Rubinstein,

1998; Xu, 2018).

Specifically, we consider a system of A and B polymers as in our simulations. Each polymer is a lin-

ear chain of L1 or L2 stickers of type A or type B, respectively. Without loss of generality, we take

L1 � L2. stickers of different types associate in a one-to-one fashion. Our simulations suggest that for

polymers of similar valence close to equal polymer stoichiometry the dilute phase is dominated by

dimers and the dense phase is a gel network. Therefore, we assume that polymers can associate

either as dimers or, alternatively, as a condensate in which pairs of stickers bind independently. This

assumption of independence is a mean field approximation, as it neglects correlations between

stickers in the same chain, and thus only applies when the polymers strongly overlap, that is at densi-

ties above the semidilute regime (De Gennes, 1979).

The partition function of such a system can be divided into three parts: Z ¼ ZniZsZns, where Zni,

the partition function of a solution of non-interacting polymers, captures the translational and con-

formational entropy of the two polymer species, Zs captures specific interactions between associat-

ing stickers, and Zns captures all nonspecific interactions.

The corresponding free-energy density for the mixed non-interacting polymers is Semenov and

Rubinstein, 1998:

Fni

kBT
¼

c1

L1
ln

c1

eL1
þ
c2

L2
ln

c2

eL2
; (1)

where c1 and c2 are the concentrations of A and B polymers measured in terms of stickers. Note that

the terms for the conformational entropy of non-interacting polymers are omitted in Equation 1, as

they are linear in c1 and c2 and thus do not influence the phase boundaries.
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To include specific interactions, we first consider the partition function ZsðNd1;Nd2;NbÞ for states

with exactly Nd1 and Nd2 total numbers of stickers of A and B types in dimers (i.e. number of dimers

equals Nd1=L1 ¼ Nd2=L2) and Nb additional sticker pairs,

ZsðNd1;Nd2;NbÞ ¼ PðNd1;Nd2;NbÞWðNd1;Nd2;NbÞexp Nd1�d=L1 þNb�bð Þ: (2)

In Equation 2, P is the number of different ways that polymers and stickers can be chosen to pair

up to form dimers and independent bonds,

PðNd1;Nd2;NbÞ ¼
N1=L1

Nd1=L1

� �

N2=L2

Nd2=L2

� �

ðNd1=L1Þ!
N1 �Nd1

Nb

� �

N2�Nd2

Nb

� �

Nb!; (3)

where N1 and N2 are the total numbers of stickers of A and B types. (Note that in Equation (3) if

L1>L2, the excess stickers of type A in dimers do not form additional bonds.) In Equation (2), W is

the probability that all chosen polymers and stickers are, respectively, close enough to their speci-

fied partners in the non-interacting state to form dimers and independent bonds,

WðNd;NbÞ ¼
vd

V

� �

Nd1
L1 vb

V

� �Nb

; (4)

where vd and vb are effective interaction volumes and V is the system volume. The last term in Equa-

tion (2) is the Boltzmann factor for specific interactions, where �d and �b are the effective binding

energies of dimers and sticker pairs, in units of kBT.

The part of the free-energy density due to specific interactions is

Fs

kBT
¼�

1

V
lnZs: (5)

Using Stirling’s approximation lnN!¼N lnN�N, we obtain

Fs

kBT
¼�

c1

L1
lnc1 þ 1�L1ð Þ

c1� cd1

L1
ln c1 � cd1ð Þþ ðc1 � cd1� cbÞ lnðc1 � cd1� cbÞ

�
c2

L2
lnc2 þ 1�L2ð Þ

c2� cd2

L2
ln c2 � cd2ð Þþ ðc2� cd2� cbÞ lnðc2 � cd2� cbÞþ

cd1

L1
lnðecd2L1KdÞþ cb lnðecbKbÞ;

(6)

where Kd � e��d=vd and Kb � e��b=vb are, respectively, the dissociation constants of a dimer and of a

pair of stickers. cd1 and cd2 are the concentrations of stickers of A and B types in dimers (so

cd1=L1 ¼ cd2=L2), and cb is the concentration of independent bonds.

In the thermodynamic limit, Fs will be minimized with respect to cd1, cd2 and cb, which implies

Kdcd2L1 c1 � cd1ð ÞL1�1
c2 � cd2ð ÞL2�1¼ c1� cd1� cbð ÞL1 c2� cd2� cbð ÞL2 ; (7)

Kbcb ¼ c1 � cd1� cbð Þ c2 � cd2� cbð Þ: (8)

Note that if cb in Equation (7) and cd1 and cd2 in Equation (8) are set to zero, these equations

reduce to

Kd�d ¼ �1 � �dð Þ �2 � �dð Þ; (9)

Kbcb ¼ c1� cbð Þ c2 � cbð Þ; (10)

where �1, �2, and �d are the total concentrations of A and B polymers and dimers (measured in poly-

meric units), that is, �1 ¼ c1=L1, �2 ¼ c2=L2, and �d ¼ cd1=L1 ¼ cd2=L2. Equations (9) and (10) are con-

sistent with the definitions of the dissociation constants of a dimer and of an independent bond,

respectively.

The free-energy density due to nonspecific interactions can in general be written as a power

expansion in the concentrations (Semenov and Rubinstein, 1998; De Gennes, 1979),

Fns

kBT
¼
1

2

X

ij

vijcicj þ
1

6

X

ijk

wijkcicjck; (11)
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where the sum is over all the species in the system, including free polymers/stickers, dimers and

independent bonds, and vij and wijk are two- and three-body interaction parameters. For our simula-

tion system, we derive a specific form of Fns by taking into account that (1) we are interested in the

strong-binding regime where the magic-ratio effect is observed, (2) there is no nonspecific interac-

tion between free polymers of different types in our simulation, and (3) nonspecific interactions are

only important at high concentrations. The result is

Fns

kBT
¼
vb

2
maxðc1;c2Þ

2þ
wb

6
maxðc1;c2Þ

3; (12)

where vb and wb are the two- and three-body interaction parameters for a solution of independent

bonds. See Appendix 2 for details of the derivation.

Finally, substituting the conditions Equations (7) and (8) into Equation (6), we obtain the total

free-energy density F ¼ Fni þ Fs þ Fns,

F

kBT
¼

c1

L1
ln
c1 � cd1

eL1
þ c1 ln

c1 � cd1� cb

c1 � cd1
þ
cd1

L1

þ
c2

L2
ln
c2� cd2

eL2
þ c2 ln

c2 � cd2� cb

c2 � cd2
þ cb þ

vb

2
maxðc1;c2Þ

2 þ
wb

6
maxðc1;c2Þ

3;
(13)
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Figure 6. A dimer-gel theory predicts the magic-ratio effect. Phase diagrams of (A) A8:B8 and (B) A8:B7 systems:

one-phase region white, two-phase region green. The dilute- and dense-phase concentrations are connected by

representative tie lines. The tie line along the direction of equal polymer stoichiometry is denoted with a black

dot. Insets: fraction of stickers in dimers for (A) A8:B8 and (B) A8:B7 systems. White curve in A inset is the transition

boundary between dimer- and independent bonds-dominated regions predicted by cs. Dashed white line in (B)

inset denotes equal polymer stoichiometry. Sticker concentrations in (C) dilute and (D) dense phases for systems

A8:B6-10 at global sticker stoichiometries 8:6-10. The total global sticker concentration is the same as in

simulations, 6.64 mM. For details see Appendix 2. Parameters: vb ¼ 9� 10
�2mM�1, wb ¼ 7� 10

�3mM�2,

Kb ¼ 3:8� 10
�3mM, and Kd values in Appendix 1—table 3.
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where cd1, cd2, and cb are the solutions of Equations (7) and (8). Equations (7), (8) and (13) form a

complete set which predicts the free-energy density of the two-component associative polymer sys-

tem at given total global sticker concentrations, c1 and c2, of the two species.

Intuitively, in the strong-binding regime, that is when c1; c2 � Kd;Kb, polymers either associate as

dimers or as independent bonds depending on their relative free energies. In the limit that dimers

are preferred (�d ¼ minð�1; �2Þ and cb ¼ 0), the contribution from specific interactions is

Fdim
s

kBT
¼ �d lnKd þð�� �dÞ ln

�� �d
e

� � ln
�

e
; (14)

where �¼maxð�1; �2Þ is the concentration of the majority species in polymeric units. The terms on

the right of Equation (14) reflect, respectively, the free-energy density due to dimer formation,

translational entropy of leftover polymers, and loss of translational entropy of the majority species

(in effect, the formation of each dimer removes the translation entropy of one free polymer). In the

opposite limit that independent bonds are preferred (cb ¼minðc1;c2Þ and �d ¼ 0),

Find
s

kBT
¼ cb lnKb þðc� cbÞ ln

c� cb

e
� c ln

c

e
; (15)

where c¼maxðc1;c2Þ, and the terms are analogous to those in Equation (14). Numerical studies

show that the full Fsðc1;c2Þ in Equation (6) is always well approximated by the lower of the two limit-

ing values of Fs (Equation (14) and (15)).

In which regions of concentration space are dimers versus independent bonds preferred? For a

magic-number system composed of two polymer species of valence L at equal sticker stoichiometry,

Fdim
s =kBT ¼ � lnðKde=�Þ and Find

s =kBT ¼ c lnðKbe=cÞ. Comparing the two expressions, dimers are

favored at low concentrations, whereas a network of independent bonds is favored at high concen-

trations. The transition occurs when Fdim
s ¼ Find

s , that is at concentration c0 ¼ eðKL
b=ðKdLÞÞ

1=ðL�1Þ.

Away from equal stoichiometry, the transition occurs at a lower concentration cs ¼ c0ðs� 1Þs�1
s�s,

where s ¼ maxðc1; c2Þ=minðc1; c2Þ>1 (see Appendix 2 for details). As cs decreases rapidly with increas-

ing s (Figure 6A inset, white curve), the preference for dimers over a gel exhibits a sharp peak

around equal stoichiometry.

To give a concrete example of the above analysis, we extract the values of Kd for dimers from

simulations, choose a value of Kb for independent bonds close to the dissociation constant of a pair

of stickers (see Appendix 2 for details), and numerically solve Equation (7) and (8) for cd1, cd2, and cb

to find the fraction of stickers in dimers and independent bonds for all concentrations ðc1; c2Þ. We

find that indeed for polymers of equal valence, dimers are favored at low concentrations and inde-

pendent bonds at high concentrations. The dimer dominated region extends sharply to higher con-

centrations in a narrow zone around the diagonal, as quantitatively captured by cs (Figure 6A inset

and Appendix 2—figure 1A). For polymers of similar but unequal valence, the dimer dominated

region extends to higher concentrations along the direction of equal polymer stoichiometry

(Figure 6B inset and Appendix 2—figure 1B).

Finally, to extract the binodal phase boundaries, we substitute the values of cd1, cd2, and cb into

Equation (13) to first obtain the free energy as a function of c1 and c2. The free-energy landscape

has two basins, one at small concentrations corresponding to the dilute dimer-dominated phase,

and one at high concentrations corresponding to the dense independent-bond-dominated gel-

phase (Appendix 2—figure 2). We locate the phase boundaries by applying convex-hull analysis to

this free-energy landscape (see Appendix 2).

Does the dimer-gel theory capture the magic-ratio effect revealed by our simulations? Figure 6A

and B show the phase diagrams of A8:B8 and A8:B7 systems. In both cases, the phase boundaries on

the dilute side extend sharply into the two-phase region along the direction of equal polymer stoi-

chiometry (tie lines along this direction are denoted by black dots). Figure 6C and D show the

dilute- and dense-phase concentrations for systems A8:B6-10 at global sticker stoichiometries 8:6-10.

Notably, the dilute-phase concentrations are substantially shifted up around the diagonal, verifying

the magic-ratio effect observed in simulations (Figure 5A).

One of the major assumptions of the dimer-gel theory is a mean-field approximation. Mean-field

theory ignores correlations in binding between stickers in the same chain, and therefore has been

applied to long chains in the weak binding regime (such that not every sticker is bound)
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(Prusty et al., 2018; Choi et al., 2020b). Our dimer-gel theory bypasses this stringent requirement

by explicitly assuming the dilute-phase components to be dimers, and only considers stickers to

associate independently in the dense phase. This approximation captures a key feature of the dense

phase, namely that a single polymer binds to multiple partners. Nevertheless, because stickers

belonging to the same polymer are tethered together with relatively short linkers in our simulations,

correlations in binding exist (Appendix 2—figure 5A). Therefore, what should be considered to be

‘independent’ is not individual stickers but rather segments of the binding correlation length (~1.8

stickers). The dense phase of a valence 14 system is thus more accurately described by the theory at

valence 14=1:8 » 8. We therefore present results for valence eight systems in Figure 6. (The theoreti-

cal phase diagrams and the dilute- and dense-phase concentrations for valence 14 systems also ver-

ify the magic-ratio effect (Appendix 2—figure 4)).

The dimer-gel theory has only a handful of parameters: the valences L1 and L2 of polymers A and

B, the dissociation constants Kd and Kb of dimers and independent bonds, and the nonspecific inter-

action parameters vb and wb. How are the phase boundaries and the magic-ratio effects determined

collectively by these parameters? If valence is increased while keeping all other parameters fixed in

the theory, for equal valence polymers we find that the dilute-phase concentration decreases, while

the dense-phase concentration increases, and the peak with respect to stoichiometry is enhanced in

terms of the dilute-phase peak-to-valley ratio (Appendix 2—figure 6A and B). If valence is increased

for unequal valence polymers, we observe that the shape of the dilute phase boundary transitions

from a shoulder to a peak (Appendix 2—figure 6C and D). All these features are consistent with the

simulation results in Figure 4.

For the theory to agree quantitatively with the phase boundaries from simulations, we find that

smaller values of nonspecific interaction parameters are necessary for higher valence systems

(Appendix 2—figure 6C and D). Intuitively, this follows because higher valence polymers have more

backbone bonds, which bring bound sticker pairs closer together in the dense phase – effectively

reducing the nonspecific repulsion between them. Finally, the dimer-gel theory also predicts that the

magic-ratio effect disappears in the weak-binding regime (Appendix 2—figure 7), consistent with

our simulation results (Figure 3).

Discussion
Intracellular phase separation is driven by multivalent interactions between macromolecules. These

interactions are separated into two classes (Ditlev et al., 2018; Pak et al., 2016): (1) specific interac-

tions, such as binding between protein domains, are relatively strong and involve specific partners

and (2) nonspecific interactions, such as electrostatic and hydrophobic interactions, which are much

weaker, more generic, and non-saturable. Multivalent systems with specific interactions allow for

‘orthogonal’ condensates to form: the specific interactions holding together one class of droplets

will typically not interfere with those holding together another class. Motivated by the key role of

specific interactions in intracellular phase separation, we focused on exploring the effects of specific

interactions on the phase boundaries of two-component associative polymers. Specifically, we com-

bined coarse-grained molecular dynamics simulations and analytical theory to examine the individual

roles of valence, stoichiometry, and binding strength on the phase boundaries. In particular, we

identified a magic-ratio effect: for sufficiently strong binding, phase separation is strongly sup-

pressed at equal polymer stoichiometry.

The magic-ratio effect occurs exclusively in the strong-binding regime. Are specific protein-pro-

tein, protein-RNA, and RNA-RNA interactions strong enough to lead to the magic-ratio effect? The

onset of the effect in our simulations occurs around U0 ¼ 9kBT (Figure 3A), which corresponds to a

sticker-sticker dissociation constant Kd ¼ 0:4mM. This value is consistent with the onset Kd of 1–2.5

mM estimated from 3D lattice simulations with one polymer and one rigid component (Xu et al.,

2020). For comparison, the measured Kd for a SUMO protein domain with a SIM peptide is 0.01 mM

(Banani et al., 2016) and the Kd for an SH3 domain and a PRM peptide is 0.35 mM (Li et al., 2012).

Thus for systems as strongly interacting as SUMO-SIM or SH3-PRM, the magic-ratio effect in princi-

ple should manifest in their phase diagrams. However, the magic-ratio effect has not been observed

in these systems (Li et al., 2012; Banani et al., 2016), possibly due to size and linker length mis-

match between the two associating polymers. Furthermore, real biological systems are more com-

plex than our simple model. For example, there can be multiple-to-one binding, multiple
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components, and the spacers/linkers can also play nontrivial roles (Banjade et al., 2015;

Harmon et al., 2017). Currently, the in vivo relevance of the effects explored in this work remains an

open question. Magic-ratio effects could also manifest in other experimental systems, such as non-

biological polymers, DNA origami (Hu and Niemeyer, 2019), or patchy colloid systems

(Bianchi et al., 2011). As an inverse problem, the magic-ratio effect could be exploited to determine

the relative valence of associating biomolecules by measuring their phase diagram.

The magic-ratio effect allows for novel mechanisms of regulation. Chemical modifications, such as

phosphorylation or SUMOylation, which change the effective valence of one component into or out

of a magic-ratio condition could shift the phase boundary as a means of condensate regulation. Cells

may also have evolved to avoid magic ratios so as to better promote condensate formation. For

example, EPYC1 has valence five and Rubisco has valence eight, and the geometry of binding sites

on Rubisco and the length of linkers in EPYC1 are such that they disfavor fully-bonded Rubisco-

EPYC1 dimers even at equal polymer stoichiometry, which suppresses the magic-ratio effect

(He et al., 2020). However, active removal of a terminal EPYC1 binding site, for example by phos-

phorylation (Turkina et al., 2006), would dramatically change the valence ratio to 1:2, which would

then favor stable trimer formation, as previously suggested (Freeman Rosenzweig et al., 2017). We

hope that our work will stimulate exploration of magic-ratio effects in both natural and synthetic mul-

tivalent, multicomponent systems.

The simulations and theory presented here are aimed at providing conceptual insights into the

phase separation of associating polymers that form one-to-one specific bonds. Quantitative descrip-

tions of related real systems will likely require additional features, such as details of molecular shape

and flexibility, linker lengths, as well as range and type of interactions. For example, while the

magic-ratio effect is robust with respect to the strength of nonspecific interactions and linker length,

these variables do strongly influence phase boundaries. The dilute-phase concentrations in our simu-

lations are ~mM, while the reported values for biological systems are typically tens of mM or less.

The discrepancy is likely due to different strengths of nonspecific attraction, different length scales

of steric replusion between stickers, and/or different lengths and flexibilities of the linkers

(Bhandari et al., 2021). Indeed, increasing the nonspecific attraction in our simulations by a small

amount 0:07kBT leads to a 50% reduction in the dilute-phase concentration (Appendix 1—figure

4A). Reducing the steric repulsion between beads of the same type has a similar effect (Appen-

dix 1—figure 5A). More significantly, increasing the mean linker length from 4.7 nm to 5.9 nm leads

to a more than 10-fold reduction in the dilute-phase concentration (Appendix 1—figure 6A). On

the other hand, the dense-phase concentration strongly depends on the steric repulsion — increas-

ing the sticker size from 2.5 to 2.9 nm decreases the dense phase concentration by a factor of 2

(Appendix 1—figure 5B). This is consistent with results from previous studies on the role of linkers:

a self-avoiding random coil linker which occupies a large volume can substantially lower the dense-

phase concentration and even prevent phase separation (Harmon et al., 2017). Future work will

explore the interplay between specific and nonspecific interactions, and other molecular properties,

and their roles in determining the physical properties of droplets, such as surface tension, viscosity,

and rate of exchange between phases.
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Langevin P. 1908. Sur la théorie Du mouvement brownien on the theory of brownian motion. Comptes Rendus
De l’Académie Des Sciences 146:530–533.

Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS,
Jiang QX, Nixon BT, Rosen MK. 2012. Phase transitions in the assembly of multivalent signalling proteins.
Nature 483:336–340. DOI: https://doi.org/10.1038/nature10879, PMID: 22398450

Marcilla Gomis A. 2011. GE models and algorithms for condensed phase equilibrium data regression in ternary
systems: limitations and proposals. The Open Thermodynamics Journal 5:48–62. DOI: https://doi.org/10.2174/
1874396X01105010048

Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP. 2015. Phase separation by
low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–
133. DOI: https://doi.org/10.1016/j.cell.2015.09.015, PMID: 26406374

Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, Ali R, Yunus AA, Liu DR, Pappu RV, Rosen MK. 2016.
Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein.
Molecular Cell 63:72–85. DOI: https://doi.org/10.1016/j.molcel.2016.05.042, PMID: 27392146

Plimpton S. 1995. Fast parallel algorithms for Short-Range molecular dynamics. Journal of Computational Physics
117:1–19. DOI: https://doi.org/10.1006/jcph.1995.1039

Prusty D, Pryamitsyn V, Olvera de la Cruz M. 2018. Thermodynamics of associative polymer blends.
Macromolecules 51:5918–5932. DOI: https://doi.org/10.1021/acs.macromol.8b00661

Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, Bracha D, Eeftens JM, Iwanicki A, Wang A,
Wei MT, Whitney G, Lyons SM, Anderson P, Jacobs WM, Ivanov P, Brangwynne CP. 2020. Competing Protein-
RNA interaction networks control multiphase intracellular organization. Cell 181:306–324. DOI: https://doi.org/
10.1016/j.cell.2020.03.050, PMID: 32302570

Semenov AN, Rubinstein M. 1998. Thermoreversible gelation in solutions of associative polymers. 1. statics.
Macromolecules 31:1373–1385. DOI: https://doi.org/10.1021/ma970616h

Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP. 2006. The mechanisms of PML-nuclear body formation.
Molecular Cell 24:331–339. DOI: https://doi.org/10.1016/j.molcel.2006.09.013, PMID: 17081985

Shin Y, Brangwynne CP. 2017. Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382.
DOI: https://doi.org/10.1126/science.aaf4382, PMID: 28935776

Turkina MV, Blanco-Rivero A, Vainonen JP, Vener AV, Villarejo A. 2006. CO2 limitation induces specific redox-
dependent protein phosphorylation in Chlamydomonas reinhardtii. Proteomics 6:2693–2704. DOI: https://doi.
org/10.1002/pmic.200500461, PMID: 16572472

Wunder T, Cheng SLH, Lai SK, Li HY, Mueller-Cajar O. 2018. The phase separation underlying the pyrenoid-
based microalgal rubisco supercharger. Nature Communications 9:1–10. DOI: https://doi.org/10.1038/s41467-
018-07624-w, PMID: 30498228

Xu B. 2018. Protein Phase Separation in and Out of Cells. Princeton University.
Xu B, He G, Weiner BG, Ronceray P, Meir Y, Jonikas MC, Wingreen NS. 2020. Rigidity enhances a magic-number
effect in polymer phase separation. Nature Communications 11:1–8. DOI: https://doi.org/10.1038/s41467-020-
15395-6

Zhang et al. eLife 2021;10:e62403. DOI: https://doi.org/10.7554/eLife.62403 15 of 31

Research article Physics of Living Systems

https://doi.org/10.1371/journal.pcbi.1005941
https://doi.org/10.1371/journal.pcbi.1005941
http://www.ncbi.nlm.nih.gov/pubmed/29364893
https://doi.org/10.1016/j.jmb.2018.08.003
http://www.ncbi.nlm.nih.gov/pubmed/30099028
https://doi.org/10.1063/1.1723621
https://doi.org/10.1016/j.cell.2017.08.008
http://www.ncbi.nlm.nih.gov/pubmed/28938114
https://doi.org/10.7554/eLife.30294
https://doi.org/10.7554/eLife.30294
http://www.ncbi.nlm.nih.gov/pubmed/29091028
https://doi.org/10.1038/s41477-020-00811-y
https://doi.org/10.1038/s41477-020-00811-y
http://www.ncbi.nlm.nih.gov/pubmed/33230314
https://doi.org/10.1002/adma.201806294
https://doi.org/10.1063/1.1750930
https://doi.org/10.1063/1.1750930
https://doi.org/10.1103/PhysRev.115.1417
https://doi.org/10.1038/nature10879
http://www.ncbi.nlm.nih.gov/pubmed/22398450
https://doi.org/10.2174/1874396X01105010048
https://doi.org/10.2174/1874396X01105010048
https://doi.org/10.1016/j.cell.2015.09.015
http://www.ncbi.nlm.nih.gov/pubmed/26406374
https://doi.org/10.1016/j.molcel.2016.05.042
http://www.ncbi.nlm.nih.gov/pubmed/27392146
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1021/acs.macromol.8b00661
https://doi.org/10.1016/j.cell.2020.03.050
https://doi.org/10.1016/j.cell.2020.03.050
http://www.ncbi.nlm.nih.gov/pubmed/32302570
https://doi.org/10.1021/ma970616h
https://doi.org/10.1016/j.molcel.2006.09.013
http://www.ncbi.nlm.nih.gov/pubmed/17081985
https://doi.org/10.1126/science.aaf4382
http://www.ncbi.nlm.nih.gov/pubmed/28935776
https://doi.org/10.1002/pmic.200500461
https://doi.org/10.1002/pmic.200500461
http://www.ncbi.nlm.nih.gov/pubmed/16572472
https://doi.org/10.1038/s41467-018-07624-w
https://doi.org/10.1038/s41467-018-07624-w
http://www.ncbi.nlm.nih.gov/pubmed/30498228
https://doi.org/10.1038/s41467-020-15395-6
https://doi.org/10.1038/s41467-020-15395-6
https://doi.org/10.7554/eLife.62403


Appendix 1

Modeling two-component multivalent associative polymers
We perform coarse-grained molecular-dynamics simulations using LAMMPS (Plimpton, 1995) to

simulate two-component multivalent associative polymers. Individual polymers are modeled as linear

chains of spherical particles connected by harmonic bonds (Appendix 1—figure 1A, type A polymer

in blue and type B polymer in yellow). Bonds are modeled using a harmonic potential (Appendix 1—

figure 1C, left)

UbðrÞ ¼ kðr� rbÞ
2; (16)

where rb = 4.5 nm is the mean bond length, k¼ 20kBT=r
2

b is the bond stiffness, kB is the Boltzmann

constant, and T = 300 k is room temperature.
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Appendix 1—figure 1. Coarse-grained molecular-dynamics simulations of two-component multiva-

lent associative polymers. (A) Polymers are modeled as linear chains of spherical particles connected

by harmonic bonds. Depicted are A8 (blue) and B8 (yellow). (B) Snapshot of a dimer of A8 and B8

formed in the strong-binding regime. (C) Neighboring stickers in a polymer are connected through a

harmonic potential (left). Stickers of the same type interact pairwisely through a repulsive potential

(middle). Stickers of different types interact pairwisely through an attractive potential (right). (D)

Interaction energy between three particles (one A and two B stickers) as a function of their

separation distances. Simultaneous binding of two B stickers to one A sticker is energetically highly

disfavored (lower left region) compared to one-to-one binding (dark blue regions).

Stickers of the same type interact through a softened, truncated Lennard-Jones potential (Appen-

dix 1—figure 1C, middle) 11See LAMMPS manual at https://lammps.sandia.gov/doc/Manual.html

for details about this potential.

UrðrÞ ¼ 4�l 1�lð Þ2þ
r

s

� �6
� ��2

� 1�lð Þ2þ
r

s

� �6
� ��1

( )

; r<rc; (17)

where �¼ 0:15kBT , l¼ 0:68, s¼ 3:5nm, and rc ¼ 5nm. These parameters effectively lead to a sticker

of diameter d’ 3nm and a weak attractive tail of depth 0:06kBT . The weak attractive tail is employed

solely to promote a more compact dense condensate.

Stickers of different types interact through an attractive potential (Appendix 1—figure 1C, right)

UaðrÞ ¼�
1

2
U0 1þ cos

pr

r0

� �

; r<r0 (18)

where U0 ¼ 14kBT is used in all simulations in the main text, except as indicated in Figure 3. The
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attraction cut-off distance is r0 ¼ 2nm. Note that due to the strong repulsion between stickers of the

same type, simultaneous binding of two stickers of one type to a sticker of the other type is energet-

ically highly disfavored (Appendix 1—figure 1D). This ensures one-to-one binding of stickers of dif-

ferent types (Appendix 1—figure 1B). Across our simulations, on average the fraction of stickers

that have more than one partner is less than 0.001%.

Phase equilibration and data recording
Each system consists of n1 and n2 polymers of types A and B, respectively. The number of polymers

are determined by their valences/lengths (L1 and L2) and global A:B sticker stoichiometry (s) through

n1 ¼ round
Ns

L1ð1þ sÞ

� �

; (19)

n2 ¼ round
N

L2ð1þ sÞ

� �

: (20)

The round function is used as we can only simulate an integer number of polymers. For all simula-

tions except those in Figure 5 in the main text, we use N ¼ 2500, so the total number of stickers is

around 2500.

Simulations are equilibrated using a Langevin thermostat in the NVT ensemble at T = 300 K in a

box of size 250 nm�50 nm�50 nm with periodic boundary conditions, that is the system evolves

according to Langevin, 1908:

m
d2~ri
dt2

¼�g
d~ri
dt

�r~riUð~r1; :::;~rNÞþ~f : (21)

where~ri is the coordinate of particle i, m is its mass, g is the friction coefficient,~f is random thermal

noise, and the energy Uð~r1; :::;~rNÞ contains all interactions between particles, including harmonic

bonds, nonspecific, and specific interactions (Equations (16–18)).

To promote phase equilibrium and ensure that only a single dense condensate is formed, we first

initialize the simulation by confining polymers in the region �50 nm<x<50 nm. The attractive interac-

tion between A and B stickers (Equations (18)) is gradually switched on from U0 = 0 to 14 over 108

time steps. The Langevin thermostat is applied using a damping factor t ¼ m=g ¼ 125 ns, step size

dt ¼ 2:5 ns, and mass of particle m=3534.3 ag during this time period. These parameters give the

particle the right diffusion coefficient D ¼ kBT=ð3phdÞ for times longer than t , where h is the water

viscosity 0.001 kg/m/s and d the diameter of the particle. This annealing procedure leads to the for-

mation of a dense phase close to its equilibrated concentration. The confinement is then removed,

and the system is equilibrated for 108 more time steps to allow the formation of dilute phase and

relaxation of the dense phase. After these procedures, we switch to smaller t=10 ns, dt=0.5 ns, and

m=282.7 ag for data recording (D remains the same). The system is relaxed for another 108 steps.

The relaxation time of the system depends on the sticker-sticker bond lifetime; to ensure that the

dilute and dense phases are in equilibrium, the above choice of relaxation time before recording cor-

responds to ~2000 bond lifetimes. We then recorded the positions of all particles every 106 steps for

400 recordings. For each choice of valence and stoichiometry, we performed 10 simulation replicates

with different random seeds. We also checked whether there are systematic deviations between the

first and second halves of the recorded simulations, and found consistent results between the two

halves.

To test the effect of finite size on the phase boundaries, simulations in Figure 5 in the main text

are performed with N ¼ 5000 and a box of size 315 nm�63 nm�63 nm, that is both total number of

stickers and box volume are doubled while the total global sticker concentration remains the same

(6.64 mM). Procedures for equilibration and data recording are the same (including the initial con-

finement region) except systems are relaxed for 5� 10
8 steps at dt ¼ 0:5ns before recording, as the

larger system requires a longer relaxation time.
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Determining the phase boundaries
To determine the phase boundaries, we need to obtain the concentrations in the dilute and dense

phases. The data we recorded for each system contains 4000 snapshots of polymer configurations

(10 replicates and 400 time points each). To measure concentrations, we first group polymers into

clusters in each snapshot. Connected stickers are grouped into one cluster: two stickers of the same

type are connected if they are neighbors in the same polymer, and two stickers of different types

are connected if they are within the attraction distance r0 = 2 nm. In most of our simulations, in each

snapshot, we observe one large cluster which contains most of polymers, and a few to tens of very

small clusters (Appendix 1—figure 2). There is a clear gap between the sizes of these large and

small clusters. We define the large cluster as the dense phase, and the smaller clusters as constitu-

ents of the dilute phase. In cases where the separation between the dense and dilute phases is

unclear, we discard the data set. Appendix 1—figure 2 shows the size distribution of clusters

pooled over all snapshots. Appendix 1—table 1 lists all the dilute-phase components and their total

sticker percentages in the A14:B14 system at global sticker stoichiometry 1.21.
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Appendix 1—figure 2. Histograms of cluster size in stickers in (A–L) A14:B5-16 systems at equal

global sticker stoichiometry. Parameters: specific binding strength U0 ¼ 14kBT and total global

sticker concentration 6.64 mM. Red dots indicate the dominant oligomer in the dilute phase.

Appendix 1—table 1. List of all dilute-phase components and sticker percentages for A14:B14

system at global sticker stoichiometry 1.21.

Comp 1A14 1A14+1B14 2A14+1B14 2A14+2B14 3A14+2B14 4A14+3B14 5A14+3B14

frac 0.10% 37.0% 7.67% 0.38% 19.1% 16.6% 0.38%

comp 5A14+4B14 6A14+4B14 6A14+5B14 7A14+5B14 8A14+6B14 10A14+7B14 17A14+13B14

frac 10.8% 0.85% 0.42% 0.80% 3.45% 0.48% 1.99%

To find the dilute- and dense-phase concentrations, we calculate the center of mass of the dense

cluster for each snapshot, and recenter the simulation box to this center of mass. We then compute

the sticker concentration histogram along the x axis with a bin size 1/50 of box length. The resulting

concentration profile has high values in the middle corresponding to the dense-phase concentration,

and low values on the two sides corresponding to the dilute-phase concentration. The dilute- and

dense-phase concentrations are calculated by averaging the concentration profile over the regions

(x � �100 nm or x � 100nm) and (�10nm � x � 10nm), respectively.
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Testing the effect of finite simulation size on the phase boundaries
To test the effect of finite size on the phase boundaries, we compare the dilute- and dense-phase

concentrations of systems with N ¼ 2500 to systems with N ¼ 5000 (Appendix 1—table 2). The sys-

tems being compared have the same valence, stoichiometry, and total sticker concentration. Simula-

tions with different total numbers of particles show consistent results, suggesting the effect of finite

size is minor.

Appendix 1—table 2. Comparison of dilute- and dense-phase concentrations for systems with

different total numbers of particles.

Valence (Stoichiometry) A14:B14 (14:14) A14:B13 (14:14) A14:B13 (14:13)

cdil (mM) for N ¼ 2500 0.50 ± 0.06 0.08 ± 0.02 0.39 ± 0.02

cdil (mM) for N ¼ 5000 0.45 ± 0.03 0.12 ± 0.02 0.34 ± 0.03

cdil (mM) for N ¼ 2500 28.0 ± 0.2 27.76 ± 0.09 25.80 ± 0.08

cden (mM) for N ¼ 5000 27.93±0.05 27.82±0.06 25.82±0.06

Determining the percolation threshold
Phase transitions in associative polymeric systems can be thought as phase separation aided percola-

tion, that is, the dense phase of an associative polymer system is a percolating network

Semenov and Rubinstein, 1998; Harmon et al., 2017; Choi et al., 2020a. What would be the per-

colation threshold in our associative polymer system if the density remained homogeneous? To

answer this question, we determined the percolation threshold of an A8:B8 system at a weak binding

strength U0 ¼ 8kBT, which avoids phase separation. Briefly, for a given sticker concentration ðcA; cBÞ,

we perform one simulation at U0 ¼ 8kBT and analyze the size of clusters for all snapshots recorded

after the system equilibrates. We judge whether polymers are in a sol- or gel-state based on the fol-

lowing gelation criterions: First, for each snapshot if the largest cluster contains more than 70% of

the stickers and the second largest cluster contains less than 10% of the stickers in the system, we

label this snapshot as having a percolating cluster. Second, for a given system if more than 50% of

snapshots have a percolating cluster, we label this ðcA; cBÞ point as a ‘gel’ state. The systems do not

meet the gelation criterions are labeled as a ‘sol’ state (Appendix 1—figure 3). It is clear that the

dilute/dense phases of the A8:B8 system formed at a strong binding strength U0 ¼ 14kBT are in a

sol-/gel-state. By inspection, the same clear dichotomy applies to the other systems we simulated.
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Appendix 1—figure 3. Phase diagram and percolation threshold of A8:B8 system. Phase boundaries

(red dots) are measured from MD simulations at U0 ¼ 14kBT. The complete two-phase region

(green) and one-phase region (white) are extrapolated based on the phase boundaries from

simulations. Sol- (gray dots) and gel- (black dots) states from simulations at U0 ¼ 8kBT where the

system remains homogeneous are identified based on the gelation criterions. Percolation threshold

(dashed line) is interpolated from the labeled sol- and gel-states.
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Measuring the dissociation constants
The phase boundaries of associative polymers from theory are very sensitive to model parameters.

Here, we extract the dimer and sticker dissociation constants Kd and Kb from simulations. These val-

ues are then utilized in the dimer-gel theory to obtain the free-energy density landscape and predict

the phase boundaries. Our simulations are performed in the strong binding regime. At our chosen

binding strength of U0 ¼ 14kBT, the long lifetime of each bond means that dimers of valence �4

never dissociate in our simulations. This prevents us from directly extracting the dimer dissociation

constants for long polymers. We therefore use a reweighting method Frenkel and Smit, 2001 to

obtain the dissociation constant for these dimers.

Briefly, we perform simulations with 1 polymer of type A and 1 polymer of type B of valences L1
and L2 in a cubic box of side 20L1 nm with periodic boundary conditions. The systems are equili-

brated using a Langevin thermostat in the NVT ensemble, all the parameters are the same as the

ones used for recording the data, except here we use U0 ¼ 7kBT which is half of the original value, in

order to allow dimers to dissociate.

Theoretically, the dissociation constant of a dimer is defined as:

K�1

d ¼ V

RR

UAB<0
e
�bUAð~r

A
1
;...;~rA

L1
Þ
e
�bUBð~r

B
1
;...;~rB

L2
Þ
e
�bUABð~r

A
1
;...;~rA

L1
;~rB
1
;...;~rB

L2
Þ
d~rA

1
. . .d~rAL1d~r

B
1
. . . ;d~rBL2

RR

e
�bUAð~r

A
1
;...;~rA

L1
Þ
e
�bUBð~rB1 ;...;~r

B
L2
Þ
d~rA

1
. . .d~rAL1d~r

B
1
. . . ;d~rBL2

; (22)

where b¼ 1=kBT , and ð~rA
1
; . . . ;~rAL1Þ and ð~rB

1
; . . . ;~rBL2Þ are the coordinates of stickers in polymers A and

B. UA(UB) contain all interactions within the polymer A(B), including bond potentials Ub (Equa-

tions (16)) and nonspecific interactions Ur (Equations (17)). UAB contains all the specific interactions

between polymers A and B, that is the sum of Uas (Equations (18)). Integration is over the entire vol-

ume V. In the numerator, the integration is further confined to the region where UAB<0. Note that

for a dissociated dimer UAB ¼ 0.

To link the simulation with the definition of Kd, we define three variables in the simulation:

w1 ¼ ebEAB ;w2 ¼ 1;w3 ¼ e�bEAB ; if EAB<0;

w1 ¼w2 ¼w3 ¼ 0; if EAB ¼ 0;
(23)

where EAB ¼UABð~r
A
1
; . . . ;~rAL1 ;~r

B
1
; . . . ;~rBL2Þ. We then have,

K�1

d ðU0 ¼ 0kBTÞ ¼C

Z Z

w1e
�bUAe�bUBe�bUABd~rA

1
. . .d~rAL1d~r

B
1
. . . ;d~rBL2 ¼

~Chw1i; (24)

K�1

d ðU0 ¼ 7kBTÞ ¼C

Z Z

w2e
�bUAe�bUBe�bUABd~rA

1
. . .d~rAL1d~r

B
1
. . . ;d~rBL2 ¼

~Chw2i; (25)

K�1

d ðU0 ¼ 14kBTÞ ¼C

Z Z

w3e
�bUAe�bUBe�bUABd~rA

1
. . .d~rAL1d~r

B
1
. . . ;d~rBL2 ¼

~Chw3i; (26)

where hw1i, hw2i, and hw3i are the mean values of w1, w2, and w3 obtained by averaging over a simu-

lation with U0 ¼ 7kBT . C and ~C are constants and are the same in all three equations. Therefore,

KdðU0 ¼ 0kBTÞhw1i ¼KdðU0 ¼ 7kBTÞhw2i ¼KdðU0 ¼ 14kBTÞhw3i: (27)

On the other hand, it can be shown that the binding probability hw2i for U0 ¼ 7kBT is

hw2i ¼

RR

w2e
�bUAe�bUBe�bUABd~rA

1
. . .d~rAL1d~r

B
1
. . . ;d~rBL2

RR

e�bUAe�bUBe�bUABd~rA
1
. . .d~rAL1d~r

B
1
. . . ;d~rBL2

¼
1

1þKdðU0 ¼ 7Þ V �K�1

d ðU0 ¼ 0Þ
� � : (28)

Combining Equations (27) and (28), we have

KdðU0 ¼ 0kBTÞ ¼
1þhw1i� hw2i

hw1iV
; (29)
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KdðU0 ¼ 7kBTÞ ¼
1þhw1i� hw2i

hw2iV
; (30)

KdðU0 ¼ 14kBTÞ ¼
1þhw1i� hw2i

hw3iV
: (31)

Appendix 1—table 3 shows a list of dissociation constants from simulations. The reweighting

method provides very accurate sticker-sticker and dimer-dimer dissociation constants, as confirmed

by comparing with theory and direct simulations for stickers and polymers of length L¼ 2. The disso-

ciation constants obtained by the reweighting method are used in the dimer-gel theory to predict

the phase boundaries (Appendix 2).

Appendix 1—table 3. List of dissociation constants from simulations.

A1:B1 (t) A1:B1 (d) A1:B1 (r) A2:B2 (d) A2:B2 (r)

KdðU0 ¼ 0kBTÞ ðmMÞ 49.6 * 48.9 * 12.4

KdðU0 ¼ 7kBTÞ ðmMÞ 1.88 * 1.90 * 0.31

KdðU0 ¼ 14kBTÞ ðmMÞ 5.7e-3 5.9e-3 5.8e-3 7.7e-6 7.1e-6

A4:B3 (r) A4:B4 (r) A6:B5 (r) A6:B6 (r)

KdðU0 ¼ 0kBTÞ ðmMÞ 4.32 3.29 1.81 1.52

KdðU0 ¼ 7kBTÞ ðmMÞ 4.5e-2 2.2e-2 4.3e-3 2.2e-3

KdðU0 ¼ 14kBTÞ ðmMÞ 3.77e-9 1.38e-11 6.95e-15 3.00e-17

A8:B6 (r) A8:B7 (r) A8:B8 (r) A8:B9 (r) A8:B10 (r)

KdðU0 ¼ 0kBTÞ ðmMÞ 1.15 1.01 0.90 0.79 0.73

KdðU0 ¼ 7kBTÞ ðmMÞ 9.0e-4 4.5e-4 2.5e-4 1.5e-4 1.0e-4

KdðU0 ¼ 14kBTÞ ðmMÞ 4.22e-18 1.26e-20 7.07e-23 1.77e-23 7.59e-24

A14:B12 (r) A14:B13 (r) A14:B14 (r) A14:B15 (r) A14:B16 (r)

KdðU0 ¼ 0kBTÞ ðmMÞ 0.37 0.32 0.30 0.32 0.27

KdðU0 ¼ 7kBTÞ ðmMÞ 1.4e-6 6.7e-7 3.8e-7 2.6e-7 1.5e-7

KdðU0 ¼ 14kBTÞ ðmMÞ 2.74e-35 1.08e-37 8.85e-40 1.80e-40 5.16e-41

*footnotetext: ðtÞ theoretical value, ðdÞ direct simulation, and ðrÞ reweighting method.

Effects of nonspecific interactions and linker length
In the main text, we focused on the effects of binding strength, sticker stoichiometry, and polymer

valences on the phase boundaries of two-component systems. Here, we explore the effects of non-

specific interactions and linker length. Increasing the nonspecific attraction between stickers of same

type leads to decreased/increased dilute-/dense-phase concentrations (Appendix 1—figure 4). The

additional attractive interaction is modeled by a cosine-squared potential

UðrÞ ¼

��; r<s;

��cos pðr�sÞ
2ðrc�sÞ

� �2

; s� r<rc;

0; r� rc:

8

>

>

<

>

>

:

(32)
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Appendix 1—figure 4. Strength of nonspecific attractive interactions strongly influences simulated

Appendix 1—figure 4 continued on next page
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Appendix 1—figure 4 continued

dilute-phase boundary. Total sticker concentrations in (A) dilute and (B) dense phases for A14:B14

system at different global sticker stoichiometries with the additional attractive interaction strength

� ¼ 0kBT (blue) and � ¼ 0:07kBT (red) (s ¼ 3:5 nm and rc ¼ 5nm in Equation (32)). Parameters:

specific interaction strength U0 ¼ 14kBT , total global sticker concentration 6.64 mM.

The cosine-squared potential is applied together with the softened, truncated Lennard-Jones poten-

tial (Equation (17)). Similarly, reducing the range of repulsion between stickers of the same type

leads to decreased/increased dilute-/dense-phase concentrations (Appendix 1—figure 5). Here, the

repulsive interaction potential between same type of stickers is replaced by the standard repulsive

Lennard-Jones potential

UrðrÞ ¼ 4�
s

r

� �12

�
s

r

� �6

þ
1

4

� �

; r<21=6s: (33)

��������	
����
��������

�
���
�

��
�


�
��
��
�
�

�




�


��
�


�
��
��
�
�

��������	
����
��������

� �
�����

��������	
����
��������

�

�




�


��
�
��
�


��
��
�
�

Appendix 1—figure 5. Range of nonspecific repulsive interactions strongly influences phase bound-

aries in simulations. Sticker concentrations in (A) dilute and (B) dense phases and (C) volume fraction

of polymers in dense phase for A8:B8 system at different global sticker stoichiometries with standard

repulsive Lennard-Jones potential (Equation (33)) s = 2.9 nm (blue) and s = 2.5 nm (red).

Parameters: repulsive interaction strength � ¼ 1kBT, specific interaction strength U0 ¼ 12kBT with

cut-off distance r0 = 1.5 nm, and total global sticker concentration is 6.64 mM. Note that the

overlapping volume between two bound stickers is counted once in the volume fraction calculation,

that is, two perfectly overlapping stickers only occupy a volume of one sticker.

The phase boundaries are also sensitive to the linker length. Here, we model the repulsive inter-

actions between same type stickers by Equation (33), the bond between stickers by an expanded

FENE potential

UbðrÞ ¼�
1

2
KR2

0
ln 1�

r�s

R0

� �2
" #

; r<sþR0; (34)

and attraction between different types of stickers by Equation (18). Increasing of mean bond length

from 4.7 to 5.9 nm leads to a decrease of the dilute-phase concentration by more than a factor of 10

(Appendix 1—figure 6).
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Appendix 1—figure 6 continued

Appendix 1—figure 6. Linker length strongly influences phase boundaries in simulations. Sticker

concentrations in (A) dilute and (B) dense phases for A8:B8 system at different global sticker

stoichiometries with linkers modeled by a FENE potential (Equation (34)) with K ¼ 0:3kBT and

R0 = 7 nm (mean linker length 4.7 nm, blue) and K ¼ 0:15kBT and R0 = 14 nm (mean linker length 5.9

nm, red). Parameters: repulsive interaction strength � ¼ 1kBT and length scale s = 3 nm, specific

interaction strength U0 ¼ 12kBT with cut-off distance r0 = 1.5 nm, and total global sticker

concentration 6.64 mM.
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Appendix 2

Derivation of free-energy density for nonspecific interactions
The free-energy density due to nonspecific interactions can be written as a power expansion in the

concentrations Semenov and Rubinstein, 1998; De Gennes, 1979,

Fns

kBT
¼
1

2

X

ij

vijcicj þ
1

6

X

ijk

wijkcicjck; (35)

where the sum is over all the species in the system, including free polymers/stickers, dimers and

independent bonds, and vij and wijk are two- and three-body interaction parameters.

In the strong-binding regime where the magic-ratio effect is observed, bound stickers strongly

overlap, so the size of a bound pair is almost that of a free sticker. For simplicity, we therefore

assume the interactions between dimers to be the same as between free polymers of the same type

(denoted as vd and wd), and the interactions between independent bonds to be the same as

between free stickers of the same type (denoted as vb and wb). When independent bonds are pre-

ferred (i.e. when �d » 0), the free-energy density for nonspecific interactions is

Find
ns

kBT
¼
vb

2
ðc1 � cbÞ

2 þðc2� cbÞ
2 þ 2ðc1 � cbÞcbþ 2ðc2 � cbÞcb þ c2b

h i

þ

wb

6
ðc1 � cbÞ

3 þðc2� cbÞ
3þ 3ðc1 � cbÞ

2
cbþ 3ðc1 � cbÞc

2

b þ 3ðc2 � cbÞ
2
cb þ 3ðc2 � cbÞc

2

bþ c3b

h i

;

(36)

where c1, c2, and cb are the total concentrations of polymer A, B, and independent bonds in sticker

units. c1 � cb and c2 � cb are therefore the concentrations of free sticker A and B. Note that in our

simulations, there is no nonspecific interaction between free polymers of different types. Therefore,

all v and w terms involving different free species are 0. Equation (36) simplifies to

Find
ns

kBT
¼
vb

2
c2
1
þ c2

2
� c2b

� �

þ
wb

6
c3
1
þ c3

2
� c3b

� �

: (37)

Similarly, when dimers are preferred (i.e. when cb »0), the free-energy density for nonspecific

interactions is

Fdim
ns

kBT
¼
vd

2
�2
1
þ �2

2
� �2d

� �

þ
wd

6
�3
1
þ �3

2
� �3d

� �

; (38)

where �1, �2, and �d are the total concentrations of polymer A, B, and dimers in polymeric units.

As nonspecific interactions are only important at high concentrations, we simply set Fns ¼ Find
ns .

Further, in the strong-binding regime, cb » minðc1; c2Þ, so

Fns

kBT
¼
vb

2
maxðc1;c2Þ

2þ
wb

6
maxðc1;c2Þ

3: (39)

Determining model parameters
The developed dimer-gel theory has only four parameters for a given system AL1:BL2: the dissocia-

tion constants of dimers and independent bonds Kd and Kb, and the nonspecific interaction parame-

ters vb and wb. The four parameters together determine the competitiveness of the dilute dimer-

phase with the dense gel-phase.

We have extracted the values of Kd from simulations (Appendix 1—table 3). Physically, we

expect Kb to be close to the sticker-sticker dissociation constant 5:7�M (Appendix 1—table 3). It is

not exactly the same because the bonds in the condensate are tethered by the backbones of the

polymers. We expect the nonspecific interaction parameters to be approximately vb ¼ 2B2 and

wb ¼ 3B3, where B2 and B3 are the second and third virial coefficients Katsura, 1959: vb ¼

6:8� 10
�2mM�1 and wb ¼ 2:2� 10

�3mM�2 for hard spheres of diameter 3 nm (the size of a sticker in

the simulations), respectively.
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The predicted phase boundaries are sensitive to these parameters. We thus tune Kb, vb, and wb

around their estimated values to match the dilute- and dense-phase concentrations of the A8:B8 sys-

tem from simulation. Specifically, we yield Kb ¼ 3:8� 10
�3mM, vb ¼ 9� 10

�2mM�1, and

wb ¼ 7� 10
�3mM�2. These parameters are used for A8:B6-10 systems. Further discussions on how

model parameters affect phase boundaries can be found in later sections.

Derivation of the transition concentration cs
In the strong-binding regime, the free-energy density contributions from specific interactions in the

dimer-dominated and independent bond-dominated limit are, respectively,

Fdim
s

kBT
¼ �� lnKd þð�þ� ��Þ ln

�þ � ��
e

� �þ ln
�þ
e
; (40)

Find
s

kBT
¼ c� lnKbþðcþ � c�Þ ln

cþ� c�

e
� cþ ln

cþ

e
; (41)

where �þ ¼maxðc1=L1;c2=L2Þ, �� ¼minðc1=L1;c2=L2Þ, cþ ¼maxðc1;c2Þ, and c� ¼minðc1;c2Þ. Equa-

tions (40) and (41) are the same as Equations (14) and (15).

At given (c1,c2), whether the system will form dimers or independent bonds depends on their rel-

ative free energies. For equal valence polymers L1 ¼ L2 ¼ L, letting cþ ¼ sc�, Equations (40) and

(41) become

Fdim
s

kBT
¼ �� ln

ðs� 1Þs�1
eKd

ss��
; (42)

Find
s

kBT
¼ c� ln

ðs� 1Þs�1
eKb

ssc�
: (43)

Comparing the two expressions, dimers are favored at low concentrations (Fdim
s <Find

s ), and inde-

pendent bonds are favored at high concentrations (Find
s <Fdim

s ). The transition occurs when

Fdim
s ¼ Find

s , i.e. at the concentrations c�ðsÞ ¼ c0ðs� 1Þs�1
s�s and correspondingly cþðsÞ ¼ c0sðs�

1Þs�1
s�s where c0 ¼ eðKL

b=ðKdLÞÞ
1=ðL�1Þ. The boundary between dimer- and independent bond-domi-

nated regions is described by ðcþðsÞ;c�ðsÞÞ and ðc�ðsÞ;cþðsÞÞ, respectively, in the lower and upper

halves of the ðc1;c2Þ plane (Appendix 2–figure 1A, white curve).

Solving reaction Equations (7) and (8)
The high powers in Equation (7) and the small value of Kd make it difficult to find numerical solu-

tions of cd and cb accurately. To overcome this difficulty, we define a variable l ¼ c1 � cd1 � cb when

�1 � �2 and l ¼ c2 � cd2 � cb when �1>�2, and rewrite Equations (7) and (8) in terms of l.

Specifically,

cb ¼ l c2L1 � c1L2 þlL2ð Þ KbL1 þlðL1 �L2Þ½ ��1;

cd1 ¼ c1 �l� cb;

KdL2ðc1� cb�lÞð1þlK�1

b ÞL2�1ðlþ cbÞ
L1�1 ¼Kbcbl

L1�1

(44)

for �1 � �2, and

cb ¼ l c1L2 � c2L1 þlL1ð Þ KbL2 þlðL2 �L1Þ½ ��1;

cd2 ¼ c2 �l� cb;

KdL1ðc2� cb�lÞð1þlK�1

b ÞL1�1ðlþ cbÞ
L2�1 ¼Kbcbl

L2�1

(45)

for �1>�2. We then solve Equations (44) and (45) using the MatLab function vpasolve with the con-

straints 0<l<c1 and 0<l<c2, respectively. vpasolve provides all solutions within the specified range.

When multiple solutions coexist, we take the one with the lowest Fs. Numerical solutions of �d and

cb for A8:B8 and A8:B7 systems are shown in Appendix 2–figure 1, where the fraction of stickers in
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dimers is defined as �d=minð�1;�2Þ and fraction of stickers in independent bonds is defined as

cb=minðc1;c2Þ.
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Appendix 2—figure 1. Fraction of stickers in dimers (A) and in independent bonds (B) for A8:B8 sys-

tem. White curve in (A) is the transition boundary between dimer- and independent bonds-

dominated regions predicted by cþðsÞ and c�ðsÞ. Fraction of stickers in dimers (C) and in

independent bonds (D) for A8:B7 system. Dashed white line denotes equal polymer stoichiometry.

Determining phase boundaries and tie lines
We obtain the free-energy landscape by substituting the numerical solutions of �d and cb into Equa-

tion (13) (Appendix 2–figure 2). We locate the phase boundaries by applying convex-hull analysis

to this free-energy landscape using the MatLab function convhull (Figure 6A and B).
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Appendix 2—figure 2. Free-energy density as a function of global sticker concentrations ðc1; c2Þ for

(A) A8:B8 and (B) A8:B7 systems. White curves highlight the basins in the dilute dimer-dominated and

dense gel-dominated regions.

To find the tie line going through a given initial concentration point ðcin
1
; cin

2
Þ, we adopt a modified

vector method Marcilla Gomis, 2011. We first draw a line though this point along a direction

defined by an angle a, and then find the crossing points between this line and the phase boundaries,

that is ðcdil
1
; cdil

2
Þ and ðcden

1
; cden

2
Þ. The ‘true’ a is the one that minimizes the free-energy density of mix-

ing pFðcdil
1
; cdil

2
Þ þ ð1� pÞFðcden

1
; cden

2
Þ, where p ¼ rden=ðrdil þ rdenÞ is the volume fraction of dilute phase

and 1� p is the volume fraction of dense phase, and rdil and rden are the distances between the point

ðcin
1
; cin

2
Þ and the two points ðcdil

1
; cdil

2
Þ and ðcden

1
; cden

2
Þ, respectively.

In order to compare with the simulated dilute- and dense-phase concentrations, we use the initial

concentrations from simulations for the specified system at given stoichiometry s: c1 ¼ cts=ð1þ sÞ
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and c2 ¼ ct=ð1þ sÞ, where the total sticker concentration is ct = 6.64 mM. We then find the tie line

going through this initial concentration point and the corresponding ðcdil
1
; cdil

2
Þ and ðcden

1
; cden

2
Þ. For

simplicity, we show the total dilute- and dense-phase concentrations cdil ¼ cdil
1

þ cdil
2

and cden ¼

cden
1

þ cden
2

in Figure 6C and D.

A simple approximation for the free-energy density F
Finding the numerical solutions of Equations (7) and (8) becomes difficult with increasing valence.

From the full solutions of cd and cb (Appendix 2–figure 1), we see that in the dimer-dominated

region cb is almost 0, and in the independent bond-dominated region cd is almost 0. Therefore, we

can approximate the free-energy density as the lower value of the two limiting cases

F ¼ FniþminðFdim
s ;Find

s ÞþFns; (46)

where

Fdim
s

kBT
¼ �d lnKd þ �d ln

�d
e
þð�1 � �dÞ ln

�1� �d
e

þð�2 � �dÞ ln
�2� �d

e
� �2 ln

�2
e
� �1 ln

�1
e
; (47)

Find
s

kBT
¼ cb lnKb þ cb ln

cb

e
þðc1 � cbÞ ln

c1 � cb

e
þðc2 � cbÞ ln

c2 � cb

e
� c1 ln

c1

e
� c2 ln

c2

e
; (48)

and

�d ¼
1

2
�1 þ �2þKd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1 þ �2 þKdÞ
2� 4�1�2

q

� �

; (49)

cb ¼
1

2
c1 þ c2þKb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðc1 þ c2 þKbÞ
2 � 4c1c2

q

� �

; (50)

are solutions of Equations (9) and (10). Equation (46) provides a very good approximation to the

full expression for F (Equation (13)). The phase diagrams derived from Equation (13) and (46) are

almost identical for A14:B14 (Appendix 2–figure 3). Results in Appendix 2–figure 4 are obtained

with this approximation (Equations (46–50)) as there are difficulties solving Equations (7) and (8)

numerically for A14:B12-16 systems due to their high valences.
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Appendix 2—figure 3. Comparison of phase diagrams derived from the full expression for F (Equa-

tion (13)) and the approximate expression (Equation (46)) shown on a (A) linear and (B) log scale for

A14:B14 system.
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Appendix 2—figure 4. A dimer-gel theory predicts the magic-ratio effect. Phase diagrams of (A)

A14:B14 and (B) A14:B13 systems: one-phase region white, two-phase region green. The dilute- and

dense-phase concentrations are connected by representative tie lines. The tie line along the

direction of equal polymer stoichiometry is denoted with a black dot. Inset: enlarged dilute-phase

boundaries. Sticker concentrations in (C) dilute and (D) dense phases for systems A14:B12-16 at global

sticker stoichiometries 14:12-16 and total sticker concentration 6.64 mM. Parameters:

vb ¼ 7� 10
�2mM�1, wb ¼ 5� 10

�3mM�2, Kb ¼ 3:8� 10
�3mM, and Kd in Appendix 1—table 3.

Correlated binding in the dense phase
In the dimer-gel theory, we assume that stickers of different types can associate independently in

the dense phase. However, as stickers belonging to the same polymer are tethered together, neigh-

boring stickers in one polymer are more likely to bind to neighboring stickers in another polymer,

that is there are correlations in binding. To quantify this correlation, we first identify consecutive seg-

ments in a polymer that bind to consecutive segments in another polymer. (For example, if in poly-

mer 1 of type A, stickers 1, 2, 3, and 4 bind to stickers 2, 4, 3, and 5 of one polymer of type B,

sticker 5 binds to sticker 8 of a second polymer of type B, and stickers 6, 7, and 8 bind to stickers 1,

2, and 3 of a third polymer of type B, then there are three individual segments in polymer 1 of type

A with lengths 4, 1, and 3.) Clearly, what should be considered to be ‘independent’ are not individ-

ual stickers but rather these consecutively bound segments. To quantify the length of these seg-

ments, we measure the probability pðlÞ that a bound sticker is in a segment of length l.

Appendix 2—figure 5 shows the probability distribution pðlÞ for simulated A8:B8 and A14:B14 sys-

tems at equal stoichiometry. The mean length of ‘independent’ segments is 1.8 for both cases.
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Appendix 2—figure 5. Binding between stickers of different types in the dense phase is correlated.

Probability distribution pðlÞ for finding a bound sticker to be in a consecutively bound segment of

length l in the dense phase of A8:B8 and A14:B14 systems at equal stoichiometry.

Effects of model parameters on phase boundaries
The dimer-gel theory has only a handful of parameters: the valences L1 and L2 of polymers A and B,

the dissociation constants Kd and Kb of dimers and independent bonds, and the nonspecific interac-

tion parameters vb and wb. These parameters together determine the competitiveness of the dilute

dimer-phase with the dense gel-phase. We first fix Kb ¼ 3:8� 10
�3mM, vb ¼ 9� 10

�2mM�1, and wb ¼

7� 10
�3mM�2 (see previous section Determining Model Parameters for how these parameters are

derived, and note that the values of Kd are taken directly from simulations [Appendix 1—table 3]),

and explore the dependence of phase boundaries on the valences L1, L2 and on the stoichiometry.

Appendix 2–figure 6A and B show phase diagrams and dilute-phase concentrations for A4:B4 to

A14:B14 systems. For these equal valence systems, the dilute-/dense-phase concentrations

decreases/increases with increasing valence, and the magic-ratio effect with respect to stoichiometry

is enhanced with increasing valence in terms of dilute-phase peak-to-valley ratio. Appendix 2–figure

6C and D show phase diagrams and dilute-phase concentrations for A4:B3 to A14:B13 systems. Note

that the shape of the dilute phase boundary transitions from a shoulder to a peak with increasing

valence. All these features are consistent with the simulation results in Figure 4. Appendix 2–figure

7B shows the dilute-phase concentrations for A8:B6-10 systems at equal sticker stoichiometry. The

dilute-phase concentration is sharply peaked at A8:B8, consistent with the simulation results in

Figure 3.
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Appendix 2—figure 6. Effects of model parameters on the phase boundaries in the strong-binding

regime. (A) Phase diagrams and (B) dilute-phase concentrations at different global stoichiometries

for A4:B4 to A14:B14 systems. (C) Phase diagrams and (D) dilute-phase concentrations at different

global stoichiometries for A4:B3 to A14:B13 systems. Black dots indicate equal polymer

stoichiometries. Parameters: Kb ¼ 3:8� 10
�3mM, values of Kd in Appendix 1—table 3 for binding

strength U0 ¼ 14kBT, vb ¼ 9� 10
�2mM�1 and wb ¼ 7� 10

�3mM�2 for all systems except for A14:B14*

and A14:B13* where vb ¼ 7� 10
�2mM�1 and wb ¼ 5� 10

�3mM�2. Total global sticker concentration

6.64 mM.
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Appendix 2—figure 7. The magic-ratio effect disappears in the weak-binding regime. (A) Phase

diagrams for A8:B8 system with different binding strengths U0 ¼ 7kBT (gray) and U0 ¼ 14kBT (black).

(B) Dilute-phase concentrations for A8:B6-10 systems at equal global sticker stoichiometry with

different binding strengths U0 ¼ 7kBT (gray) and U0 ¼ 14kBT (black). Parameters: Kb ¼ 1:88mM for

U0 ¼ 7kBT, Kb ¼ 3:8� 10
�3mM for U0 ¼ 14kBT , values of Kd in Appendix 1—table 3,

vb ¼ 9� 10
�2mM�1, and wb ¼ 7� 10

�3mM�2. Total global sticker concentration 6.64 mM.

However, the dilute-phase concentration of A14:B14 does not quantitatively agree with simulation

results (Appendix 2–figure 6B vs. Figure 4A). Also, the dilute-phase concentrations for unequal

valence systems do not decrease with increasing valence (Appendix 2–figure 6D vs. Figure 4C).

What is the origin of these discrepancies? Intuitively, the dense phase properties are determined by

Kb, vb, and, wb. Using the same values of these parameters for systems with different valences means

that we are treating the dense phases of these systems as exactly equivalent. However, there are

more polymer backbone bonds in higher valence systems. These backbone bonds, from a mean-field

point of view, act like attractive potentials between stickers, which effectively reduces the
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nonspecific repulsion between stickers. Therefore, the dense phases of higher valence systems are

energetically favored, and we expect correspondingly lower values of vb and wb for valence 14 sys-

tems compared to valence 8 systems. Indeed, we find that somewhat smaller nonspecific interaction

parameters, vb ¼ 7� 10
�2mM�1 and wb ¼ 5� 10

�3mM�2, lead to quantitative agreement of the

dilute- and dense-phase boundaries for A14:B14 and A14:B13 systems with the simulation results

(Appendix 2–figure 6B and D, curves labeled with *, compared to Figure 4A and C). We thus use

these parameters for A14:B12-16 systems in Appendix 2–figure 4.

Finally, the dimer-gel theory also predicts that the magic-ratio effect disappears in the weak-bind-

ing regime (Appendix 2–figure 7A and B, gray curves), consistent with the simulation results

(Figure 3A).
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