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Bandgap engineering of lead halide perovskite materials is critical to achieve highly efficient and stable

perovskite solar cells and color tunable stable perovskite light-emitting diodes. Herein, we propose the

use of machine learning as a tool to predict the bandgap of the perovskite materials from their

compositions. By learning from the experimental results, machine learning algorithms present reliable

performance in predicting the bandgap of the lead halide perovskites. The linear regression model can

be used to manually predict the bandgap of the perovskite with the formula of

CsaFAbMA(1�a�b)Pb(ClxBryI(1�x�y))3 (FA ¼ formamidinium, MA ¼ methylammonium). The neural network

(NN) algorithm, which takes the interplay of cations and halide ions into account in predicting the

bandgap, presents higher accuracy (with a RMSE of 0.05 eV and a Pearson coefficient larger than 0.99).

Furthermore, the compositions of the mixed halide perovskites with desirable bandgaps and high iodide

ratio for suppressing halide segregation are predicted by NN algorithm. These results highlight the power

of machine learning in predicting the bandgap of the perovskites from their compositions and provide

bandgap tuning directions for experiments.
Introduction

Lead halide perovskites (APbX3, A is the cation, X is the halide
ion) are a class of incredible materials, which show unique
optical, electrical, and optoelectronic performance in many
applications.1–3 Bandgap tuning is essential for the application
of perovskite materials in both solar cells and light emitting
diodes (LEDs). The bandgap of the perovskites can be tuned
from 1.5 to 3.2 eV by adjusting I/Br and Br/Cl mixing ratio and
the A-site cations (Cs, formamidinium (FA), methylammonium
(MA) etc.).4–6 Especially, mixed halide perovskites (MHPs) with
wide bandgap (>1.65 eV) are gaining increasing importance for
tandem solar cells (TSCs).7,8 The TSCs with multiple junctions,
which optically connect wide bandgap and narrow bandgap
absorbers in series, can overcome the Shockley–Queisser limit
of single junction cells and enable notably high power conver-
sion efficiency.9–11 The optimum bandgap for the top cell of
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perovskite/Si TSCs by detailed-balance calculations under standard
test conditions (AM1.5G, 1 kWm�2, 25 �C) is 1.73 eV for the series
tandem and 1.81 eV for the module and the four-terminal
tandem.12 At elevated temperatures, the optimal perovskite
bandgap falls below 1.68 eV (measured at 25 �C) at the radiative
limit.13However, the wide bandgapMHPs in the optimumbandgap
range for TSCs suffer from halide segregation,14–16 especially when
Br fraction was larger than 20%, which lead to poor optoelectronic
performance and device stability. To reduce halide segregation of
wide bandgapMHPs, lowering the Br fraction without at the cost of
lowering the bandgap is essential. Hence, to suppress the halide
segregation and enhance the device performance of MHP based
solar cells,17–21 it is critical to identify the relation between the
composition of the perovskites and their bandgaps, and to explore
new MHPs with desired bandgaps and low Br fraction.

The physical relations between the composition of the
perovskites and their bandgaps are well explored by previous
work,22–24 which provide general directions for bandgap tuning
through the compositions. However, these relations are not able
to be used for accurately predicting the bandgaps before
experiments. To screen perovskites with desired bandgap,
a traditional way is by doing trial and error experiments, which
requires lots of time, materials, equipment, and manpower.
Meanwhile, the fabrication of some perovskite materials may
also face challenge with present techniques. For example,
though triple halide strategy with partial Br replaced by Cl is
proved to be effective in achieving wide bandgap MHPs with
© 2021 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Correlation matrix of the ions and the bandgap of the perov-
skites. Here, the ratios of FA, Cs, Cl and Br in
CsaFAbMA(1�a�b)Pb(ClxBryI(1�x�y))3 perovskites are used as the input
features for ML algorithms.
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reduced Br fraction, it faces challenge in doping Cl in the crystal
lattice.25,26 It is because that Cl typically volatilizes as MACl (MA
¼ methylammonium) or FACl (FA ¼ formamidinium) during
annealing of the perovskite lm and only acts to control lm
crystallization.25,27 Hence, this limits the investigation of the
intrinsic material information of these materials.

Nowadays, machine-learning (ML) approach is the scientic
modeling that can effectively learn from past massive datasets
and mechanisms with relatively small error.28–32 Hence, ML is
benecial for overcoming the experimental limitations to
investigate the underlying mechanism of the perovskite mate-
rials. In the recent past, researchers have made progress in
exploring the physical properties of the materials with their
structural and chemical features,7 screening perovskites,3,8

developing high-performing perovskite solar cells,28 and
understanding the underlying complex correlations in fullerene
derivatives-based ternary OSCs.33 In previous studies, to train
the ML algorithms, the dataset is obtained mainly from either
density functional theory (DFT) calculations or experimental
results.34,35 The dataset obtained from experimental results is
able to reduce the deviation, and hence, the predicted results by
ML algorithms are more referable to experiments. For example,
Jinxin Li et al.28 use the experimental bandgap results based on
pure I, I–Br mixed, and I–Cl mixed perovskites as the training
dataset, and learn the relations between the compositions of the
perovskite materials with their bandgaps. The predicted results
show high accuracy in predicting the bandgaps of the test dataset
(with root mean square error of less than 0.1 eV). However, limited
to the scale of the training dataset, the inuences of Cl and Br,
especially Cl, on the bandgap are unclear. Hence, the prediction in
the bandgaps of MHPs (especially triple halide perovskites) from
their compositions still face challenge.

Hence, in this work, ML approach is employed to get the
bandgap tuning strategy by cations and halide ions of MHPs
based on the past reported experimental dataset. The dataset
covers a large range of compositions of the perovskites,
including pure Cl, pure Br, pure I, Cl–Br mixed, and Br–I mixed,
aiming to get a deep and accurate relation between the
composition of the lead halide perovskite and its bandgap.
Moreover, the dataset points are reasonably screened, which
enables the ML algorithms exhibiting excellent performance in
predicting the bandgaps of both the training and the test
datasets. Especially, a series of MHPs with triple halide ions and
low Br fraction in the optimum bandgap range for use in TSCs
are predicted, which provides essential guidance for experi-
mental composition optimization.

Results and discussion
Building dataset

To build the ML dataset, we search for the literatures reporting
the bandgap of the perovskites. As for top cell of the TSCs, the
bandgap of the perovskites shall be sufficiently large, so we only
consider Pb-based perovskites and exclude out Sn-based
perovskites. Furthermore, as Cl may be not be incorporated
into the lattice of the as-reported Cl–I perovskites without
Br,25,36,37 so we also exclude the related reports. Herein, we got
© 2021 The Author(s). Published by the Royal Society of Chemistry
more than 300 data points from more than 120 recently pub-
lished papers. Then we clean the data points by removing the
duplicate data points with same material composition and
bandgap values. For the data points with same material
composition but different bandgap value, we reserve the data
point with the most frequently reported and recently reported
bandgap value. For example, for MAPbI3, a typically reported
value is 1.60 eV,38,39 so we reserve the data point with a bandgap
of 1.60 eV. As the reports on the bandgap information of
CsPb(ClxBr1�x)3 lms are quite few, we also did the experiments
to obtain these information of CsPb(ClxBr1�x)3 (x ¼ 0.1–0.5, the
experimental results are shown in Fig. S1†). Finally, we got 109
data points for ML, which are listed in Table S1.† These data
points cover Cl, Cl–Br mixed, Br, Br–I mixed, and I based
perovskites with different A site cations including methyl-
ammonium (MA), formamidinium (FA) and cesium (Cs). The
maximum bandgap of the perovskites is 3.16 eV from MAPbCl3,
while the smallest value is 1.48 eV from FAPbI3.

Correlation between the components of perovskite with their
bandgaps

We use the correlation matrix to learn the correlation between
the ions and the bandgap of the perovskites. Correlation matrix
presents the Pearson correlation between the components in
the matrix, in which the value is the Pearson's coefficient (r
value, the denition is shown in the Methods section). A larger r
value means a stronger correlation between these two compo-
nents. As shown in Fig. 1, the bandgap (abbreviated as Eg in
Fig. 1) of the perovskites shows strong correlation with both the
halide anions and the cations. As expected, the bandgap shows
strong and positive correlation with Cl, so it is possible to
enlarge the bandgap by a small amount of Cl. Among the three
types of A-site cations (MA, FA and Cs), the bandgap has
RSC Adv., 2021, 11, 15688–15694 | 15689



Table 1 Performances of different ML algorithms in bandgap
prediction of the perovskites

ML algorithms

Training set Test set Efficiency

RMSE [eV] r value RMSE [eV] r value CPU time (s)

Linear regression 0.063 0.990 0.032 0.997 0.80
Random forest 0.134 0.973 0.145 0.947 0.77
Neural network 0.047 0.995 0.050 0.993 0.74
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a negative correlation with FA, while it is positively changed
with MA or Cs. It is proved that the observed band gap changes
upon halide substitution are inuenced by the electronic states
of the halide anion, i.e., from Cl to Br to I, the valence band
composition changes from 3p to 4p to 5p with a monotonic
decrease in electron binding energy (lower ionization poten-
tial).40 For iodide perovskites, the correlations between the
bandgap and the cations are supposed to be determined by the
size and the properties of the cations, which modify the
bandgap through modifying the crystal lattice structure, tilting
the MX6 octahedra or by contracting the lattice isotropically in
the condition of using smaller cations.41,42 Hence, to get wide
bandgap, it is important to adjust the cations and the halide
ions simultaneously.
Performance of different ML algorithms

To learn the correlations between the compositions and the
bandgap of the MHPs, we use R43 tool employing 3 algorithms
including linear regression (LR), neural network (NN) and
random forest (RF). The 4 input features for the ML algorithms
are the ratios of Cs, FA, Cl and Br in the perovskites with the
formula of CsaFAbMA(1�a�b)Pb(ClxBryI(1�x�y))3, and the output
is the bandgap value of the perovskite. We use 5-fold cross-
validation method to optimize the performances of the ML
algorithms. The dataset was randomly divided into 5 parts: 4
parts (80%, including 88 data points) for training (the training
dataset) and 1 part (20%, including 21 data points) for testing
Fig. 2 Comparison of the predicted values from different algorithms
perovskites (b). The red dash line presents the condition in which the pr
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(the test dataset). It means that 5 datasets used for the training,
and 5 models will be obtained and are used to predict on both
the training set and the test set. The model yields best perfor-
mance on the test set is used for comparison and further
prediction. In addition, the randomness of the dataset is also
checked manually. The performances of the algorithms are
evaluated using root mean square error (RMSE) and Pearson's
coefficient (r value). RMSE directly evaluates the error between
the predicted values and the experimental values of the dataset,
which evaluates the accuracy of the algorithm in prediction.
Pearson's coefficient (r value) shows the correlation between the
predicted values and the experimental values of the dataset, and
a larger r value means that they have a stronger correlation.

Table 1 summarizes the performances of different algo-
rithms with RMSE and r value on the training dataset and the
test dataset. Fig. 2 presents the comparison of the experimental
bandgap values of the dataset and the predicted values from
different algorithms including LR, NN and RF. The low RMSE
value is realized by all the algorithms, indicating the high
accuracy of these algorithms in predicting the bandgap values
of the perovskites. Moreover, r value is higher than 0.94 for all
algorithms, which means that the predicted values and the
experimental values have strong correlation. In addition, the
efficiencies of the algorithms are comparable, as shown in Table
1, which cost similar and short CPU time. To check the
dependence of the accuracy of the ML algorithm on the size of
the dataset, we carried out the NN algorithm on the datasets
with different training set size. As shown by the Fig. S2,† the NN
algorithm shows high accuracy on training set even at smaller
dataset size, and it also shows high accuracy on test set. This
reveals that the dataset size used in this work is large enough to
get acceptable accuracy (RMSE < 0.05 eV).

The high accuracy of the algorithms depends highly on data
screening. To show the importance of the data screening, we
evaluate the performance of LR algorithm on different datasets
including the standard dataset with the data listed in Table S1†
(dataset A) and the dataset with I–Cl MHPs (dataset B). Dataset
B includes all 109 data points in dataset A and 3 additional
datapoints with I–Cl MHPs (MAPb(Cl0.05I0.95)3 (1.55 eV),44
and the experimental bandgaps of all perovskites (a) and Cs-based
edicted value equals to the experimental value.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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MAPb(Cl0.33I0.67)3 (1.55 eV),45 FA0.3MA0.7Pb(Cl0.1I0.9)3 (1.5 eV)).46

For dataset B, the LR model gives the RMSE of 0.085 eV (r ¼
0.982) and 0.056 eV (r ¼ 0.993) on the training dataset and the
test dataset, respectively. The comparison of the experimental
bandgaps and the predicted values by these two models learned
from dataset A and B is shown in Fig. S3.† It is clear that the model
learned from dataset B is less accurate in predicting the bandgap
values, especially for wide bandgap perovskites with a high content
of Cl. Cl plays critical role in determining the bandgap of the
perovskites, as can be seen from the importance results of the input
features presented by RF algorithm (FA 22.1%, Cs 12.8%, Br 19.6%,
Cl 36.6% increase in mean squared error) listed in Table S2.† As Cl
may be not incorporated into the lattice of the as-reported I–Cl
perovskites, the reports on their bandgap may not reect the exact
role of Cl in determining the bandgap. Hence, the real content of Cl
is overestimated in these perovskites, leading to its underestimated
effect on the bandgap. These results indicate the importance of the
smart screening of the reported experimental dataset.

Among the three algorithms, LR and NN both perform
excellent on both training and test dataset, which have quite low
RMSE (<0.07 eV) and high r value (>0.99). Compared with NN
algorithm, the model obtained from LR algorithm is facile to be
understood and used to manually predict the bandgaps of the
perovskite with unknown compositions. The relation between
the bandgap (Eg) and the composition of the perovskite with the
formula of CsaFAbMA(1�a�b)Pb (ClxBryI(1�x�y))3 can be expressed
by the following equation:

Eg ¼ 1.587 � 0.039a � 0.102b + 1.543x + 0.669y (1)

Though this correlation performs a RMSE of less than
0.07 eV in predicting the bandgaps of the perovskites, the pre-
dicted bandgaps show larger variation from the experimental
results of Cs-based perovskites compared with NN algorithm. As
shown in Fig. 2b, LR algorithm roughly underestimates the
bandgap of Cs-based perovskites with narrow bandgaps (I and
I–Br mixed perovskites), while overestimates the bandgap of Cs-
based perovskites with wide bandgaps (Cl and Cl–Br mixed
perovskites). In comparison, NN shows high consistency in
predicting the bandgap of all the perovskites.
Fig. 3 Comparison of the predicted values from LR algorithm based
on different features (standard or with R feature) and the experimental
bandgaps of Cs-based perovskites. The red dash line presents the
condition in which the predicted value equals to the experimental
value.
Optimization of LR model

The physical origin for the deviation of the predicted result by
LR algorithm from the experimental results possibly correlate
with the interplay of Cs and halide ions on the bandgap. In I-
based perovskites, it is revealed that the introducing of small
Cs cations can tilt the PbX6 octahedra, leading to the increased
bandgap.22 In Cl-based perovskites, Cs has no obvious effect in
increasing the bandgap. For example, FAPbCl3 and CsPbCl3 have
similar bandgap of 3.0 eV. Therefore, it may be retrodicted that Cs
has no notable effect on tilting the PbX6 octahedra in Cl-based
perovskites. As the lattice distortion depends on the sizes of the
cations and the halide ions, so we introduce a new feature R to
incorporate this effect in LR algorithm. R is determined by the ratio
and the size of the cations and the halide ions, which is expressed by
© 2021 The Author(s). Published by the Royal Society of Chemistry
R ¼ arCs þ brFA þ ð1� a� bÞrMA

xrCl þ yrBr þ ð1� x� yÞrI (2)

where, a, b, x, y are the ratios of Cs, FA, Cl and I in
CsaFAbMA(1�a�b)Pb(ClxBryI(1�x�y))3, respectively; r represents
for the corresponding Shannon radii of the ions (rCs ¼ 1.81 Å,
rFA ¼ 2.79 Å, rMA ¼ 2.70 Å, rCl ¼ 1.81 Å, rBr ¼ 1.96 Å, rI ¼ 2.03 Å).
With the feature R, the performance of LR algorithm on Cs-
based perovskites is notably improved, as shown in Fig. 3. In
the improved model, the bandgap (Eg) is determined by

Eg ¼ �4.960 + 2.214a � 0.315b + 0.814x + 0.436y + 4.913R (3)

Compared with eqn (1), eqn (3) presents the different
proportion of Cs concentration in determining the bandgap of
the perovskites depending on the concentration of halide ions.
This correlation shows a RMSE of 0.059 eV on training set (r ¼
0.992) and 0.039 eV on test set (r ¼ 0.996). For instance, we
compared the predicted results with the reported experimental
values of the perovskites outside the data points shown in Table
S1.† The experimental bandgaps of Cs0.25FA0.75Pb(Cl0.05Br0.15I0.8)3,
Cs0.25FA0.75Pb(Br0.2I0.8)3, and Cs0.25FA0.75Pb(Br0.15I0.85)3 are
>1.67 eV, 1.67 eV, and 1.63 eV,36 respectively, while the predicted
values are 1.689 eV, 1.647 eV, and 1.614 eV. It can be seen that the
deviations between the experimental and the predicted results are
less than 0.3 eV, revealing the high prediction accuracy of eqn (2)
and (3). Hence, they can be used to manually predict the bandgap
of the perovskites with a high accuracy.
Bandgap prediction by NN algorithm

As NN algorithm takes the interplay of cations and anions on the
bandgap of the perovskites into account, so it predicts the whole
range of data much accurately. Hence, we employ NN algorithm to
RSC Adv., 2021, 11, 15688–15694 | 15691



Fig. 4 4D plots of the predicted bandgaps (unit: eV) of the perovskites with different ion ratios by neutral net algorithm trained by the exper-
imental data listed in Table S1.† (a) Change the ratio of halide ions, while the cations ratios of FA, MA, and Cs are fixed to be 0.75, 0, and 0.25; (b)
change the ratio of cations, while the halide ratios of Cl, Br, and I are fixed to be 0.05, 0.15, and 0.8.
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screen perovskites with desired compositions and bandgaps. Here,
the MHPs with high iodide ratio and wide bandgap are of great
interest. Hence, a series of perovskite compositions, i.e.,
MA(1�a�b)FAaCsbPb(Cl(1�x�y)BrxIy)3, (0# a, b# 1, 0 < x < 0.3, 0.7 < y
< 1), are predicted by NN algorithm trained by the experimental
results shown Table S1.† The predicted bandgap of the perovskites
varies in the scale of 1.536–2.026 eV.

To clearly shown the effects of the ion ratio on the bandgap
of the perovskites, the 4D plots of the predicted bandgaps and
the ion ratios are shown in Fig. 4. Fig. 4a shows the variation of
the bandgap of FA0.75Cs0.25Pb(Cl(1�x�y)BrxIy)3 with the ratio of
halide ions. It is obvious that Cl doping increases the bandgap
of the perovskites, i.e., increasing the ratio of Cl from 0 to 0.15
(xing Br ratio to be 0.1) increases the bandgap from 1.592 eV to
1.830 eV. In comparison, increasing the doping ratio of Br from
0.05 to 0.20 (xing Cl ratio to be 0.05) increases the bandgap
from 1.634 eV to 1.718 eV. Fig. 4b shows the variation of the
bandgap of CsaFAbMA(1�a�b)Pb(Cl0.05Br0.15I0.8)3 with the ratio of
cations. It can be seen that a high concentration of Cs benets
for obtaining wide bandgap in I-dominated perovskites.
Therefore, to obtain wide bandgap and I-dominated perov-
skites, it is critical to increase the doping ratios of Cl and Cs.
Table 2 Some representative compositions of the FACsPb(ClxBr(0.2�x)I
1.780–1.840 eV by NN algorithm trained by the experimental data listed

TSCs Predicted bandgap Experimental bandgap FA/(FA + M

2T 1.651 — 0.70
1.697 — 0.70
1.688 >1.67 0.75
1.680 1.65 0.80
1.672 — 0.85
1.664 0.90
1.657 0.95

4T 1.783 — 0
1.827 — 0
1.818 0.05
1.808 0.1
1.798 0.15
1.788 0.20
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To further explore the possible interplay of A site cations and
halide ions on the bandgap of the perovskites, the bandgaps of
pure halide perovskites, CsaFAbMA(1�a�b)PbX3, (0 # a, b # 1, X
¼ Cl, Br or I), are also predicted by NN algorithm trained by the
experimental data listed in Table S1.† For pure iodide perov-
skites, increasing the ratio of Cs increases the bandgap, while
increasing the ratio of FA decreases the bandgap. This is
consistent with the general knowledge obtained from experi-
mental results. For pure chloride perovskites, Cs and FA show
comparable inuence on the bandgap.

From these results, it can be speculated that simultaneously
modifying the ratios of Cl and Cs in I-based MHPs may induce
a complex change of bandgaps, which is not same to that of
pure I- or Cl-based perovskites. Hence, it is critical to predict the
bandgaps of the MHPs through machine learning algorithms to
meet the requirements for different applications. To clearly
shown the potential perovskites for TSCs, we screen a series of
the perovskites with the predicted bandgaps of 1.650–1.710 eV
and 1.780–1.840 eV for use in 2T and 4T TSCs, respectively, and
with the following rules: (1) iodide ratio is as high as 0.8 to
suppress halide segregation, (2) Br ratio is not lower than Cl
ratio for ease fabrication, (3) MA ratio is 0 to enable high device
stability. The screened perovskite compositions are listed in
0.8)3 perovskites with the predicted bandgaps of 1.650–1.710 eV and
in Table S1

A + Cs) Cs/(FA + MA + Cs) Br/(Cl + Br + I) Cl/(Cl + Br + I)

0.30 0.2 0
0.30 0.15 0.05
0.25
0.20
0.15
0.10
0.05
1 0.2 0
1 0.15 0.05
0.95
0.9
0.85
0.80

© 2021 The Author(s). Published by the Royal Society of Chemistry
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Table S2.† Table 2 shows some representative compositions,
which have one kind of cations as the major cation to avoid
possible phase segregation during fabrication with present
techniques.21,47 To verify the accuracy of the predicted values, we
compare them with the experimental results reported in the
literature and our experimental result. The experimental
bandgaps of FA0.75Cs0.25Pb(Cl0.05Br0.15I0.8)3 and FA0.8Cs0.2-
Pb(Cl0.05Br0.15I0.8)3 are >1.67 eV (ref. 36) and 1.65 eV (our
experimental result), respectively, while the predicted values are
1.688 eV and 1.680 eV. The deviations between the experimental
and the predicted results are extraordinarily little, revealing the
high accuracy of the prediction model. In addition, we also
compared the photostability of triple-halide MHPs (FA0.8Cs0.2-
Pb(Cl0.05Br0.15I0.8)3) with that of Br–I MHPs (FA0.8Cs0.2Pb(Br0.3-
I0.7)3) with similar bandgap values. FA0.8Cs0.2Pb(Cl0.05Br0.15I0.8)3
shows less redshi than that of FA0.8Cs0.2Pb(Br0.3I0.7)3 aer
continuous irradiation for 5 h, which reveals the higher pho-
tostability of triple-halide perovskites.
Methods

R (version 3.6.2) tool was employed as the platform for machine
learning. Correlation matrix analysis was carried out based on
Pearson correlation and using corr function. The linear
regression (LR), neural network (NN) and random forest (RF)
algorithms were used for learning based on glm, neuralnet, and
randomForest functions, respectively. The NN algorithm has 3
layers, which have 4, 4 and 4 neurons, respectively. The tree
number in RF algorithm was 100. The number of neurons, the
layer number, the tree number and other important parameters
used in NN and RF algorithms were optimized in advance. The
performances of the algorithms are evaluated by root mean
square error (RMSE) and Pearson's coefficient (r value) on the
test set. Here,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðXi � YiÞ2
n

s

r ¼
Xn

i¼1

�
Xi � X

��
Yi � Y

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Xi � X

�2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
Yi � Y

�2

s

Xi, Yi, X�, Y�, and n represent for the ith value of experimental
bandgap dataset, the ith value of predicted bandgap dataset, the
mean value of the experimental bandgap dataset, the mean
value of the predicted bandgap data set, and the number of the
dataset points, respectively. The ratio of the test dataset is 0.2.
To train the ML algorithms, we use 5-fold cross-validation,
which employed the createFolds function and randomly
divided the dataset into 5 parts (80% data points for training
and 20% for test) and did the learning for 5 times. The model of
the algorithm performing the lowest RMSE on test set was
screened for further learning.
© 2021 The Author(s). Published by the Royal Society of Chemistry
Conclusion

In summary, the bandgap tuning strategy by cations and halide
ions is revealed by machine learning, and the neural network
algorithm presents high accuracy in predicting the bandgap of
the perovskites from their components. In addition, we show
that A site cations and halide ions have synergetic effect on the
bandgap, which makes the bandgap prediction in triple halide
MHPs more complicated than commonly used Br–I MHPs.
Considering this effect, we modify the linear regression model
and presents a function of the bandgap with the change of the
ion ratios for manual prediction. Moreover, a series of mixed
halide perovskites with required bandgaps and high iodide
ratio for suppressing halide segregation are predicted by neural
network, which have great potential for application in highly
efficient stable perovskite solar cells and are referable for
experiments. These results reveal that machine learning is an
efficient tool to explore and design new mixed halide perov-
skites, which will greatly reduce the time and material cost in
experiments.
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M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai,
L. Korte and B. Rech, Science, 2016, 351, 151–155.

8 Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen, Y. Lin, H. Wei, Z. J. Yu,
Z. Holman and J. Huang, Nat. Energy, 2020, 5, 657–665.

9 K. Jayawardena, S. Silva and R.Misra, J. Mater. Chem. C, 2020,
8, 10641–10675.
RSC Adv., 2021, 11, 15688–15694 | 15693



RSC Advances Paper
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