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Abstract

Visceral Leishmaniasis is a very dangerous form of leishmaniasis and, shorn of appropriate

diagnosis and handling, it leads to death and physical disability. Depicting the spatiotempo-

ral pattern of disease is important for disease regulator and deterrence strategies.

Spatiotemporal modeling has distended broad veneration in recent years. Spatial and spa-

tiotemporal disease modeling is extensively used for the analysis of registry data and usually

articulated in a hierarchical Bayesian framework. In this study, we have developed the hier-

archical spatiotemporal Bayesian modeling of the infected rate of Visceral leishmaniasis in

Human (VLH). We applied the Stochastics Partial Differential Equation (SPDE) approach

for a spatiotemporal hierarchical model for Visceral leishmaniasis in human (VLH) that

involves a GF and a state process is associated with an autoregressive order one temporal

dynamics and the spatially correlated error term, along with the effect of land shield, metro-

logical, demographic, socio-demographic and geographical covariates in an endemic area

of Amhara regional state, Ethiopia. The model encompasses a Gaussian Field (GF),

affected by an error term, and a state process described by a first-order autoregressive

dynamic model and spatially correlated innovations. A hierarchical model including spatially

and temporally correlated errors was fit to the infected rate of Visceral leishmaniasis in

human (VLH) weekly data from January 2015 to December 2017 using the R package R-

INLA, which allows for Bayesian modeling using the stochastic partial differential equation

(SPDE) approach. We found that the mean weekly temperature had a significant positive

association with infected rate of VLH. Moreover, net migration rate, clean water coverage,

average number of households, population density per square kilometer, average number

of persons per household unit, education coverage, health facility coverage, mortality rate,

and sex ratio had a significant association with the infected rate of visceral leishmaniasis

(VLH) in the region. In this study, we investigated the dynamic spatiotemporal modeling of

Visceral leishmaniasis in Human (VLH) through a stochastic partial differential equation

approach (SPDE) using integrated nested Laplace approximation (INLA). Our study had

confirmed both metrological, demographic, sociodemographic and geographic covariates

PLOS ONE | https://doi.org/10.1371/journal.pone.0212934 March 1, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Godana AA, Mwalili SM, Orwa GO (2019)

Dynamic spatiotemporal modeling of the infected

rate of visceral leishmaniasis in human in an

endemic area of Amhara regional state, Ethiopia.

PLoS ONE 14(3): e0212934. https://doi.org/

10.1371/journal.pone.0212934

Editor: Benn Sartorius, University of Kwazulu-

Natal, SOUTH AFRICA

Received: September 21, 2018

Accepted: February 12, 2019

Published: March 1, 2019

Copyright: © 2019 Godana et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-4271-3717
https://doi.org/10.1371/journal.pone.0212934
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212934&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212934&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212934&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212934&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212934&domain=pdf&date_stamp=2019-03-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0212934&domain=pdf&date_stamp=2019-03-01
https://doi.org/10.1371/journal.pone.0212934
https://doi.org/10.1371/journal.pone.0212934
http://creativecommons.org/licenses/by/4.0/


had a significant association with the infected rate of visceral leishmaniasis (VLH) in the

region.

Introduction

Visceral leishmaniasis is the second most parasitic killer in the globe next to malaria, responsi-

ble for an estimated 200,000 to 400,000 infections each year globally [1, 2]. Globally about 90-

95% of visceral leishmaniasis infections is contributed by most Sub-saharan countries, Asian

and Latin American, According to the study by [3, 4]. Based on the species of Leishmania para-

sites and other immunological and epidemiological aspects, Leishmania infection can lead to

cutaneous (CL), mucocutaneous (MCL) or visceral leishmaniasis (VL) [5]. Leishmaniasis is a

group of diseases caused by protozoan parasites of the genus Leishmania that are transmitted

between humans and other mammalian hosts by phlebotomine sand flies [5], this human

infection caused by over 20 species [5, 6]. Furthermore, Fig 1 below shows that the life cycles

of parasite of Leishmaniasis diseases. Visceral Leishmaniasis is a very dangerous form of leish-

maniasis and, shorn of appropriate diagnosis and handling, it leads to death and physical dis-

ability [7]. Depicting the spatiotemporal pattern of disease is important for disease regulator

Fig 1. Life cycles of leishmaniasis. (Source:https://www.cdc.gov/parasites/leishmaniasis/biology.html, [6].

https://doi.org/10.1371/journal.pone.0212934.g001
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and deterrence strategies. Spatiotemporal modeling has distended broad veneration in recent

years. Spatial and spatiotemporal disease modeling is extensively used for the analysis of regis-

try data and usually articulated in a hierarchical Bayesian framework. Integrated nested

Laplace approximations (INLA) would be used as an apparatus for Bayesian inference. INLA

is a favorable substitute to Markov chain Monte Carlo (MCMC) methods which deliver very

exact results within little computational period [8], [9]. In the spatiotemporal scheme, data

coming from different locations are assumed to be the realization of a contentiously indexed

spatial process or random field changing in time; Thus;

YðS : tÞ : S 2 Ds 2 Rm; t 2 Dt 2 R ð1Þ

Y(S: t) denote a spatiotemporal random process, where Ds is the spatial domain of interest, Dt

is the temporal domain of interest, s is a spatial index and t a time index. Gaussian Fields (GFs)

is a prominent application in spatial statistics and spatiotemporal modeling [8], [10], [11], and

it is a basic form of constructing hierarchical spatiotemporal Bayesian modeling [8]. Let S 2
D� Rm is a continuous indexed Gaussian Field (GF) for all finite collection of [X(si)] are

jointly Gaussian distribution. The Gaussian field specified by its mean function, μ = μ(Y(s; t))
and the spatiotemporal covariance function S ¼ CovðYðs; tÞ;Yðs0 ; t0 ÞÞ ¼ s2Cððs; tÞ; ðs0 ; t0 ÞÞ
with (s; t), (s0; t0) 2 R2 × R. The spatiotemporal process is second-order stationary if its mean is

constant and the spatiotemporal covariance function depends on the locations and time points

only through the spatial distance vector d = s − s0 2 R2 and the temporal lag l = t − t0 2 R [8].

The covariance function is isotropic and stationary, the covariance function is stationary only

a function of a relative position of two locations and isotropic a covariance function depends

only on the euclidian distance between two locations. Since a covariance matrix is positive def-

inite, the spatiotemporal covariance function must be a positive definite function. Although

Gaussian fields are expedient from both an analytical and a practical approach, the computa-

tional issues have always been complex. Although Gaussian fields are expedient from both an

analytical and a practical approach, the computational issues have always been complex. This

is due to the general computational cost of O(n3) to factorize the dense n × n spatiotemporal

covariance matrices. to overcome ‘the big n problem’, by doing exact computations on a sim-

plified Gaussian model of low rank [8], [12], [13], applied covariance tapering to zero-out

parts of the covariance matrix to improve a computational speed. However, the sparsity pat-

tern will depend on the range of the GFs [14], thus to avoid this complexity the GF is substi-

tuted by a Gaussian Markov random field (GMRF). The GMRF illustration can be constructed

plainly by using a certain stochastic partial differential equation (SPDE) [8] which has GFs

with Matern covariance function as the solution when driven by Gaussian white noise. The

result is a basis function representation with piecewise linear basis functions and Gaussian

weights with Markov dependences determined by a general triangulation of the domain. The

critical lump is that the spatiotemporal covariance function and the dense covariance the

matrix of a GF are substituted, respectively, by a neighborhood structure and by a sparse preci-

sion matrix that together defines a GMRF. Indeed, GMRFs are defined by a precision matrix

with a sparse structure for which it is possible to use computationally effective numerical

methods, especially for fast matrix factorization [14]. Moreover, when working with Bayesian

inference for GMRFs, it is thinkable to make use of the Integrated Nested Laplace Approxima-

tion (INLA) procedure proposed by [15] as an alternative to MCMC methods for latent Gauss-

ian field models. The best marvelous edge of INLA is computational because it produces

almost immediately precise approximations to posterior distributions, also in the case of com-

plex models. Thus, the joint use of the SPDE approach together with the INLA method is a

candidate for being a powerful solution in overcoming the computational issues related to GF
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modeling. The main aim of this paper is the spatiotemporal modeling of the infected rate of

visceral leishmaniasis in human (VLH) over a stochastic partial differential equation (SPDE)

approach using Integrated nested Laplace approximations (INLA) technique.

Yðs; tÞ ¼ bZðs; tÞ þ Fðs; tÞ þ �ðs; tÞ ð2Þ

Fðs; tÞ ¼ lFðs; t � 1Þ þ gðs; tÞ ð3Þ

The spatiotemporal model above defines a hierarchical model described by a Gaussian field

(GF), Y(s; t) assembled from external covariate information Z(s, t), microscale spatiotemporal

variation, �(s, t) and a first-order autoregressive a dynamic model for the latent process F(s, t)
with spatially correlated innovations γ(s, t). This kind of model has extensively applied in the

diseases infection and disease modeling literature appreciations towards its suppleness in

modeling the effect of relevant external variables (i.e. meteorological, sociodemographic and

ecological variables) as well as time and space dependence. Thus, spatiotemporal modeling of

the infected rate of visceral leishmaniasis in human in Amhara regional state, Ethiopia, using

weekly data from first week of January 2015 to last week of December 2017 with a total of 156

weeks of 10 different locations in the area a total of 1560 spatiotemporal data for estimation

and we used 5 validation location with a total of 780 spatiotemporal data.

Materials and methods

The main aim of this study is to identify the determinates of the infected rate of visceral leish-

maniasis in Humans by using dynamic spatiotemporal modelling.

Hierarchical spatiotemporal modeling of the infected rate of visceral

leishmaniasis(VLH)

Leishmaniases are an assembly of diseases triggered by more than 20 different species of the

protozoan genus Leishmania that is spread between a human being and other mammalian

hosts by phlebotomine sandflies [7], [16]. Visceral leishmaniasis (VL), which affects interior

body part, for instance, the liver and spleen, if it is not identified and cured in the preliminary

phases, it usually leads towards death [17]. The infection endangers about 350 million persons

in 98 countries, most of them in the poorer regions of the globe [1], [6]. In Ethiopia, an esti-

mated over 2500 to 4000 new VL cases happen per annum and over 3.2 million persons are at

threat of infection of VL [16], [18]. It widely spread over the arid and semi-arid parts of the

country. Despite the symptom of visceral leishmaniasis in human (VLH) is fundamentally

similar to malaria and enteric fever, reliable laboratory methods become mandatory for the

accurate diagnosis of the infection.VL in Ethiopia is caused by L. donovani with an anthropo-

notic transmission. Leishmania infections do not always equate with clinical illness. The ratio

of incident asymptomatic infections to incident clinical cases varies among geographic

regions. Most infections in immuno-competent individuals remain asymptomatic [19]. In

addition, untreated individuals might act as reservoirs putting the community at risk of ongo-

ing transmissions.

Fig 2 below shows that the flowchart of VLH infection from the first week of January 2015

(week 1) to the last week of December 2017(week 156) at every 15 stations. We collect the rec-

ords of VLH infection in a spatiotemporal manner by considering all of 15 stations in the

endemic regions. Furthermore, we divided these stations into estimation and validation sites,

by selecting 10 of stations for estimations and the remaining 5 stations for validation in a ran-

dom fashion. In this study, VLH infection was tested at each treatment site in the endemic

area of Amhara regional state, based on the symptom of the patient and its traveling history
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during admission. Visceral Leishmaniasis should always be suspected when an individual pres-

ents with prolonged fever from the endemic areas. The test of VLH infection has been depend-

ing on clinical, serological, parasitological and molecular tests to detect the infection based on

the species of leishmaniasis. We collected data at every 15 VLH stations in the endemic

regions, from VLH infection registration book weekly spatiotemporal data from January 2015

to December 2017 and we calculated the weekly infection rate based on the total number of

infected population and the total number of populations resident in the region. Thus, ministry

heath has to access infected rate of VLH in order to take appropriate and operative actions in

order to refine the situation of the most VLH infection regions and to get the map of the infec-

tion rate of VLH. As a result, we propose a hierarchical spatiotemporal model able to catch the

complex spatiotemporal dynamics of infection the rate of VLH, including the meteorological,

sociodemographic and geographical variables as external covariates. We consider Amhara

Regional State, Ethiopia. We analyzed a weekly average infected rate of visceral leishmaniasis

in human (VLH) particularly in South and North Gondar zone of Amhara region by consider-

ing infection areas from the first week of January 2015 to last week of December 2017 with a

total of T = 156 weeks. In particular, we consider a total of m = 10 stations for spatiotemporal

estimation as shown in Fig 3 below the red hexagon indicates the location of 10 stations and in

Fig 4 below the yellow hexagon indicates the location of 5 validation stations. In addition, we

have used external covariates such as meteorological, sociodemographic and geographical vari-

ables. Moreover, we consider altitude (A, m) and spatial geographic coordinates (X and Y, in

km) in addition to weekly temporal dynamics. The data for this study is provided by the Uni-

versity of Gondar leishmaniasis research and treatment center, Ethiopian Central Statistics

Agency(CSA) and Amhara Regional Health Bureau.

Fig 2. The flowchart shows that weekly visceral leishmaniasis in human (VLH) infection at every 15 sites

(stations).

https://doi.org/10.1371/journal.pone.0212934.g002
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Spatiotemporal models

We assumed that Y(s; t) be the realization of the spatiotemporal process Y(, ; ,) that indicates the

weekly average infected rate of Visceral leishmaniasis in human(VLH) at locations i = 1, 2, . . .,

m located at si stations and week t = 1, 2, . . ., T, We assumed the following spatiotemporal

model;

Yðsi; tÞ ¼ bZðsi; tÞ þ Fðsi; tÞ þ �ðsi; tÞ ð4Þ

Where; Z(si, t) = Z1(si, t), . . ., Zp(si, t) denote the vector of covariates and β = (β1, β2, . . ., βp)0 is a

coefficient of the vector, Moreover; �ðsi; tÞ � Nð0; s2
�
Þ is spatiotemporal Gaussian white noise

process both serially and spatially uncorrelated. �(si, t) is the realization of state process of the

unobserved rate of infection of VLH. We assumed the spatiotemporal Gaussian field process

that changes in time with first-order autoregressive dynamics with a coefficient of λ and colored

innovations is given by;

Fðsi; tÞ ¼ lFðsi; t � 1Þ þ gðsi; tÞ ð5Þ

For t = 2, 3, . . ., T where |λ|< 1 andF(si, 1) is derived from a stationary Gaussian distribution

Fig 3. The map shows 10 locations of VLH infection rate stations.

https://doi.org/10.1371/journal.pone.0212934.g003
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� N 0;
s2
g

1� l2

� �
Moreover, γ(si, t) has a zero-mean Gaussian distribution, is assumed to be tempo-

rally independent and characterized by spatiotemporal covariance functions;

Cov gðsi; tÞ; gðs
0

i; t
0

Þ
� �

¼
0; if t 6¼ t0

s2
g
ðrÞ ift ¼ t0

8
<

:

for i 6¼ j the purely spatial correlation function C(r) is depending on the location si and sj only

through the euclidian spatial distance r = ||si − sj|| 2 R. Thus, the process is second order station-

ary and isotropic [10]. It follows that Varðgðsi; tÞÞ ¼ s2
g

for each si and t. The Spatial correlation

function is defined as a Matern function;

CðrÞ ¼
1

GðvÞ2v� 1
ðkrÞvkvðkrÞ

With κv denoting the modified Bessel function of the second kind and order v> 0, The parame-

ter v, which usually kept stable measures of the degree of smoothness of the process and its inte-

ger value decides the mean square differentiability of the process, k> 0 is the scaling parameter

Fig 4. The map shows 5 locations of VLH infection rate validation stations.

https://doi.org/10.1371/journal.pone.0212934.g004
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related to the range ρ we use empirically derived definition r ¼
ffiffiffi
8v
p

k with ρ corresponding the

distance where the spatial correlation is close to 0.1 [8], [20]. From Eqs (4) and (5) by collecting

observation in vector t we have:

Yt ¼ ðyðs1; tÞ; yðs2; tÞ; . . . ; yðsm; tÞÞ
0

Zt ¼ ðzðs1; tÞ; zðs2; tÞ; . . . ; zðsm; tÞÞ
0

Ft ¼ ðFðs1; tÞ;Fðs2; tÞ; . . . ;Fðsm; tÞÞ
0

�t ¼ ð�ðs1; tÞ; �ðs2; tÞ; . . . ; �ðsm; tÞÞ
0

It follows that;

Yt ¼ bZt þ Ft þ �t ð6Þ

�t � Nð0; s2
�
ImÞ and also;

Ft ¼ lFt� 1 þ gt ð7Þ

gt � Nð0;S ¼ s2
�
~SÞ, we assume is coming from the stationary distribution of AR(1) process

with,F1 � N 0; S

1� l2

� �
¼� N 0;

s2
�

~S

1� l2

� �
Moreover, the dense correlation matrix of dimension m

with an element C(||si − sj||), Where C(r) is a Matern covariance function;

CðrÞ ¼
1

GðvÞ2v� 1
ðkrÞvkvðkrÞ

and parameterized by κ and v. LetY ¼ ðb; s2
�
; l; s2

g
; kÞ denote the parameter of the vector to be

estimated, thus, the joint posterior distribution is given by;

PðY;FjYÞ / PðYjY;FÞPðFjYÞPðYÞ ð8Þ

Where P(.) denotes the probability density functions, Y = (Yt) andF = (Ft) with t = 2, 3, . . ., T
and assume the hyper parameters are independent PðYÞ ¼

QdimðYÞ
i¼1

PðYiÞ, The left-hand side of

Eq (8) above is the joint posterior distribution and the right-hand side of Eq (8), P(Y|Θ,F) is

the data model (likelihood of the data), P(F|Θ) is the latent (unobserved) process model and P
(Θ) is the parameter model. From Eq (6) above we have

Yt ¼ bZt þ Ft þ �t

�t � Nð0; s2
�
ImÞ Thus; the data model (likelihood of the data) can be written as

PðYtjF;YÞ � NðbZt þ Ft; s
2
�
ImÞ

¼
1
ffiffiffiffiffiffi
2p
p

s�

 !mT

exp� 1
2

XT

i¼1

�t�
0

t

s2
�

� �

but �t = Yt − βZt −Ft

P YtjF;Yð Þ / ðs2
�
Þ
� mT

2 exp
� 1

2s2
�

XT

i¼1

ðYt � bZt � FtÞðYt � bZt � FtÞ
0

� �
" #

ð9Þ

The joint distribution of spatiotemporal process model is can be factorized as with the total law

of probability and Markovian process;

PðF1;F2; . . . ;FTjYÞ ¼ PðFTjFT� 1;FT� 2; . . . ;F1;YÞ � . . . ; PðF2jF1;YÞ � PðF1jYÞ

Dynamic spatiotemporal modeling of the infected rate of visceral leishmaniasis in human

PLOS ONE | https://doi.org/10.1371/journal.pone.0212934 March 1, 2019 8 / 21

https://doi.org/10.1371/journal.pone.0212934


using a Markovian process assumption we have;

PðFTjFT� 1;FT� 2; . . . ;F1;YÞ ¼ PðFTjFT� 1;YÞ

We have the joint distribution of the process model;

PðF1;F2; . . . ;FTjYÞ ¼ PðF1jYÞ
YT

t¼2

PðFtjFt� 1;YÞ ð10Þ

We assume the hyperparameter are independent, the parameter model is given by;

PðYÞ ¼
YdimðYÞ

i¼1

PðYiÞ ð11Þ

The posterior distribution is given by the product of the data model, process model, and param-

eter model [21]. we assumeF1 is AR(1) stationary process, F1jY � N 0; S

1� l2

� �
,F1|Θ also called

the initial distribution [21].

P F1jYð Þ ¼
1

ffiffiffiffiffiffi
2p
p
j S

1� l2 j
1
2

 !m

exp� 1
2 F

0

1

S

1 � l
2

� �� 1

F1

 !

From above we define and assume S ¼ s2
g
~S

P F1jYð Þ /
s2
g

1 � l
2

� �
� m
2
j~Sj

� 1
2 exp

� 1� l2

2s2
g

F
0

1
~S � 1F1

� �

ð12Þ

Also the evolution distribution; P(Ft|Ft−1, Θ) since follows an AR(1) process, Ft = λFt−1 + γt
and gt � Nð0;S ¼ s2

�
~SÞ, The joint eveloution distribution is given as;

P FtjFt� 1;Yð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

g

p

 !mðT� 1Þ

j~Sj
� T� 1

2ð Þexp
� 1

2s2
g

PT

i¼1
ðFt � lFt� 1Þ

~S � 1ðFt � lFt� 1Þ
0

� �

PðFtjFt� 1;YÞ / ðs
2
g
Þ
� mðT� 1Þ

2 j~Sj
� T� 1

2ð Þexp
� 1

2s2
g

PT

i¼1
ðFt � lFt� 1Þ

~S � 1ðFt � lFt� 1Þ0

� �

ð13Þ

the joint process model is expressed as the product of the joint initial distribution and the joint

evolution distribution [21], Thus from Eqs (12) and (13), we have the process model the joint

distribution given by;

PðF1;F2; . . . ;FTjYÞ ¼ PðF1jYÞ
YT

t¼2

PðFtjFt� 1;YÞ

/
s2
g

1 � l
2

� �� m
2

j~Sj
� 1
2 exp

� 1� l2

2s2
g

F
0

1
~S � 1F1

� �

�

ðs2
g
Þ
� mðT� 1Þ

2 j~Sj
� T� 1

2ð Þ�

exp
� 1

2s2
g

PT

i¼1
ðFt � lFt� 1Þ

~S � 1ðFt � lFt� 1Þ
0

� �

ð14Þ
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The parameter model also from Eq (11) above;

PðYÞ ¼
YdimðYÞ

i¼1

PðYiÞ

Thus, the joint posterior model is the product of the data model, process model and parameter

model [21] give us;

A ¼ ðs2
�
Þ
� mT

2 exp
� 1

2s2
�

XT

i¼1

ðYt � bZt � FtÞðYt � bZt � FtÞ
0

� �
" #

ð15Þ

B ¼
s2
g

1 � l
2

� �� m
2

j~Sj
� 1
2 exp

� 1� l2

2s2
g

F
0

1
~S � 1F1

� �

�

ðs2
g
Þ
� mðT� 1Þ

2 j~Sj
� T� 1

2ð Þ�

exp
� 1

2s2
g

PT

i¼1
ðFt � lFt� 1Þ

~S � 1ðFt � lFt� 1Þ
0

� �

ð16Þ

C ¼
YdimðYÞ

i¼1

PðYiÞ ð17Þ

The joint posterior distribution;

PðY;FjYÞ / PðYjY;FÞPðFjYÞPðYÞ

From Eqs (15) to (17) the joint posterior distribution is approximated by;

PðY;FjYÞ / A� B� C ð18Þ

where j~Sj is the determinant of the dense m-dimensional correlation matrix ~S.

GMRF and Stochastics Partial Differential Equation (SPDE) approach

Gaussian Markov random field (GMRF). GRMF is a zero mean multivariate Gaussian

distribution with a sparse precision matrix [8], [20].

P Xð Þ ¼
1
ffiffiffiffiffiffi
2p
p

� �n

jQj
1
2exp

� 1
2

X
0
QXð Þ

Where Q is the precision matrix it just the inverse of the covariance matrix.

Theorem: Qij = 0, Xi is conditionally independent Xj given all other variables, i.e (Xi?

Xj|X−ij). A collection of a random variable X is a Gaussian Markov random field (GMRF) with

respect to a graph with vertex V and edge G, i.e G = (V, E) with mean μ and a precision matrix

Q with its probability distribution of a multivariate Gaussian, if the elements of the precision

matrix is non zero (Qij 6¼ 0) implies that (i, j) 2 E 8i 6¼ j.

P Xð Þ ¼
1
ffiffiffiffiffiffi
2p
p

� �n

jQj
1
2exp

� 1
2
ðX� mÞ

0
QðX� mÞð Þ ð19Þ

A GMRF is a spatial process that used to model the spatial dependence of data observed on

areal units, for instance, regular grid, lattice structure or geographical regions [14]. A Gaussian
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Markov random field X can be specified over the conditional distributions for every part given

all the others. Furthermore, the Markovian property is connected to the definition of a neigh-

borhood structure, in that the full conditional distribution of Xi for i = 1, 2, 3 . . ., n depends

only on a few of the components of X. This set of components is denoted by zi, which consti-

tutes the set of neighbors of unit i, and

PðXijX� iÞ ¼ PðXijXzi
Þ ð20Þ

where the notation X−i denotes all elements in X except for Xi. This implies that given the

neighborhood zi, the terms Xi and X−(i,zi) are independent. The conditional independence rela-

tion can be written as;

Xi ? X� ði;ziÞjXzi

for i = 1, . . ., n. The main aims of this conditional independence property are rigorously

related to the precision matrix Q, Generally for i and j with i 6¼ j it holds that;

Xi ? XjjX� ði; jÞ , Qij ¼ 0

which indicates that the nonzero pattern of Q is given by the neighborhood structure of the

process. Thus, Qij 6¼ 0 if j 2 (i, zi).
The computational advantage of making inference with a GMRF stalks directly from the

sparsity of the precision matrix Q. The computational properties of GMRFs are enhanced by

utilizing Integrated Nested Laplace Approximations (INLA) for Bayesian inference [9], [15]. is

a computationally capable strategy that produces quick and exact approximations to posterior

distributions.

Stochastics Partial Differential Equation (SPDE) approach

Let X(s)� (x(s), s 2 Ds� R2) denote a Matern field, this implies that the second order station-

ary and isotropic Gaussian field with Materns covariance functions

CðrÞ ¼
1

GðvÞ2v� 1
ðkrÞvkvðkrÞ

and depending on the scale κ and smoothness parameter v. Suppose we observe a realization

of the spatial process X(si) at m spatial location s1, s2, . . ., sm. The primary points of the SPDE

approach are to discover a GMRF, with a nearby neighborhood and a sparse precision matrix

Q, that profoundly speaks to the Matern field. Accordingly, it is conceivable to make inference

utilizing the GMRF with the best computational expenses. This makes it conceivable to main-

tain a computational problem-related to the large dimension of the matrix [8] that emerges

when working with the dense covariance matrix of a GF.

On a very basic level, the SPDE approach utilizes a finite element representation to define

the Matrn field as a linear combination of basis functions defined on a triangulation of the

domain Ds. This comprises of subdividing Ds into a set of non-crossing triangles meeting in at

most a typical edge or corner. To begin with, the triangle initial vertices are put at the areas s1,

s2, . . ., sm and after that extra vertices are included request to get an appropriate triangulation

valuable for spatial forecast purposes. Matern covariance functions show up in different fields

[8] in any case, essential acknowledgment we will make utilization of its that GF X(s) with

Matern covariance is a solution to the linear fractional SPDE

ðk2 � DÞ
a
2XðsÞ ¼ oðsÞ ð21Þ
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s 2 Rm, a ¼ vþ m
2
, κ> 0, v> 0, where ðk2 � DÞ

a
2 is a pseudodifferential operator. The innova-

tion process ω is spatial Gaussian white noise with unit variance and Δ is the Laplacian

D ¼
Xm

i¼1

@
2

@x2
i

and the marginal variance

s2 ¼
GðvÞ

G vþ m
2

� �
þ 4p

m
2k2v

We shall name any solution to Eq (21) is a Matern field [8]. The Matern field is the main sta-

tionary solution for SPDE. Ordinarily, the triangulation has amplified the base inside the trian-

gle edge, purported Delaunay triangulations, which guarantees that the advances among little

and substantial triangles are smooth. The additional vertices are included heuristically [8], [20]

to endeavor to limit the aggregate number of triangles that are expected to satisfy the size and

shape constraints. To build a GMRF portrayal of Matern’s field on the triangulated grid, we

begin the stochastics week solution of SPDE in Eq (21). We define the inner product;

ðf ; gÞ ¼
Z

f ðsÞgðsÞds

where the integral is over the region of interest. The stochastic weak solution of the SPDE is

found by requiring that

hZj; ðk
2 � DÞ

a
2xi; j ¼ 1; 2; 3 . . . ; q

� �
Dist hZj;oi; j ¼ 1; 2; 3 . . . ; q

� �

For every appropriate finite set of the test function (ηj, j = 1, 2, 3. . ., q). Given the triangulation,

the basis function representation of the Matérn field, The finite element representation the

solution to SPDE [8], [22].

XðSÞ ¼
Xk

h¼1

chðSÞoh ð22Þ

for some chosen basis functions ψh and Gaussian-distributed weights ωh. Here, n is the num-

ber of vertices in the triangulation. We choose to use functions ψh that are piecewise linear in

each triangle, defined such that ψh is 1 at vertex h and 0 at all other vertices. The key purpose

of the SPDE approach is the finite element representation in Eq (22) that sets up the connec-

tion between the GF X(s) and the GMRF characterized by the Gaussian weights (ωh) to which

a Markovian structure can be given.

Specifically, the precision matrix Q of the GMRF ω = (ω1, ω2, . . ., ωn) is a function of κ2 [8],

for α = 1, 2, 3, . . . and v = 0, 1, 2, . . . with α = v + 1. This characterizes an explicit mapping

from the parameters of the GF covariance function (κ) and (v) to the elements of the precision

matrix Q of the GMRF ω, with a computational expense of O(n) for any triangulation [20]. We

describe how to actualize the spatiotemporal model characterized in Eqs (4) and (5) by utiliz-

ing the SPDE approach. We focus on reclassifying the model make use of the connection

between GF and GMRF and estimation of the posterior parameters.

For each time point t = 1, 2, 3. . ., T, the Matern field γt in Eq (7) is characterized through

GMRF, ~gt � Nð0;Q� 1

s Þ where, Qs is the precision matrix originates from the SPDE approach.

The matrix Qs does not change in time because of the serial independence assumption of Eq

(5) and its dimension n is given by the number of vertices of the domain triangulation. In this
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manner Eq (7) can modify as;

Ft ¼ lFt� 1 þ ~gt ð23Þ

~gt � Nð0;Q� 1

s Þ

for t = 1, 2, 3. . ., T with F1 � N 0;
Q� 1
s

1� l2

� �
follows that the joint distribution of Tn dimensional

GMRF, F ¼ ðF
0

1
;F

0

2
; . . . ;F

0

TÞ is given by;

F � Nð0;Q� 1Þ ð24Þ

Where, Q = Qs�QT and QT is T- dimensional precession matrix of the autoregressive process

of order 1 in Eq (23). Equation Eq (6) we can rewrite as also;

Yt ¼ bZt þHFt þ �t; �t � Nð0; s2
�
ImÞ ð25Þ

where the (m × n) dimensional matrix H selects the value of the GMRF Ft for each observation

vector Yt. In particular, H is a sparse matrix with only one unit element for each row and such

that;

Yðsi; tÞ ¼ bZðsi; tÞ þ
Xn

i¼1

HijFt þ �ðsi; tÞ

Where Hij = 1 if the triangulation vector j is placed at location si and 0 otherwise.

Parameter estimation

The hierarchical model characterized by Eqs (23) and (25) belongs to the class of latent Gauss-

ian models and can be evaluated using the INLA procedure proposed by [15]. INLA is a

computational methodology for Bayesian inference and is an option to MCMC for getting the

approximated posterior marginals for the latent variable and additionally for the hyper

parameters.

Let X = (F, β) mean the basic latent field with a priori independent parts. We dole out a

vague Gaussian with known precession to β and the Gaussian Markov Random Field (GMRF)

distribution to F in Eq (24). Consequently the density P(X|Θ) is a Gaussian distribution with

mean zero and precession matrix Q with hyperparameter vector ðs2
g
; l;kÞ. Also, we have the

observation Y = (Yt) is normally distributed and conditionally independent given X and s2
�
.

Thus, Y ¼ ðs2
g
; s2

�
; l; kÞ is the hyper parameter vector, The joint posterior distribution is

given by;

PðX;YjYÞ ¼ PðYÞPðXjYÞ
YT

t¼1

PðYtjY;XÞ ð26Þ

Where PðYtjY;XÞ � NðbZt þHFt; s
2
�
ImÞ is the conditional distribution of the infected rate of

VLH observation at time t defined by Eq (25). Thus, the posterior marginal distribution of the
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latent field and the hyper paramater is given by;

PðXijYÞ ¼
Z

PðXijY;YÞPðYjYÞdY ð27Þ

PðYjjYÞ ¼
Z

PðYjYÞdY� j ð28Þ

for i = 1, 2, 3, . . ., T + p and j = 1, 2, . . ., 4.

It merits nothing that for the specific model we are managing, described by Gaussian obser-

vations, we have that ~PðXijYÞ is correct and Gaussian and the main approximation is the

numerical integration required for computing ~PðYjYÞ.

Results and discussion

Results

We considered the average weekly infected rate of VLH from the first week of January 2015 to

last week of December 2017 with T = 156 weeks, at every m = 10 locations and 5 validation

sites in Amhara Regional State, Ethiopia, including geographical, socioeconomic, metrological

covariates, spatial coordinates and temporal dynamics. We had also average infected rate data

and average infected rate validation data with 1560 rows and 780 rows respectively, one row

for each week, 15 columns (Station ID, time, the infected rate of VLH, Average number of

Household (ANH), Average number of Persons Per housing Unit (ANPPHU), Population

Density per square kilometer (PDPSK), Health Facility Coverage in Percentage (HFCIP), Edu-

cation coverage in percentage (ECIP), Net Migration rate (NMR), Average weekly temperature

(AT), Mortality rate (MR), Sex ratio (SR), Clean water coverage in percentage (CWC) and Spa-

tial coordinates (X, Y, Elevation)).

Since the covariates are very extraordinary we applied standardization technique for covari-

ates, Additionally, so as to stabilize the variances, which increment with the mean values, and

to make the distribution of the infected rate of VLH data approximately normal, we utilized a

logarithmic transformation. The data for this study is provided by the University of Gondar

Leishmaniasis research center, Ethiopian Central Statistical Agency (CSA) and Amhara

Regional Health Bureau. Fig 5 below demonstrates that the mesh construction and triangula-

tion of Amhara regional state, the red specks showing the area of 10 stations and blue specks

shows the validation of 5 stations. We sought a triangulation based on initial vertices at the

m = 10 station locations and further vertices are included to fulfill the triangulation con-

straints. We created an SPDE model object for a Matérn-like spatial covariance function with

a parameter α = 2 implies that the smoothness parameter of Matérn covariance function v = 1.

Appreciations to R-INLA, so as to evade having to keep track of vertex indexing, we utilized

an R-INLA feature that enables the observation equation to be written in matrix form, Y =

Aτ + � where, Y are the observations, τ is a linear predictor, � is the observation noise and A is

an observation (projection) matrix. The function inla.stack(.) is used to build the necessary

data structures, combining simple model building blocks into large complicated models [9]

Using a helper function, we built an observation matrix that extracts the values of the spatio-

temporal field at the measurement locations and time points used for the parameter estima-

tion. Table 1 above shows that The posterior summary statistics(Mean, Standard Deviation

and 95% credible interval) of the fixed effect (covariate coefficient) β, Specifically, the posterior

mean of the intercept is 0.00247 on the log scale, which corresponds to an average infected rate

of visceral leishmaniasis (VLH) is 0.0025, after alteration for covariates.
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Fig 5. Mesh construction and triangulation of Amhara regional state, for 10 locations and 5 validation sites.

https://doi.org/10.1371/journal.pone.0212934.g005

Table 1. Posterior estimates (mean, standard deviation and 95% credible interval) of the covariate coefficient vector β.

Covariates Mean St.Dev Quantiles (0.025) Quantiles (0.5) Quantiles(0.975)

Intercept 0.00274 3.8869 0.007445 0.002781 0.00293

ANH 0.0019 0.234 -0.00357 0.0019 0.0037

ANPPHU 0.0014 0.176 -0.00127 0.0014 0.0027

PDPSK -0.0005 0.0700 -0.1379 -0.0005 0.1368

HFCIP 0.0023 0.0051 -0.0099 0.0023 0.0100

ECIP 0.0127 0.0129 -0.0253 0.0127 0.0253

MR 0.0003 0.0401 -0.0785 0.0003 0.0790

AT 0.001 0.0749 0.00015 0.001 0.1469

NMR 0.0012 0.0005 -0.0019 0.0012 0.00329

CWC 0.0005 0.0358 -0.0697 0.0005 0.0707

SR 0.0001 0.0806 -0.1584 -0.0001 0.1580

X -0.00322 0.034744 -0.0068345 -0.00322 0.0068

Y -0.00191 0.0291 -0.00572 -0.00191 0.00571

Elevation -0.00331 0.028319 -0.055689 -0.0041095 0.00556

https://doi.org/10.1371/journal.pone.0212934.t001
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Expectedly, a significant and positive relationship is perceived between the Average number

of Household (ANH) and the Infected Rate of Visceral Leishmaniasis (VLH) since the poste-

rior mean of ANH is 0.0019 and it lies in 95% credible interval. This indicates that an Average

number of household (ANH) is one of the determinates of the infected rate of VLH as upheld

by the posterior summaries in Table 1 above. Also, a significant and positive relationship is

observed between the Average number of Persons Per housing Unit (ANPPHU) and the

Infected Rate of Visceral Leishmaniasis (VLH) as the posterior mean of ANPPHU is positive

(0.0014) and it lies at 95% credible interval as depicted in posterior summaries above. Addi-

tionally, a significant and positive relationship is observed between the Health Facility Cover-

age in Percentage (HFCIP) and the Infected Rate of Visceral Leishmaniasis (VLH) since the

posterior mean of HFCIP is positive (0.0023) and it lies at 95% credible interval, indicates that

HFCIP is one of the determinants of the Infected Rate of Visceral Leishmaniasis (VLH). Like-

wise, there is a significant and positive relationship perceived between Education coverage in

percentage (ECIP) and the Infected Rate of Visceral Leishmaniasis (VLH) since the posterior

mean of ECIP is positive (0.0127) and it lies at 95% credible interval. As a result, ECIP is also

the determinants of the Infected Rate of Visceral Leishmaniasis (VLH) in the region. Similarly,

there is a significant and positive relationship observed between Mortality rate (MR) and the

Infected Rate of Visceral Leishmaniasis (VLH) since the posterior mean of MR is positive

(0.0003) and it lies at 95% credible interval. Correspondingly, there is also a significant and

positive relationship observed between Clean water coverage in percentage (CWC) and the

Infected Rate of Visceral Leishmaniasis (VLH) since the posterior mean of CWC is positive

(0.0005) and it lies at 95% credible interval. As a result, CWC is also another determinant of

the Infected Rate of Visceral Leishmaniasis (VLH) in the region. Similarly, there is also a sig-

nificant and positive relationship observed between Net Migration Rate (NMR) and the

Infected Rate of Visceral Leishmaniasis (VLH) since the posterior mean of NMR is positive

(0.0012) and it lies at 95% credible interval. Consequently, NMR is also another determinant

of the Infected Rate of Visceral Leishmaniasis (VLH) in the region. Additionally, there is also a

significant and positive relationship observed between Sex ratio (SR) and the Infected Rate of

Visceral Leishmaniasis (VLH) since the posterior mean of SR is positive (0.0001) and it lies at

95% credible interval. Moreover, there is also a significant and positive relationship observed

between Average Temperature (AT) and the Infected Rate of Visceral Leishmaniasis (VLH)

since the posterior mean of AT is positive (0.001) and it lies at 95% credible interval. Conse-

quently, AT is also another determinant of the Infected Rate of Visceral Leishmaniasis (VLH)

in the region and confirms that the importance of meteorological variables on the Infected rate

of Visceral Leishmaniasis (VLH). Besides, there is also a significant and negative relationship

observed between Population Density per square kilometer (PDPSK) and the Infected Rate of

Visceral Leishmaniasis (VLH) since the posterior mean of PDPSK is negative (-0.0005) and it

lies at 95% credible interval. Subsequently, PDPSK is also another determinant of the Infected

Rate of Visceral Leishmaniasis (VLH) in the region. Finally, there is also a significant and neg-

ative relationship observed between, Spatial coordinates (X, Y, Elevation) and the Infected

Rate of Visceral Leishmaniasis (VLH) since the posterior mean of (X, Y, Elevation) is negative

(-0.00322,-0.00191,-0.00331) respectively and it lies at 95% credible interval. Therefore, Spatial

coordinates is also another determinant of the Infected Rate of Visceral Leishmaniasis (VLH)

in the region and confirm that the importance of spatial effects on the Infected rate of Visceral

Leishmaniasis (VLH).

Table 2 above shows, the summary statistics of the posterior distribution of the AR(1) coef-

ficient λ, the R-INLA function provides us with the mean, quantiles and standard deviation of

the Gaussian observation precision parameters 1

s2
�
. As we are apprehensive in the variance s2

�
,
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We transformed the marginal density of the precision 1

s2
�

to variance s2
�
. The parameter esti-

mates for the spatial SPDE model we obtained using R-INLA which extracts all relevant infor-

mation from the model summary, also transforms the results from internal parameter scales,

giving posterior distributions for nominal variance and nominal range in addition to the inter-

nal θ1 = log(τ) and θ2 = log(κ) where κ is a scaling parameter and τ is parameter that rescales

the field. We get a value of 526 km for the empirically derived correlation range r ¼
ffiffiffi
8v
p

k
. As

this is the distance at which the correlation is close to 0.1952, we can conclude that the data are

pigeonholed by a strong spatial correlation which diminishes gradually with distance [9]. As

depicted by [8], [9] and [23], The Marginal variance, s2
g

can be approximated with,

s2
g
¼

1

4pk2t

From Table 2 above, s2
g

was 0.276. We perceived that more variation is explained by the spatial

term rather than by the error. Moreover, the high value of the AR(1) temporal correlation coef-

ficient (0.7263) confirms that the short-term persistence of the Infected rate of Visceral leish-

maniasis in human(VLH).

Discussion

In this research, we had applied the Stochastics Partial Differential Equation (SPDE) approach

for a spatiotemporal hierarchical model for Visceral leishmaniasis in human (VLH) that

encompasses a GF and a state process is accompanying with an autoregressive order one tem-

poral dynamics and the spatially correlated error term, together with the effect of land-living

cover, metrological, demographic, sociodemographic and geographical covariates in endemic

area of Amhara regional state, Ethiopia.

We used a constrained refined Delaunay triangulation (CRDT) for SPDE approximation

and mesh construction as a result of the CRDT part is the least relevant as compared to the

unconstrained type, it just means that one can specify that certain polygons/line must be part

of the triangulation edges. The only constrained edges are usually the boundary edges. The

quality of the spde approximation depends mostly on the “refined” aspect. Meshes with small

and well-formed triangles (short edges, and no small acute angles) provide closer approxima-

tions. Meshes with large and/or sharp angled triangles exhibit approximation artifacts; the

fields are always conditionally deterministic, given the values at the mesh vertices. The poste-

rior distributions of covariate effect sizes demonstrate that the mean weekly temperature had a

positive association with the infected rate of VLH, This study is in accordance with, the study

by [16] in a similar region. Indicates that the outbreak and infection of Visceral leishmaniasis

in human (VLH) disease are distributed in the arid and semi-arid parts of the country, high

temperatures increase VLH infection rate, this result is in line with the study by [24], [25]. The

Average number of Household (ANH) and Average number of Persons Per housing Unit

(ANPPHU) had a positive association with the infected the Infected Rate of Visceral

Table 2. Posterior estimates (mean, standard deviation and 95% credible interval) of the ParametrsY ¼ ðs2
g
;s2

�
; l;rÞ.

Parametrs (Θ) Mean St.Dev Quantiles (0.025) Quantiles (0.5) Quantiles(0.975)

s2
�

0.0176 0.0081 0.0161 0.0176 0.0193

s2
g

0.276 0.0035 0.211 0.287 0.321

ρ 526 26.1 518 531.6 582

λ 0.7263 0.0273 0.6983 0.7421 0.7916

https://doi.org/10.1371/journal.pone.0212934.t002
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Leishmaniasis (VLH). This related to the source of reservoir hosts and human infection

anthroponotic leishmaniases, in which the reservoir host is human, the infection and disease

transmitted from human to human [1]. Net Migration Rate (NMR) and Mortality rate (MR)

had a significant positive association with the Infected Rate of Visceral Leishmaniasis (VLH),

this agrees with the study by [6] indicates that migration of laborers and farmers to and from

endemic areas increases the infected rate of VLH. Additionally, Health Facility Coverage in

Percentage (HFCIP), Education coverage in percentage (ECIP) and Clean water coverage in

percentage (CWC) had a significant positive association with the Infected Rate of Visceral

Leishmaniasis (VLH), lack of awareness about the disease and symptom, shortage of drug

expansions and health facilities and shortage of clean water coverage in the endemic area of

Visceral Leishmaniasis (VL) as a result there will be a significant increment of the infection of

Visceral Leishmaniasis. Well organized and planned drug expansions in the infected and

endemic area, disease controlling mechanisms, better hygiene and sufficient clean water cover-

age and medical treatments to the infected persons decrease the death and infection rate of

VLH. Moreover, Population density per square kilometer (PDPSK) had a significant negative

association with the Infected Rate of Visceral Leishmaniasis in humans (VLH), the infection

and disease transmitted from human to human, in which the reservoir host is human if the

population is very dense and increase the infection of the disease. Sex ratio (SR) also had a sig-

nificant positive association with on the infected rate of visceral leishmaniasis in human

(VLH), Males are more exposed to develop the infection and disease as they are usually

engaged in farms, trades and other agricultural activities, which will make them progressively

available to the sandfly chomp [6], [26]. From random effects, we get a value of 526 km for the

empirically derived correlation range r ¼
ffiffiffi
8v
p

k
. This indicates that the distance at which the cor-

relation is close to 0.1952, we can say that the data are characterized by a strong spatial correla-

tion which diminishes gradually with distance, This result is in line with the study by [20],

[27], [28]. s2
g

was 0.276 and s2
�

was 0.0176. We designated that more variation is explained by

the spatial term rather than by the error, This result is in line with the study by [20], [29], [30].

Additionally, the high value of the AR(1) temporal correlation coefficient confirms the short-

term persistence of Infected rate of Visceral leishmaniasis. There are different possibilities for

modifying this study. This study developed dynamic spatiotemporal modeling of the Infected

Rate of Visceral Leishmaniasis in humans (VLH) it examined the spatial and temporal effects

in addition to the covariate effects through SPDE approach using hierarchical Bayesian model-

ing. The future studies can modify this study by incorporating the interaction effects of time

and space. Also, this study only considered infection of only Infected Rate of Visceral Leish-

maniasis in humans (VLH) future studies can extend the study by considering other additional

Leishmaniasis infection cases like cutaneous, mucosal or post kala-azar dermal Leishmaniasis

(PKDL) in the same study area. We used too many metrological, demographic, sociodemo-

graphic and geographic covariates in addition to spatial and temporal effects which lead us

model complexity and posterior approximation took too much time. Moreover, future studies

can incorporate seasonal dummies to identify the seasonal effects on the infection of Visceral

Leishmaniasis in humans (VLH). Lastly, Visceral Leishmaniasis in humans (VLH) case data

from stations were very poorly recorded and required very cautious integration. Future studies

should modify this study by considering the above limitations in the endemic area of the

region.

Even though the above limitations our study identify the spatiotemporal covariates associ-

ated with Infected Rate of Visceral Leishmaniasis in humans (VLH) in the region using INLA

method. We believe that our modeling result could be used as information and motivation for
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other studies for identifying spatiotemporal determinants of VLH infection in the endemic

areas of Amhara regional state, Ethiopia.

Conclusions

In this study, we investigated the dynamic spatiotemporal modeling of the infected rate of vis-

ceral leishmaniasis (VLH) through SPDE approach. The model involves a Gaussian field (GF)

its state process is an autoregressive order one of temporal dynamics and the spatially corre-

lated innovations. Our study had confirmed that both metrological, demographic, sociodemo-

graphic and geographic covariates had a significant association with the infected rate of

visceral leishmaniasis (VLH) in the region.

Furthermore, Integrated nested Laplace approximations (INLA) is a computationally profi-

cient strategy for incorporating both spatial and temporal effects into spatiotemporal general

mixed effect models. Spatiotemporal model fitting is commonly exceptionally complex to exe-

cute and requires a powerful computing machine, a long running time, or both. INLA package

runs utterly within the commonly utilized R statistical software and is relatively simple to

implement with intermediate levels of programming expertise. In ongoing research, we are

working on by incorporating the use of expert knowledge of spatiotemporal prediction it just

an extension of this work. We also inspire future research in spatiotemporal disease ecology

and rare events prediction to consider the INLA SPDE approach for spatiotemporal mixed

modeling.
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