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To better understand the dynamics of zoonotic diseases, we propose a deterministic mathematical model to study the dynamics of
zoonotic brucellosis with a focus on developing countries. The model contains all the relevant biological details, including indirect
transmission by the environment. We analyze the essential dynamic behavior of the model and perform an optimal control study to
design effective prevention and intervention strategies. The sensitivity analysis of the model parameters is performed. The aim of
the controls is tied to reducing the number of infected humans, through health promotional programs within the affected
communities. The Pontryagin’s Maximum Principle is used to characterize the optimal level of the controls, and the resulting
optimality system is solved numerically. Overall, the study demonstrates that through health promotional programs on zoonotic
diseases among villagers, it is vital that they should be conducted with high efficacy.

1. Introduction

Zoonoses (also known as zoonosis and zoonotic diseases) are
infectious diseases caused by bacteria, viruses, and parasites
that spread between animals and humans. Some types of zoo-
notic diseases are African sleeping sickness, anthrax, bird flu,
brucellosis, influenza, rabies, Zika, and Ebola [1]. The zoo-
notic diseases have been categorized into the more common
endemic zoonoses such as salmonellosis, brucellosis, and lep-
tospirosis which are responsible for more than 2.2 million
human deaths and 2.4 billion cases of illness annually and
the less common epidemic and emerging zoonoses such as
rift valley, anthrax, valley fever, Ebola, and Zika which either
occur in sporadic outbreaks in neglected populations or that
are new or reappearing with an increased incidence of geo-
graphical range [2]. Zoonotic diseases have several modes
of transmission, with the main ones being direct, indirect,
and vector-borne transmissions [3]. Direct transmission
entails coming into contact with the saliva, blood, urine,
mucous, feces, or other bodily fluids. Indirect contact is due
to coming into contact with areas where animals live and
roam or surfaces that have been contaminated, such as pet
habitants, pet food, chicken coops, and aquarium tank water.

A vector-borne entails being bitten by a tick or an insect like a
mosquito or flea. This class of diseases has been the principal
source of emerging health risks, and it is estimated that zoo-
notic pathogens have accounted for more than 60% of
emerging infectious diseases recently [2]. Some of the risk
factors associated with the emergence of zoonotic diseases
and spill over into humans include human encroachment,
population expansion, consumption of exotic food, migra-
tory movements, and ecotourism [4]. Endemic zoonotic dis-
eases have the dual impact of causing illness and death in
humans and animals as well as substantial loss in resource-
poor societies where livestock farming is a major engine of
economic growth at the household and national levels. The
World Bank estimated that 6 major zoonotic disease epi-
demics during 1997-2009 resulted in an economic loss of
more than $80 billion [1]. Controlling zoonotic disease out-
breaks has become ever more important, it has been esti-
mated that since 1940, about 40% of the emerging
infectious diseases affecting humans globally, but mainly in
developing countries, have originated from animals, both
domestic and wild [5, 6].

The attention given to zoonotic diseases has however
focused more on emerging zoonoses that pose global
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economic and health threats and less on the endemic zoo-
notic disease which tend to occur among populations with
little financial muscle, such as in sub-Saharan Africa. The rel-
ative risk for emerging infectious disease vents from wildlife
sources has continued to be a challenge in sub-Saharan
Africa. An increase in the interaction between wildlife,
domestic animals, and humans increases the chance of
zoonotic disease transmission. The sub-Saharan region was
identified as one of the hotspot regions with a high preva-
lence of endemic zoonotic diseases and where it has a large
rural population that lives in close proximity with livestock
and wildlife [6, 7]. In some parts of the sub-Saharan countries
such as Zimbabwe, they still have problems regarding the
control of zoonoses, mainly due to the lack of enough infra-
structure and resources for disease surveillance [7]. Poverty
and lack of education towards the zoonotic diseases lead
many people, especially those from rural areas, accessing
commodities such as fresh unpasteurised milk and unin-
spected meat from domestic animals on the informal food
markets [7]. Some researchers have managed to show that
the risk of zoonotic diseases would increase or decrease, in
the various keeping systems and to the public as a whole
depending on their education levels towards zoonotic dis-
eases. Low levels of education towards zoonotic disease
among the rural villagers have been one of the major setbacks
in the fight against zoonotic diseases [8]. Historically, infec-
tious disease specialists in collaboration with governmental
organizations have attempted to develop effective controls
and eradication strategies gradually, using field experience
that is unique to the region and disease. A particular chal-
lenge in controlling zoonotic infections in this way is to
appropriately allocate resources in the multispecies system
[8]. Thus, designing effective control strategies requires
achieving a proper tradeoff between the costs resulting from
disease prevalence and the costs of control.

Mathematical modeling, analysis, and simulation for
infectious diseases have proved to be an essential guiding tool
that could give a sound direction to policymakers and public
health administration on how to effectively prevent and con-
trol zoonotic diseases. Mathematical modeling of zoonotic
diseases has been a particular area of burgeoning interest
over the last few years, see the articles [4, 8–16] for a few rep-
resentative samples. The current study complements many of
the earlier published studies by providing a rigorous qualita-
tive analysis of a mathematical model which seeks to under-
stand the impact of educational campaigns in curtailing the
spread of zoonotic diseases. In this paper, we propose a com-
partmental model for the spread of zoonoses incorporating
all the essential biological details. The model incorporates
the aspect of educational campaigns in the human-
domestic animal interface space and allows optimal control
methods to be used. The model also includes direct and indi-
rect modes of transmission. Our study focuses on zoonotic
diseases, humans, and domestic animals; hence, we shall
make use of brucellosis as a zoonotic disease and cattle as
domestic animals, for illustrative purposes. Brucellosis is a
zoonotic disease that affects domesticated animals, wildlife,
and humans. Animals acquire the infection mainly through
direct contact with infected cattle or indirectly from the envi-

ronment containing large quantities of bacteria discharged by
infected individuals [17], whereas in human, common routes of
infection include direct inoculation through cuts and abrasions
in the skin or inhalation of infectious aerosols and ingestion of
infectious unpasteurized milk or other dairy products [18].
Human to human transmission is extremely rare [17, 18].

The structure of the paper is as follows. Section 2 consti-
tutes model formulation, and analytic results are presented in
Section 3. The sensitivity analysis of the reproduction num-
ber is reported in Section 4, and the optimal control analysis
is presented in Section 5. Numerical simulations are pre-
sented in Section 6. The paper concludes with a discussion
in Section 7.

2. Model Formulation

In this section, we introduce a continuous mathematical
model for the transmission dynamics of zoonotic disease in
the form of brucellosis in both humans and cattle. Guided
by the information on the natural history of brucellosis infec-
tion in both humans and cattle populations to determine, the
basic plausible assumptions for the model formulation are
determined [19, 20]. The human population is divided into
four mutually exclusive epidemiological subpopulations con-
sisting of uneducated susceptibles ðShÞ, educated susceptibles
ðCÞ, infected ðIhÞ, and the recovered ðRhÞ humans, so that the
total human population is given by ðNhÞ, where Nh = Sh +
C + Ih + Rh. The cattle population is divided into three mutu-
ally exclusive epidemiological subpopulations consisting of
the susceptible ðSaÞ, infected ðIaÞ, and recovered ðRaÞ cattle,
so that the total cattle population is given by Na = Sa + Ia +
Ra. We denote the quantity of the brucella in the environ-
ment by W, which is shed off at a rate δa by the cattle and
δh by humans. We assume that the brucella in the environ-
ment decays at the rate of r. The natural death rates for the
humans and cattle are given by μh and μa, respectively. The
recruitment of the susceptible humans and the susceptible
cattle are through birth, given by Λh and Λa, respectively.
We assume homogeneous mixing, that is, all the susceptible
humans have the same likelihood to be infected and also
the susceptible cattle have the same chance to be infected.
The force of infection for humans is given by

λh =
βhIa
Na

+
βwh

W

K
, ð1Þ

where βh is the effective contact rate by the infected cattle
towards humans. βwh

is the indirect infection from the bru-
cella in the environment to the susceptible humans. K
denotes the brucella concentrations measured with respect
to their infection doses. The force of infection for the cattle
is given by

λa =
βaIa
Na

+
βwa

W

K
, ð2Þ

where βa is the effective contact rate by the infected cattle on
the susceptible cattle. βwa

is the indirect infection from the
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brucella in the environment to the susceptible cattle. The uned-
ucated susceptible individuals are educated towards zoonotic
diseases at a rate of θ through educational campaigns in the
form of health promotional programs. A parameter η repre-
sents the efficacy of health promotion programs. If η = 0, then
the health promotion programs are not effective, if η = 1 corre-
sponds to completely effective health promotion programs,
while 0 < η < 1 implies that the health promotion programs will
be effective to some degree. Thus, the susceptible uneducated
humans are infected with brucellosis at a rate of λh while the
susceptible educated humans are infected at a rate of ð1 − ηÞ
λh. We assume that the infected humans recover from the bru-
cellosis at a rate of γ while the cattle recover at a rate of ϕ, both
getting permanent immunity [18, 21]. Parameter v represents
death due to the respective zoonotic disease, and τ represents
the culling rate. We assume that the rate of culling is at its min-
imal since most of the villagers in sub-Saharan Africa on the
human-domestic animal-wildlife interface are not well educated
in terms of dealing with zoonotic diseases. We shall refer to the
health promotional programs as educational campaigns,
throughout the manuscript. Here, we construct a system of
nonlinear differential equations to model the disease dynamics
of brucellosis.

Sh′ =Λh − λhSh − θSh − μhSh,

C′ = θSh − 1 − ηð ÞλhC − μhC,

Ih′ = λhSh + 1 − ηð ÞλhC − μh + γð ÞIh,
Rh′ = γIh − μhRh,

Sa′ =Λa − λaSa − μaSa,

Ia′ = λaSa − μa + ϕ + v + τð ÞIa,
Ra′ = ϕIa − μaRa,

W ′ = δhIh + δaIa − rW:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð3Þ

The model variables and their descriptions are summarised
in Table 1.

The model parameters and their possible values are
shown in Table 2.

3. Analysis of the Model

3.1. Positivity and Boundedness of Solutions. It can be easily
proved that the domain of biological interest

G = Sh tð Þ, C tð Þ, Ih tð Þ, Rh tð Þ, Sa tð Þ, Ia tð Þ, Ra tð Þ,W tð Þ: Nhf
≤
Λh

μh
,Na ≤

Λa

μa
,W ≤

δhΛh + δaΛa
r min μh, μað Þg

ð4Þ

is positively invariant and attracting with respect to the
model in equation (3).

3.2. The Disease-Free Equilibrium and Basic Reproduction
Number. It can be established that system (3) always has a
disease-free equilibrium (DFE) given by

E0 = S0, C0, I0h, R
0
h, S

0
a, I

0
a, R

0
a,W

0� �
=

Λh

θ + μh
,

θΛh

μh θ + μhð Þ , 0, 0,
Λa

μa
, 0, 0, 0

� �
:

ð5Þ

Denoting the reproduction number by R0, which is a
measure of the average number of secondary infections gen-
erated by a single infectious case in a fully susceptible popu-
lation during its infectious period [26], the reproduction
number is commonly regarded as a threshold quantity for
the disease dynamics, essential in determining the transmis-
sion and spread of the disease. Using the next-generation
matrix notations in [26], the nonnegative matrix F that
denotes the generation of new infections and the nonsingular
matrix V that denotes the disease transfer among compart-
ments are, respectively, given by

F =

0
1 − ηð Þθ + μhð ÞμaβhΛh

θ + μhð ÞμhΛa

1 − ηð Þθ + μhð Þβwh
Λh

θ + μhð ÞμhK

0 βa

βwa
Λa

μaK

0 0 0

2
66666664

3
77777775
,

V =

μh + γ 0 0

0 μa + γ + v + τ 0

−δh −δa r

2
6664

3
7775:

ð6Þ

That is, the reproduction numberR0 of system (3) is the
spectral radius of the next-generation matrix FV−1,

R0 = ρ FV−1� �
=
A11 + A22 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11 − A22ð Þ2 + 4A12A21

q
2

,

ð7Þ

where

Table 1: Model variables.

Parameter Baseline values

Sh Uneducated susceptible humans

C Educated susceptible humans

Ih Infected humans

Rh Recovered humans

Sa Susceptible cattle

Ia Infected cattle

Ra Recovered cattle
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A11 =
1 − ηð Þθ + μhð Þδhβwh

Λh

μhrK γ + μhð Þ θ + μhð Þ ,

A12 =
1 − ηð Þθ + μhð Þ βwh

δaΛa + βhμarK
� �

Λh

μhrK θ + μhð Þ ϕ + μa + v + τð ÞsΛa
,

A21 =
δhβwa

Λa

μarK γ + μhð Þ , A22 =
μaβarK + δaβwa

Λa

μarK ϕ + μa + v + τð Þ :

ð8Þ

Making use of Theorem 2 in Van den Driessche and
Watmough [26], we establish the following result.

Theorem 1. IfR0 < 1, then E0 is locally asymptotically stable
and unstable otherwise.

Furthermore, a stronger result regarding the global
dynamics of the DFE can be established. We will utilize the
approach of Lyapunov functions [27–31] in the analysis of
global asymptotic stability.

Theorem 2. If R0 ≤ 1, the DFE is globally asymptotically sta-
ble in G . If R0 > 1, the system is uniformly persistent.

Proof. Let HðtÞ = ðIhðtÞ, IaðtÞ,WðtÞÞT : Since from (3)

Ih ′ = λhSh + 1 − ηð ÞλhC − μh + γð ÞIh,
Ia ′ = λaSa − μh + ϕ + v + τð ÞIa,
W ′ = δhIh + δaIa − rW,

8>><
>>:

ð9Þ

it follows that

_H tð Þ ≤ F −Vð ÞH , ð10Þ

where F and V are as defined in equation (6). It is worth not-
ing that F and V−1 are nonnegative. By the Perron-Frobenius
Theorem [32], the nonnegative matrix V−1F has a positive
left eigenvector u with respect to the eigenvalue R0 = ρðV−1

FÞ = ρðFV−1Þ ; that is, uTV−1F =R0u
T : Motivated by [30],

consider a Lyapunov function

Y tð Þ = uTV−1H : ð11Þ

Differentiating YðtÞ along with solutions of (3), we have

_Y tð Þ = uTV−1 _H ≤ uTV−1 F −Vð ÞH
= R0 − 1ð ÞuTH ≤ 0 if R0 ≤ 1:

ð12Þ

If R0 < 1, the equality _YðtÞ = 0 implies that uTH = 0:
This leads to Ih = Ia =W = 0 since u denotes a positive left
Perron eigenvector. Hence, when R0 < 1, system (3) yields
Sh = S0h, C = C0, Sa = S0a, and Ih = Rh = Ia = Ra =W = 0. Thus,
the invariant set on which _YðtÞ = 0 contains only the point
E0. IfR0 = 1, we also have _YðtÞ = 0, and it can also be shown
that the invariant set on which _YðtÞ contains only the point
E0. Therefore, by LaSalle’s invariance principle [33], E0 is
globally asymptotically stable in G when R0 ≤ 1:

If R0 > 1, then by continuity, _YðtÞ > 0 in a neighbour-
hood of E0 in the interior of G : Solutions in the interior of

Table 2: Model parameters and their baseline values. The time unit is a year.

Parameter Definition Baseline values Source

Λh Recruitment rate (humans) 0.03

Λa Recruitment rate (cattle) 0.83

μh Natural death rate (humans) 0.02 [22]

μa Natural death rate (cattle) 0.04 [18]

v Disease related death rate (cattle) 0.05 [18]

τ Culling rate 0.15 [23]

βa Cattle-to-cattle transmission 1.19 [18]

βwa Brucella-to-cattle transmission 0.6 Assumed

βh Cattle-to-human transmission 0.1 Assumed

βwh Brucella-to-human transmission 0.05 Assumed

δa Brucella shedding by infected cattle 0.208 Assumed

δh Brucella shedding by infected humans 0.02 Assumed

r Decay rate of brucella in the environment 3.6 [23]

γ Recovery rate, cattle 0.208 [24]

ϕ Recovery rate, humans 0.615 [25]

η Efficacy of the health promotion programs (0,1) Assumed

θ Rate of education 0.5 [7]
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G sufficiently close to E0 move away from the DFE implying
that the DFE is unstable. This completes the proof.

The result established in Theorem 2 portrays thatR0 = 1
is a sharp threshold for disease dynamics: the disease will die
out when R0 ≤ 1, whereas the disease will persist when R0
> 1: Biologically, a uniform persistent system shows that
the infection persists for a long period of time. Now, we
investigate uniform persistence, and we claim the following
result.

Theorem 3. If R0 > 1, system (3) is uniformly persistent,
namely, there exists a constant ζ > 0 such that

lim
t→∞

inf Sh tð Þ > ζ, lim
t→∞

inf C tð Þ > ζ, lim
t→∞

inf Ih tð Þ
> ζ, lim

t→∞
inf Rh tð Þ > ζ, lim

t→∞
inf Sa tð Þ

> ζ, lim
t→∞

inf Ia tð Þ > ζ, lim
t→∞

inf Ra tð Þ
> ζ, lim

t→∞
inf W tð Þ > ζ,

ð13Þ

for any initial conditions satisfying

Sh 0ð Þ ≥ 0, C 0ð Þ ≥ 0, Ih 0ð Þ ≥ 0, Rh 0ð Þ ≥ 0, Sa 0ð Þ
≥ 0, Ia 0ð Þ ≥ 0, Ra 0ð Þ ≥ 0,W 0ð Þ ≥ 0:

ð14Þ

Proof. Let X = G , x = ðSh, C, Ih, Rh, Sa, Ia, Ra,WÞ and X0 = f
x ∈ X ∣ Ih + Ia +W > 0g: Hence, ∂X0 = X \ X0 = fx ∈ X ∣ Ih =
Ia =W = 0g: Let ψt be a semiflow induced by the solutions
of system (3) and M∂ = fx ∈ ∂X0 ∣ ψtx ∈ ∂X0, t ≥ 0g: By
Equation (4), we have ψtX0 ⊂ X0 and ψt is bounded in X0.
Therefore, there exist a global attractor for ψt . The disease-
free equilibrium is the unique equilibrium on the manifold
∂X0 and is globally asymptotically stable on ∂X0. Moreover,S

x∈M∂
ωðxÞ = fE0g and no subsets of M forms a cycle in ∂

X0. Finally, since the disease-free equilibrium is unstable on
X0 if R0 > 1, we deduce that system (3) is uniformly persis-
tent by using a result from [34] (Theorem 1.3.1 and Remark
1.3.1). This completes the proof.

3.3. Endemic Equilibrium. System (3) has the endemic equi-
librium point given by

in terms of the forces of infection λ∗h and λ
∗
a . Next, we present

the local stability of E∗ when the reproduction numberR0 is
sufficiently close to 1. We shall make use of the Centre Man-
ifold Theory [35], but firstly, we present the following
Lemma.

Lemma 4. Consider the following general system of ordinary
differential equations with a parameter ϕ:

dx
dt

= f x, ϕð Þ,with f : ℝn ×ℝ⟶ℝ and f ∈ℂ2 ℝn ×ℝð Þ,
ð16Þ

where 0 is an equilibrium of the system, that is f ð0, ϕÞ = 0∀ϕ,
and assume

A1. A =Dx f ð0, 0Þ = ðð∂f i/∂xjÞð0, 0ÞÞ is the linearisation
matrix of system (3) around the equilibrium 0 and ϕ evalu-
ated at 0. Zero is a simple eigenvalue ofA, and all other eigen-
values of A have negative real parts.

A2. MatrixA has a right eigenvector u and a left eigenvector v
corresponding to the zero eigenvalue. Let f k be the k

th com-
ponent of f and

a = 〠
n

k,i,j=1
vkuiuj

∂2 f k
∂xi∂xj

0, 0ð Þ,

b = 〠
n

k,i=1
vkui

∂2 f k
∂xi∂ϕ

0, 0ð Þ:
ð17Þ

The local dynamics of (16) around zero is totally gov-
erned by a and b.

E∗ =

S∗h =
Λh

λ∗h + μh + θ
, C =

θΛh

λ∗h + μh + θð Þ 1 − ηð Þλ∗h + μh½ � , I
∗
h =

λ∗hΛh 1 − ηð Þ λ∗h + θð Þ + μh½ �
λ∗h + μh + θð Þ γ + μhð Þ 1 − ηð Þλ∗h + μh½ � ,

I∗h =
γλ∗hΛh 1 − ηð Þ λ∗h + θð Þ + μh½ �

μh λ∗h + μh + θð Þ γ + μhð Þ 1 − ηð Þλ∗h + μh½ � , S
∗
a =

Λa

λ∗a + μa
, I∗a =

λ∗aΛa

μa + ϕ + v + τð Þ λ∗a + μað Þ ,

R∗
a =

ϕλ∗aΛa

μa μa + ϕ + v + τð Þ λ∗a + μað Þ ,

W∗ =
δaλ

∗
aΛa γ + μhð Þ λ∗h + μh + θð Þ 1 − θð Þλ∗h + μh½ � + δhλ

∗
hΛh μa + ϕ + vð Þ λ∗a + μað Þ 1 − ηð Þ λ∗h + θð Þ + μh½ �

r μa + ϕ + v + τð Þ λ∗a + μað Þ γ + μhð Þ λ∗h + μh + θð Þ 1 − ηð Þλ∗h + μh½ � ,

0
BBBBBBBBBBBBBBBBBBBB@

ð15Þ
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(i) a > 0, b > 0. When ϕ < 0 with ∣ϕ ∣ < < 1, 0 is locally
asymptotically stable, there exists a positive unstable
equilibrium. When 0 < ϕ < <1, 0 is unstable and
there exists a negative and locally asymptotically sta-
ble equilibrium

(ii) a < 0, b < 0. When ϕ < 0 with ∣ϕ ∣ < < 1, 0 is unstable;
when 0 < ϕ < <1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium

(iii) a > 0, b < 0. When ϕ < 0 with ∣ϕ ∣ < < 1, 0 is unstable,
and there exists a locally asymptotically stable nega-
tive equilibrium; when 0 < ϕ < <1, 0 is stable, and a
positive unstable equilibrium exists

(iv) a < 0, b > 0. When ϕ changes from negative to posi-
tive, 0 changes its stability from stable to unstable.
Correspondingly, a negative unstable equilibrium
becomes positive and locally asymptotically stable

Theorem 5. The endemic equilibrium point E∗ is locally
asymptotically stable if R0 > 1 and sufficiently close to 1.

The proof of Theorem 5 is outlined in the appendix.

4. Sensitivity Analysis

In this section, we shall perform some sensitivity analysis on
our reproduction number. Sensitivity analysis tells us how
important each parameter is to disease transmission. Such
information is crucial not only for experimental design but
also for data assimilation and reduction of complex nonlin-
ear models [36]. Sensitivity analysis is commonly used to
determine the robustness of model predictions to parameter
values since there are usually errors in data collection and
presumed parameter changes. It is used to discover parame-
ters that have a high impact onR0 and should be targeted by
intervention strategies.

Following Arriola and Hyman [37], we present the nor-
malized forward sensitivity indices of R0 to our model
parameters in Table 2. The sensitivity index for θ, for exam-
ple, is

YR0
θ =

∂R0
∂θ

×
θ

R0
= −0:792678: ð18Þ

The detailed sensitivity indices of R0 resulting from the
evaluation to other model parameters are shown in Table 3.

The parameters that result in positive index increase the
value of R0 whenever they are increased while those with a
negative index decrease the value of R0 whenever they are
increased. For example, since YR0

θ = −0:792678, increasing
the rate at which individuals are educated on zoonotic dis-
eases by 10% results in the decrease of the reproduction num-
ber by 7:9%. Thus, educating individuals on zoonotic
diseases would be crucial in curtailing the spread of brucello-
sis. Similarly, improving the efficacy of the educational cam-
paigns by 10% would also trigger a reduction of the
reproduction number by 4%: It is worth noting that the cul-

ling of the infected animals would be beneficial, since its sen-
sitivity index is given by τ = −0:504128. Thus, culling and
burning of carcasses should be carried out, since it had
also been noted by some researchers that individuals eat
infected animals due to lack of sufficient and correct infor-
mation, regarding the spread or infectiousness of zoonotic
diseases [7].

5. Optimal Control

We noted that for R0 > 1, brucellosis becomes an endemic
epidemic. Thus, it is of our interest to explore effective con-
trol strategies against this zoonotic disease. In sub-Saharan
Africa, individuals who live around the frontiers of human-
domestic animal-wildlife interface areas do not have enough
awareness and education on zoonotic diseases like brucellosis
and bovine TB [7]. Thus, implementation of the health pro-
motion programs in the form of educational campaigns
could play an important role in controlling zoonotic diseases
among the human population.

We now reconsider model system (3), and we introduce
two time-dependent controls in u1ðtÞ and u2ðtÞ. The control
effort u1ðtÞ models optimal educational campaigns, and the
control u2ðtÞ increases the positive impact of the educated
individuals from being infected by zoonotic diseases. It is
advisable to note that when the educational campaigns are
strengthened with higher efficacy, the infection risk will be
reduced. At the same time, we hope to minimize the costs
of achieving this. Therefore, in this section, we will perform
a study on the optimal design of the educational campaigns
to control the transmission and the spread of brucellosis,
using optimal control theory [38–40]. Educational

Table 3: Sensitivity indices of model parameters to R0.

Parameter Definition
Sensitivity
index

μh Natural death rate (humans) -0.107749

μa Natural death rate (cattle) -0.657185

v Disease related death rate (cattle) -0.083362

τ Culling rate -0.504128

βa Cattle-to-cattle transmission 0.377568

βwa Brucella-to-cattle transmission 0.765102

βh Cattle-to-human transmission 0.110828

βwh Brucella-to-human transmission 0.046502

δa Brucella shedding by infected cattle 0.754275

δh Brucella shedding by infected humans 0.05733

r Decay rate of brucella in the
environment

-0.811605

ϕ Recovery rate (cattle) -0.047289

γ Recovery rate (humans) -0.105369

η Efficacy of educational campaigns -0.401162

θ Rate of education -0.792678
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campaigns, in this case, are aimed at encouraging the unin-
fected to have some protective behaviors.

Thus, introducing two-time dependent controls u1ðtÞ
and u2ðtÞ, system (3) now becomes

Sh′ =Λh − λhSh − u1 tð ÞSh − μhSh,

C′ = u1 tð ÞSh − 1 − ηu2 tð Þð ÞλhC − uhC,

Ih′ = λhSh + 1 − ηu2 tð Þð ÞλhC − μh + γð ÞIh,
Rh′ = γIh − μhRh,

Sa′ =Λa − λaSa − μaSa,

Ia′ = λaSa − μa + ϕ + v + τð ÞIa,
Ra′ = ϕIa − μaRa,

W ′ = δhIh + δaIa − rW:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð19Þ

The term ð1 − ηu2ðtÞÞ corresponds to the situation which
prevents or limits the contacts between the susceptible
humans and the infected environments and animals (they
are reduced through necessary and efficient education about
zoonotic diseases among the susceptible individuals), where
u2ðtÞ is the control. It is worth noting that smaller η implies
less efficient educational campaign strategies in the commu-
nities (possibly due to, for example, individuals not being
given enough and necessary information towards zoonotic
diseases or not using the required language for that respective
region). The ideal case, ð1 − ηu2Þ ≈ 0, corresponds to a situa-
tion when the likelihood of being infected by the zoonotic
disease is almost zero. Practically, this can be achieved by
those who have managed to understand and are following
the educational campaign information as per the health
caregivers.

The goal is to minimize the number of infected humans
over a finite time interval ½0, T� at a minimal cost of effort,
where T is the final time. Mathematically, we formulate our
objective functional F as follows:

F u1, u2ð Þ =
ðT
0
Ih + Au21 + Bu22
	 


dt: ð20Þ

The control efforts are assumed to be nonlinear. We
choose to model the control efforts using the quadratic terms,
u21ðtÞ, u22ðtÞ, where the coefficients A and B represent weights
in the cost of the controls. The weight constant over the pre-
scribed time horizon is a measure of the relative costs of the
intervention in connection with the reduction of infectious
humans. Our problem is to find the optimal controls, u∗1 ðtÞ
and u∗2 ðtÞ, such that

F u∗1 , u
∗
2ð Þ =min

Ω
F u1 tð Þ, u2 tð Þð Þ, ð21Þ

where Ω = fu1, u2 ∈ L1ð0, TÞ∥0 ≤ u1, u2 ≤ 1, t ∈ ½0, T�g sub-
ject to the state equations (19) with initial conditions. Given
the criterion (20) and the regularity of the system of equation
(19), the existence of optimal controls is guaranteed by stan-
dard results in control theory [41]. The necessary conditions

that optimal solutions must satisfy are derived from Pontrya-
gin’s Maximum Principle [42]. This principle converts the
system (19), (20), and (21) into the problem of minimizing
the Hamiltonian H given by

H = Ih + Au21 + Bu22 + λ1 Λh − λhSh − u1 tð ÞSh − μhSh½ �
+ λ2 u1 tð ÞSh − 1 − ηu2 tð Þð ÞλhC − μhC½ �
+ λ3 λhSh + 1 − ηu2 tð Þð ÞλhC − μh + γð ÞIh½ �
+ λ4 γIh − μhRh½ � + λ5 Λa − λaSa − μaSa½ �
+ λ6 λaSa − μa + ϕ + v + τð ÞIa½ � + λ7 ϕIa − μaRa½ �
+ λ8 δhIh + δaIa − rW½ �:

ð22Þ

From this Hamiltonian and Pontryagin’s Maximum
Principle [42], we obtain the following theorem.

Theorem 6. There exist optimal controls u∗1 , u∗2 and corre-
sponding solutions, S⋆h , C⋆, I⋆h , R⋆

h , S⋆a , I⋆a , R⋆
a , and W⋆, that

minimizes Fðu1ðtÞ, u2ðtÞÞ over Ω. In order for the above
statement to be true, it is necessary that there exist continuous
functions λiðtÞ, i = 1, 2,⋯, 8 such that

_λ1 tð Þ = λh λ1 − λ3½ � + u1 λ1 − λ2½ � + μhλ1,
_λ2 tð Þ = 1 − ηu2ð Þλh λ2 − λ3½ � + μhλ2,
_λ3 tð Þ = −1 + γ λ3 − λ4½ � + μhλ3 − δhλ3,
_λ4 tð Þ = μhλ4,
_λ5 tð Þ = λ4 λ5 − λ6½ � + μaλ5,

_λ6 tð Þ = βhSh λ1 − λ3½ �
Na

+
1 − ηu2ð ÞβhC λ2 − λ3½ �

Na

+
βaSa λ5 − λ6½ �

Na
+ ϕ λ6 − λ7½ �

+ μa + v + τð Þλ6 − δaλ8,

_λ7 tð Þ = μaλ7 ,

_λ8 tð Þ = βwh
Sh λ1 − λ3½ �

K
+

1 − ηu2ð Þβwh
C λ2 − λ3½ �

K

+
βwa

Sa λ5 − λ6½ �
K

+ rλ8,

ð23Þ

with transversality conditions

λi = 0, i = 1,⋯, 8: ð24Þ

Furthermore, the optimal control is represented by

u∗1 tð Þ =max 0, min umax,
λ1 − λ2½ �Sh

2A

� �� �
,

u∗2 tð Þ =max 0, min umax,
λ3 − λ2½ �ηλhC

2B

� �� � ð25Þ
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Proof. The existence of optimal controls follows from Corol-
lary 4.1 of [41] since the integrand of F is a convex function
of u1ðtÞ, u2ðtÞ and the state system satisfies the Lipshitz prop-
erty with respect to the state variables. The following can be
derived from the Pontryagin’s Maximum Principle [42]:

dλ1
dt

= −
∂H
∂S

,

dλ2
dt

= −
∂H
∂C

,

dλ3
dt

= −
∂H
∂Ih

,

dλ4
dt

= −
∂H
∂Rh

,

dλ5
dt

= −
∂H
∂Sa

,

dλ6
dt

= −
∂H
∂Ia

,

dλ7
dt

= −
∂H
∂Ra

,

dλ8
dt

= −
∂H
∂W

,

ð26Þ

with λiðTÞ = 0 for i = 1,⋯, 8 evaluated at the optimal con-
trols and corresponding states, which results in the adjoint
system (23). The Hamiltonian H is minimized with respect
to the controls at the optimal controls, so we differentiate H
with respect to u1 and u2 on the set Ω, giving the following
optimality conditions:

∂H
∂u1

= 2Au1 + λ2 − λ1ð ÞSh = 0 at u1 = u∗1 ,

∂H
∂u2

= 2Bu2 + λ2 − λ3ð ÞηCλh = 0 at u2 = u∗2 :

ð27Þ

Solving for u∗1 and u∗2 , we obtain

u∗1 =
λ1 − λ2½ �Sh

2A
,

u∗2 =
λ3 − λ2½ �ηλhC

2B
:

ð28Þ

By using the bounds 0 ≤ u1, u2 ≤ 1, we have the property
(25).

Our optimal control problem thus couples the state sys-
tem (19), the adjoint system (23), and the optimality condi-
tion (25). These equations are solved numerically using the
forward-backward sweeping method, based on parameters
and initial conditions listed in Table 1.

6. Numerical Simulations

In this section, we now present numerical simulations. The
existence of optimal control is provided, and the behavior
of the optimality systemmade of 8 ordinary differential equa-
tions is evaluated through numerical simulations done with
Matlab. The optimality system is solved using an iterative
method with Runge-Kutta fourth-order scheme. Starting
with a guess for the adjoint variables, the state equations
are solved forward in time. Then, these state values are used
to solve the adjoint equations backward in time, and the iter-
ations continue until convergence [39].

To illustrate the results of the foregoing analysis, we have
simulated system (3) using the parameters in Table 1. We
then assume some of the parameters in the realistic range
for illustrative purposes. Among the estimated parameters,
are the balancing coefficients that have been arbitrarily cho-
sen for illustration purposes. These weight parameters deter-
mine the importance of variables in the objective functional
(20), thus A = 1, B = 2.

Figure 1(a) shows the impact of the controls on educating
susceptible individuals towards zoonotic diseases. Both pop-
ulations, in the presence and absence of controls, increase in
the first 3 years. In the presence of controls, the population
begins to drop gradually for the remainder of the period
under study. After 3 years in the absence of controls, the pop-
ulation continues to increase steadily for the remainder of the
period under review. We can see that in the presence of con-
trols, we have more individuals being educated than in the
absence of controls. It is worth noting that the controls are
effective from the initial time.

Figure 1(b) depicts the impact of the controls on the
infected human population. We note that when the educa-
tional campaign efficacy is low, the controls are not effective.

Figure 1(c) represents the control u1. The control u1 is
initiated from the initial time. After initiation, the control is
at the upper bound for the whole period under study.
Figure 1(d) represents the control u2. Control u2 is also initi-
ated from the initial time. After initiation, the control u2 is at
the upper bound for approximately 7 years, before returning
to the lower bound, 0. Thus, control u1 is feasible for the
whole period under review compared to control u2, which
is feasible for only 7 years. In the presence of low educational
campaign efficacy, control u2 is unsustainable.

Figure 2(a) illustrates the effects of the controls on edu-
cating susceptible individuals towards zoonotic diseases.
Both populations, in the presence and absence of controls,
increase in the first 3 years. In the presence of controls, the
population begins to drop gradually for the remainder of
the period under study. After 3 years in the absence of con-
trols, the population continues to increase steadily for the
remainder of the period under review. It is worth noting that
in the presence of controls, we have more individuals being
educated than in the absence of controls. Comparing
Figures 1(a) and 2(a), we can see that an increase in η from
0.25 to 0.5, does not have much impact on educating more
people towards zoonotic diseases.

Figure 2(b) illustrates the impact of the controls, on the
infected human population. The controls start being effective
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from the initial time. We note that the controls slightly
reduce the number of infected human individuals. Thus,
increasing the efficacy of the educational campaigns has an
impact on reducing the infected population. On comparing
Figures 1(b) and 2(b), it is worth noting that increasing the
efficacy of the educational campaigns results in the decrease
of the infected humans.

Figure 2(c) represents the control u1, and Figure 2(d) rep-
resents the control u2. The control u1 is initiated from the ini-
tial time. After initiation, the control u1 is at the upper bound
for the whole period under study. Control u2 is initiated from
0 years and stays at the upper bound for approximately 11
years. Thus, control u1 is feasible for the whole period under
review compared to control u2 which is feasible for 11 years.
Both controls are crucial.

Figure 3(a) highlights the impact of controls on the pop-
ulation of the educated susceptibles. The controls start being
effective from the initial time. The population for the edu-
cated susceptibles increases for both cases (with and without
controls). It is worth noting that, in the presence of controls,
we have more educated individuals as compared to the
absence of controls. Comparing Figures 1(a), 2(a), and 3(a),
we note that for the scenario when the efficacy of educational
campaigns is at 0.75, which is our maximum value, there is
no much difference in the number of susceptible individuals
who become educated on zoonotic diseases.

Figure 3(b) highlights the impact of controls on the pop-
ulation of infected individuals. Controls start being effective
from the initial time. After 2 years, we can see that we have
less infected individuals in the presence of controls as
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Figure 1: Graphs of the numerical solutions of the optimality system, showing the propagation of (a) the educated susceptible population C
and (b) the infected human population Ih; (c, d) showing the optimal control graphs for the two controls, u1 and u2, respectively. Over a
period of 12 years with η = 0:25.
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compared to the absence of controls. Thus, for η = 0:75, the
cumulative cases for the infected individuals are less, com-
pared to the populations when the values for the efficacy
are η = 0:5 and η = 0:25:

Figure 3(c) represents the control u1, while Figure 3(d)
illustrates the control u2. The results suggest that more effort
should be devoted to both controls since they are both feasi-
ble for the whole period under study.

Overall, we can see that if the educational campaign’s effi-
cacy is high, η = 0:75, we have more individuals being edu-
cated and the maximum reduction of the individuals being
infected by brucellosis. Furthermore, we note that the con-
trols are both feasible and can be well implemented when
the educational campaign’s efficacy is high. It is also worth
noting that, the efficacy of the educational campaigns can

be increased without incurring any extra costs. Thus, health
promotion programs need to be implemented with high effi-
cacy for them to be effective. Comparing the weights in the
cost of the controls, we have B > A; this implies that the costs
incurred for making educational campaigns to have high effi-
cacy are more than just conducting educational campaigns.

7. Discussion

Carrying out educational campaigns on zoonotic diseases
within communities could help reduce the public health
implications of zoonotic infections in human-domestic
animal-wildlife interface areas, although it will come with
certain costs. We have formulated and analyzed a differential
equation-based deterministic model for zoonotic disease in
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Figure 2: Graphs of the numerical solutions of the optimality system, showing the propagation of (a) the educated susceptible populations C
and (b) the infected human population Ih; (c, d) showing the optimal control graphs for the two controls, u1 and u2, respectively. Over a
period of 12 years with η = 0:5.
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the form of brucellosis, with the aim of assessing the impact
of educational campaigns on curtailing the spread at minimal
costs. The reproduction number is computed and shown that
it is an important threshold quantity for disease dynamics.
Through the construction of suitable Lyapunov functionals,
it has been shown that the model has a stable disease-free
equilibrium whenever the reproduction number is less than
unity. It was shown that if the reproduction number is greater
than unity, the disease persists. Further, it was also demon-
strated that whenever the reproduction number is greater
than unity, then the model has a unique endemic equilibrium
point which is globally asymptotically stable. Sensitivity anal-
ysis of the model parameters was carried out, and it was
noted that educating susceptible individuals towards zoo-
notic diseases was vital in the reduction of the infection. Also,
the educational campaigns employed should have high effi-

cacy. The model is further extended to incorporate two opti-
mal intervention strategies. The major aim of the controls
was to reduce the number of infected individuals at minimal
costs. The goal of the first optimal intervention strategy aims
to increase the rate of educating the susceptibles towards zoo-
notic diseases. The second control aims at increasing the pos-
itive impact of educating the susceptible individuals, that is,
increases the efficacy of the educational campaigns. From
the illustrations in our study, it is clear that the time-
dependent intervention strategies can lead to the reduction
of the zoonotic disease in the community. The efficacy of
the educational campaigns is varied in the range of 0.25-
0.75. Our findings illustrate that the larger the efficacy, the
stronger the impact of both control strategies. Furthermore,
we noted that for low and high efficacy levels, we obtained
different results with the same costs. Thus, educational
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Figure 3: Graphs of the numerical solutions of the optimality system, showing the propagation of (a) the educated susceptible populations C
and (b) the infected human population Ih; (c, d) showing the optimal control graphs for the two controls, u1 and u2, respectively. Over a
period of 12 years with η = 0:75.
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campaigns should be carried out with high efficacy. It is
worth noting that there was no change in the costs, for imple-
menting the controls when η = 0:25, η = 0:5, and η = 075.
Comparing our results with others in the literature, it is
worth noting that most of them focused on the impact of cul-
ling in the reduction of brucellosis prevalence. Some noted
the importance of the elimination of the disease in domestic
ruminants as the best control strategy. The aspect of vaccines
was also investigated, and it was noted that vaccinating both
the young and the old was vital. Thus, our results also provide
an important avenue in the fight against brucellosis.

Our study has a few limitations. We had to base our
numerical results from data which has been published in var-
ious literatures. More data sets and experimental studies are
needed to include more realistic biological processes in the
models. We assumed recruitment through birth only for both
cattle and humans, and we left out migration; hence, no one
joins the model as a susceptible educated individual. Con-
stant populations have been assumed for both humans Nh
and cattle Na. However, just like any other model, we cannot
say the model is complete; it can be extended to include the
aspect of the seasonality in the spread of the zoonotic disease.

Appendix

A. Proof of Theorem 5

Proof. To apply Lemma 4, the following simplifications and
changes of variables are made first. Let Sh = x1, C = x2, Ih =
x3, Rh = x4, Sa = x5, Ia = x6, Ra = x7,W = x8, so that Nh = x1
+ x2 + x3 + x4 and Na = x5 + x6 + x7. Further, by using the
vector notation X = ð f1, f2, f3, f4, f5, f6, f7, f8Þ, then system
(4) can be written in the form dX/dt = FðxÞ, with F =

ð f1, f2, f3, f4, f5, f6, f7, f8ÞT , such that

dx1
dt

= f1 ′ =Λh −
βhx1x6

x5 + x6 + x7
−
βwh

x1x8
K

− θx1 − μhx1,

dx2
dt

= f2 ′ = θx1 −
1 − ηð Þβhx2x6
x5 + x6 + x7

−
1 − ηð Þβwh

x2x8
K

− μhx2,

dx3
dt

= f3 ′ =
βhx1x6

x5 + x6 + x7
+
βwh

x1x8
K

+
1 − ηð Þβhx2x6
x5 + x6 + x7

+
1 − ηð Þβwh

x2x8
K

− γ + μhð Þx3,
dx4
dt

= f4 ′ = γx3 − μhx4,

dx5
dt

= f5 ′ =Λa −
βax5x6

x5 + x6 + x7
−
βwa

x5x8
K

− μax5,

dx6
dt

= f6 ′ =
βax5x6

x5 + x6 + x7
+
βwa

x5x8
K

− μa + ϕ + v + τð Þx6,

dx7
dt

= f7 ′ = ϕx6 − μax7,

dx8
dt

= f8 ′ = δhx3 + δax6 − rx8:

ðA:1Þ

The Jacobian matrix of system (A.1) at E0 is given by

− θ + μhð Þ 0 0 0 0 −
βhμaΛh

Λa θ + μhð Þ 0 −
βwh

Λh

θ + μhð ÞK

θ −μh 0 0 0 −
βh 1 − ηð ÞθΛhμa
μh θ + μhð ÞΛa

0 −
βwh

1 − ηð ÞθΛh

μh θ + μhð ÞK

0 0 γ 0 0
βhμaΛh

Λa θ + μhð Þ +
βh 1 − ηð ÞθΛhμa
μh θ + μhð ÞΛa

0
βwh

Λh

θ + μhð ÞK +
βwh

1 − ηð ÞθΛh

μh θ + μhð ÞK
0 0 γ −μh 0 0 0 0

0 0 0 0 −μa −βa 0
βwa

μa
ΛaK

0 0 0 0 0 βa − μa + ϕ + v + τð Þ 0 −
βwμa
ΛaK

0 0 0 0 0 ϕ −μa 0

0 0 δh 0 0 δa 0 −r

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ðA:2Þ
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from which it can be shown that

R0 = ρ FV−1� �
=
A11 + A22 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11 − A22ð Þ2 + 4A12A21

q
2

,

ðA:3Þ

with A11, A12, A21, A22 as defined in equation (8).
Now, we consider ρ1βh = βwh

, ρ2βh = βa, ρ3βh = βwa
,

regardless of whether ρ1, ρ2, ρ3 ∈ ð0, 1Þ or ρ1, ρ2, ρ3 ≥ ð0, 1Þ.
Taking βh as the bifurcation parameter and considering that
R0 = 1 and solving for βh, we have

β∗ = βh =
2

A11 ′ + A22 ′ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A11 ′ − A22 ′

� �2
+ 4A12 ′A21 ′

r ,

ðA:4Þ

where

A11′ =
1 − ηð Þθ + μhð Þδhρ1Λh

γ + μh + vð Þ θ + μhð ÞμhrK
,

A12 ′ =
1 − ηð Þθ + μhð Þ ρ1δaΛa + μarKð ÞΛh

μhrK θ + μhð Þ ϕ + μa + v + τð ÞΛa
,

A21′ =
δhρ3Λ

γ + μhð ÞμarK
,

A22 ′ =
μaρ2rK + δaρ3Λa

ϕ + μa + v + τð ÞμarK
:

ðA:5Þ

Note that the linearised system of the transformed equa-
tion (A.1) with the bifurcation point β∗ has a zero eigenvalue.
Hence, the Centre Manifold Theory [36] can be used to
analyze the dynamics of system (A.1) near βh = β∗. It can
be shown that the Jacobian of system (A.1) has a right eigen-
vector associated with the following zero eigenvalue given by
u = ðu1, u2, u3, u4, u5, u6, u7, u8ÞT , where

u1 = −
μa

θ + μh

βwh
Λhδhμh

μa θ + μhð ÞrγK u4




+ βhΛμa
ϕ θ + μhð ÞΛa

+
θΛhβwh

δa
μa θ + μhð ÞrϕK

� �
u7

�
< 0,

u2 = −
1
μh

1 − ηð Þβwh
Λhθδhμh

μh θ + μhð ÞrγK u4 +
1 − ηð ÞβhθΛhμa
ϕ θ + μhð ÞΛaμh

�


+
1 − ηð ÞθΛhβwh

δaμa
μh θ + μað ÞrϕK Þu7

�
< 0,

u5 = −
1
μa

βwa
Λaδhμh
μarK

u4 +
βaμa
ϕ

+
Λaβwa

δa
rϕK

� �
u7


 �
< 0,

u3 =
μh
γ
u4 > 0,

u4 = u4 > 0,

u6 =
μa
ϕ
u7 > 0,

u7 = u7 > 0,

u8 =
δhμh
rγ

u4 +
δaμa
rϕ

u7 > 0: ðA:6Þ

The left eigenvectors of JðE0Þ associated with the zero
eigenvalue at βh = β∗ is given by

w = w1,w2,w3,w4,w5,w6,w7,w8ð ÞT , ðA:7Þ

where

w1 =w2 =w4 =w5 =w7 = 0,

w3 =
δh

γ + μh
w8,w8 =w8 > 0,

w6 =
μaδh μhβhΛh + 1 − ηð ÞβhθΛhð Þ

μhΛa θ + μhð Þ γ + μhð Þ μa + ϕ + v + τð Þ − βað Þ
� �

w8:

ðA:8Þ

B. Computation of the Bifurcation Parameters a
and b

For the sign of a, it can be shown that the associated nonvan-
ishing partial derivatives of F are given by

∂2 f3
∂x1∂x6

=
∂2 f3

∂x6∂x1
=
βhμa
Λa

,
∂2 f3

∂x1∂x8
=

∂2 f3
∂x8∂x1

=
βwh

K
, ∂2 f3
∂x2∂x6

= ∂2 f3
∂x6∂x2

= 1 − ηð Þβhμa
Λa

,

∂2 f3
∂x2∂x8

=
∂2 f3

∂x8∂x2
=

1 − ηð Þβwh

K
,

∂2 f3
∂x5∂x6

=
∂2 f3

∂x6∂x5

=
−βhΛhμ

2
a

θ + μhð ÞΛ2
a

θ 1 − ηð Þ
μh

+ 1

 �

,

∂2 f3
∂x26

=
−2βhΛhμ

2
a

Λa θ + μhð Þ
θ 1 − ηð Þ

μh
+ 1


 �
,

∂2 f3
∂x6∂x7

=
∂2 f3

∂x7∂x6
=

βhΛh

θ + μhð Þ +
βhθΛh 1 − ηð Þμa

Λa
,

∂2 f6
∂x5∂x6

=
∂2 f6

∂x6∂x5
=
βwaμa
Λa

1 −
μa
Λa


 �
,

∂2 f6
∂x5∂x8

=
∂2 f6

∂x8∂x5
=
βwaμa
K

,
∂2 f6

∂x5∂x26
=
−βaμa
Λa

,

13Computational and Mathematical Methods in Medicine



∂2 f6
∂x6∂x7

=
∂2 f6

∂x7∂x6
=
−βwaμa
Λa

,
∂2 f3

∂x6∂x7
=

∂2 f3
∂x7∂x6

=
−βhΛhμ

2
a

θ + μhð ÞΛ2
a

θ 1 − ηð Þ
μh

+ 1

 �

:

ðA:9Þ

From (A.9), it follows that

a = βh u1 + 1 − ηð Þu2ð Þ μau6
Λ

+
ρ1u8
K

� �
−

2βhμau6
Λa

u6 + u7ð Þ
�


+
2βhu5u6μ

2
a

Λ2
a

Þ Λh μh + 1 − ηð Þθð Þ
μh μh + θð Þ

� ��

� w3 +
βhu5u8ρ3

K
−
βhμau6ρ2

Λa
u6 + u7ð Þ


 �
w6 < 0:

ðA:10Þ

This excludes the possibility of a backward bifurcation
since a < 0. For the sign of b, it is associated with the follow-
ing nonvanishing partial derivatives of F:

∂2 f3
∂x6∂β

∗ =
μaΛh μh + 1 − ηð Þθð Þ

μh μh + θð ÞΛa
,

∂2 f3
∂x8∂β

∗ = ρ1Λh μh + 1 − ηð Þθð Þ
μh μh + θð ÞK ,

∂2 f6
∂x6∂β

∗ = ρ2,
∂2 f6

∂x8∂β
∗ =

ρ3μa
KΛa

:

ðA:11Þ

It follows from the expressions in (A.11) that

b =
Λh μh + 1 − ηð Þθð Þ

μh μh + θð Þ
μau6
Λa

+
ρ1u8
K

� �
w3

+
Λa

μa

ρ2μau6
Λa

+
ρ3u8
K

� �
w6 > 0:

ðA:12Þ

Thus, a < 0 and b > 0 and applying Lemma 4 item (iv), we
have established the following result.

Theorem 7. The unique endemic equilibrium E∗ is locally
asymptotically stable for R0 > 1, but close to 1.
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