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Abstract: Honey is a natural substance with many medicinal properties, including 

antibacterial, hepatoprotective, hypoglycemic, antioxidant and antihypertensive effects. It 

reduces hyperglycemia in diabetic rats and humans. However, the mechanism(s) of its 

hypoglycemic effect remain(s) unknown. Honey comprises many constituents, making  

it difficult to ascertain which component(s) contribute(s) to its hypoglycemic effect. 

Nevertheless, available evidence indicates that honey consists of predominantly fructose 

and glucose. The objective of this review is to summarize findings which indicate that 

fructose exerts a hypoglycemic effect. The data show that glucose and fructose exert a 

synergistic effect in the gastrointestinal tract and pancreas. This synergistic effect might 

enhance intestinal fructose absorption and/or stimulate insulin secretion. The results 

indicate that fructose enhances hepatic glucose uptake and glycogen synthesis and storage 

via activation of hepatic glucokinase and glycogen synthase, respectively. The data  

also demonstrate the beneficial effects of fructose on glycemic control, glucose- and  

appetite-regulating hormones, body weight, food intake, oxidation of carbohydrate and 

energy expenditure. In view of the similarities of these effects of fructose with those of 

honey, the evidence may support the role of fructose in honey in mediating the 

hypoglycemic effect of honey. 
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1. Introduction 

Honey is a natural substance with various medicinal properties which include antibacterial [1], 

antihypertensive [2], hepatoprotective [3], hypoglycemic and antioxidant effects [4]. It comprises 

mainly fructose and glucose along with other bioactive constituents such as assorted phenolic 

compounds, flavonoids, organic acids, enzymes and vitamins [5]. The fructose in honey is found to 

vary from 21.0% to 43.5%, while the ratio of fructose to glucose ranges from 0.46 to 1.62 [6–10]. 

These variations are due primarily to differences in floral sources, geographical origin and climatic  

factors [5]. Fructose is the sweetest of all naturally-occurring and available sweeteners or sugars [11]. 

It has a glycemic index of about 19 compared to that of glucose which is 100 [11]. Sucrose and honey 

have comparable glycemic indices, 61 and 58, respectively [11]. Other sources of fructose include 

sugar cane, sugar beets, fruits (such as dates, apples and grapes) and some vegetables (such as carrots, 

corns, onions and sweet potatoes) [11–15]. Honey supplementation has been found to reduce 

hyperglycemia in rodents and humans with diabetes mellitus [4,8,9,16]. However, the mechanisms  

of the hypoglycemic effect of honey remain unclear. The possible roles of fructose, mineral ions (such 

as zinc, copper and vanadium), phenolic acids and flavonoids have been suggested [4,8,9,16,17]. The 

protection of the pancreas against oxidative stress and damage (via honey antioxidant molecules such 

as organic acids and phenolic compounds) is one such potential mechanism [18]. 

The objective of this review is to summarize findings on the hypoglycemic effect of fructose. The 

data indicate that fructose enhances hepatic glucose uptake via activation of glucokinase and promotes 

synthesis and storage of glycogen via activation of glycogen synthase in the liver. The findings 

indicate that glucose and fructose might exert a synergistic effect in the intestine and pancreas. This 

might enhance intestinal fructose absorption in the intestine and stimulate insulin secretion in  

the pancreas. The studies reveal that fructose might improve glycemic control independent of  

its insulinotropic effect. The data demonstrate the beneficial effects of fructose on glucose- and  

appetite-regulating hormones, glycemic response, body weight, food intake, oxidation of carbohydrate 

and energy expenditure. On the basis of the similarities of these effects of fructose with those of 

honey, even though data regarding the effects of honey are still limited, the evidence may support the 

role of fructose in honey in contributing to the hypoglycemic effect of honey. Thus, the possibility that 

fructose in honey might mediate the hypoglycemic effect of honey merits scientific investigation. 

2. Overview of Fructose (and in Relation to Honey) in the Gastrointestinal Tract (GIT) 

The GIT is an important barrier that plays a vital role in determining the biological or 

pharmacological effects of many orally administered agents by influencing their absorption and 

bioavailability [19]. Generally, carbohydrates are hydrolyzed by the intestinal brush border hydrolases 

to generate monosaccharides (glucose, fructose and galactose) before they are absorbed [19]. Glucose 

and galactose are taken up via the SGLT1, a Na+/glucose (galactose) co-transporter [19]. In contrast, 

fructose is transported across the apical membrane by GLUT5 and/or GLUT2 via facilitated diffusion, 

though some evidence suggests uptake may be via active transport [19,20]. Unlike glucose and 

galactose, fructose delays gastric emptying, which may inhibit food intake, leading to its slower 

absorption [19,21,22]. Glucose and/or fructose can upregulate GLUT2 mRNA expression [21]. In 
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contrast, GLUT5 mRNA transcription is upregulated by fructose only and thereby enhances  

fructose absorption [23]. Studies have shown that glucose and/or galactose can enhance fructose  

absorption [12,14,15]. While the mechanisms are not yet fully understood, it is suggested that in the  

presence of glucose, there is combined absorption of the two monosaccharides, reminiscent of a 

disaccharidase-related transport system [24]. Some findings suggest that glucose facilitates fructose 

absorption via passive diffusion [25], whereas others support the recruitment of GLUT2 to the brush 

border membrane in response to increased intestinal fructose [25]. 

In summary, evidence indicates that fructose has a special carrier different from that of glucose [19,20]. 

Studies show that the presence of fructose increases this transporter resulting in increased fructose 

absorption [23]. The presence of glucose further enhances fructose absorption [12,14,15,24,25]. All 

these findings could be very important in regard to honey. This is because honey consists of primarily 

fructose and glucose. Hence, there is a possibility that administration of honey might increase the 

transcription of fructose transporter thereby enhances fructose absorption [23]. The glucose in honey 

might also facilitate fructose absorption [12,14,15,24,25]. Moreover, recent data indicate that  

gut microbiota enhances the intestinal absorption of monosaccharides including fructose [26]. 

Interestingly, honey comprises oligosaccharides which enhance the activity and growth of gut 

microorganisms [27]. Therefore, it is possible that enhanced activity and growth of gut microbiota due 

to honey supplementation might also contribute to increased intestinal absorption of honey fructose. 

3. Overview of Fructose (and other Monosaccharides) in the Liver 

After absorption, monosaccharides are transported to the liver which plays a key role in glucose 

homeostasis [28]. In the liver, the uptake and initial steps of metabolism of glucose and fructose  

differ [22]. For instance, insulin is required for the hepatic uptake of glucose, but not for fructose [22]. 

It is known that larger amounts of fructose than glucose are extensively metabolized in the liver [19]. 

This differential metabolism might result in more glucose than fructose passing through the liver with 

reduced metabolism [19]. Previous reviews have described in details the metabolism of fructose and 

other monosaccharides [22,29]. Therefore, what is presented here is a summary to provide the 

necessary knowledge to understand how metabolism of these monosaccharides (glucose and fructose) 

might contribute to hypoglycemia. Glucose is phosphorylated by glucokinase in the liver to obtain 

glucose 6-phosphate [29]. This is the first rate-determining step in the metabolism of glucose. 

Metabolism of glucose 6-phosphate by phosphofructokinase produces fructose 6-phosphate, the 

second rate-limiting step [29]. Fructose 6-phosphate is converted to fructose 1,6-diphosphate by 

phosphofructokinase, which is further metabolized by aldolase to dihydroxyacetone and glyceraldehyde 

3-phosphate. In each of these different catalytic reactions, insulin plays an important role [29]. 

In contrast, galactose is converted to galactose 1-phosphate by galactokinase. Metabolism of 

galactose 1-phosphate, which is catalyzed by phosphoglucomutase, produces glucose 1-phosphate 

which then enters the glycolytic pathway [29]. However, in the case of fructose which is extensively 

metabolized into fructose 1-phosphate, the reaction is catalyzed by fructokinase [22,29]. The high 

hepatic extraction of fructose results in excessive production of fructose 1-phosphate which inhibits 

glycogenolysis [22,29]. This enhances the conversion of fructose into lactate [22,29]. The enzyme 

aldolase then converts fructose 1-phosphate to dihydroxyacetone phosphate and glyceraldehyde, which 
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are glycolytic substrates [22,29]. Through the activity of aldolase, condensation of dihydroxyacetone 

phosphate with glyceraldehyde 3-phosphate may produce fructose 1,6-diphosphate, yielding glucose or 

glycogen [22,29]. Dihydroxyacetone phosphate may also be reduced to glycerol-3-phosphate, a 

substrate for triacylglycerols and phospholipids [22,29]. Unlike in glucose metabolism, all these 

catalytic reactions occur independently of insulin and the rate-limiting steps are also bypassed in 

fructose metabolism [22,29]. These differences in metabolism result in about 50% to 70% of the 

absorbed fructose being metabolized in the liver [29], compared to only about 20% to 30% of the 

absorbed glucose [30]. A simplified figure that summarizes these pathways of fructose metabolism in 

the liver has already been presented by Waford [31]. Interested readers are referred to see reference no 

33 for further details [31]. 

In summary, as highlighted in this section, this differential metabolism of fructose and glucose in 

the liver seems very relevant. This is in view of the fact that honey is enriched in both fructose  

and glucose [5–10]. As will be explained later, the liver is the major site where fructose exerts its 

hypoglycemic effect [31–33]. Compelling evidence indicates that both glucose and fructose act 

synergistically in the liver to elicit hypoglycemic effect [33–35]. Considering that more of the 

absorbed fructose is phosphorylated in the liver than the absorbed glucose [29,30], similar proportion 

of fructose and glucose in honey might also be phosphorylated in the liver. Should that be case, with 

the activation of glucokinase and other enzymes involved in glycogenesis by fructose, more of the 

previously unmetabolized glucose might be taken up again from the circulation into the liver. With 

larger quantities of fructose undergoing continuous and extensive metabolism in the liver than  

glucose [29,30], this might contribute to further or additional uptake of glucose from the circulation. In 

other words, honey supplementation (via its fructose) might enhance glucose uptake, synthesis and 

storage of glycogen in the liver of diabetic rodents or humans. This would result in improved glycemic 

control in diabetes mellitus. Studies have also shown that honey administration ameliorates  

hepatic oxidative stress and produces hepatoprotective effect [16,36,37]. These antioxidant and 

hepatoprotective effects might be beneficial to the liver, especially in diabetes mellitus. These effects 

might improve liver efficiency in metabolizing honey fructose and thereby contribute to hypoglycemic 

effect of honey via improved hepatic enzymes involved in glucose metabolism. 

4. Effects of Fructose in the Liver 

The liver plays an important role in glucose regulation [22,28]. As explained earlier, it also has a 

potential to mediate the glucose-lowering effect of honey fructose [31–33]. A number of studies have 

investigated the effects of fructose, either alone or together with glucose, in rodents or their excised 

livers. In isolated hepatocytes, addition of a small amount of fructose activates glucokinase and 

increases the rate of glucose phosphorylation [38,39]. The role of hepatic glucokinase in mediating the 

hypoglycemic effect of fructose is also corroborated by Nishi et al. [38]. The authors reported that low 

doses of fructose produced no effect on phosphorylation of glucose or glycolytic flux in the diabetic 

hepatocytes that lacked glucokinase [38]. A similar lack of effect was also reported in the diabetic 

hepatocytes which expressed glucokinase, but was incubated with a glucokinase inhibitor 

(mannoheptulose) [38]. Similarly, glucose and fructose added to isolated perfusion of liver  

produced synergism [32,34]. 



Molecules 2012, 17 1904 

 

 

Administration of fructose was reported to increase hepatic glucose and fructose uptake, glucose  

6-phosphate, fructose 1-phosphate, glycogen synthesis, glycogen deposition and hepatic lactate 

production in the liver of rodents or dogs [31,35,40,41]. These hepatic effects of fructose may result  

in reduced postprandial hyperglycemia and/or suppressed insulin secretion by the pancreatic  

beta-cells [35,41]. The role of fructokinase is also implicated in the glucose-lowering effect of  

fructose [31,38,39]. The glucose-lowering effect of fructose is also attributed to increased  

expression or activation of some enzymes such as glucose6-phosphate dehydrogenase, aldolase B, 

phosphofructokinase-1 and glycogen synthase and inhibition of glucose 6-phosphatase and 

phosphorylase [32–34,38,39,42]. This results in increased hepatic glycogen synthesis and  

storage [32–34,38,39,42]. By and large, these findings indicate that small amounts or catalytic  

doses of fructose are capable of markedly increasing hepatic glucose uptake and glycogen  

synthesis and deposition via activation of glucokinase and other enzymes or inhibition of some 

enzymes [31–34,38,39,42]. These hepatic effects of fructose lead to improved glucose tolerance and 

reduced elevated blood glucose [35,41]. It is worth mentioning that the beneficial effects of fructose  

on hepatic glycolytic enzyme phosphorylase are observed only with small or moderate doses  

(2.22 µmol/kg/min) [31]. 

5. Effects of Fructose in the Pancreas 

The pancreas, which secretes two key glucose-regulating hormones—insulin and glucagon—is an 

important organ in diabetes mellitus [43]. Many drugs and natural products such as plant extracts exert 

their hypoglycemic effect by acting on pancreas. Fructose is not an exception either. Evidence suggests 

that any sugar capable of stimulating insulin secretion from the pancreas must first be metabolized in 

the islet cells [44,45]. Studies have shown that both fructose and glucose are capable of stimulating 

insulin secretion in perfused rat pancreas preparations [44,45]. In contrast, other sugars such as 

galactose, xylose and L-arabinose do not stimulate insulin release from isolated rat pancreas 

preparations [44,45]. However, reports suggest that glucose is a better substrate than fructose [44,45]. 

The ability of fructose to stimulate insulin release from isolated rat pancreas preparations depends on 

glucose concentrations [46,47]. However, some studies reported that fructose did not stimulate insulin 

secretion in isolated rabbit or rat pancreatic islets [48]. Taken together, these studies indicate that the 

amount of insulin release is dependent on the extent to which sugars can be metabolized in pancreatic 

islets. The findings also suggest while fructose may stimulate insulin release from pancreas, its ability 

to stimulate insulin secretion is limited. 

6. Effects of Fructose on Glycemic Control and Glucose-Regulating Hormones 

Glucose, unlike fructose, is a major physiological regulator of biosynthesis and secretion of  

insulin [43]. A number of studies have investigated the effects of fructose on parameters relating to 

glycemic control and glucose-regulating hormones. In normal rats, fructose administered alone or as 

sucrose was reported to improve glucose homeostasis and insulin response compared with rats 

administered glucose alone [49]. Similarly, studies have shown that fructose supplementation in 

normal rats or type 2 model of diabetic rats produced lower levels of plasma insulin and glucose more 
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than did other sugars [50,51]. In dogs, inclusion of small amounts of fructose with a glucose load was 

shown to reduce insulin secretion from the pancreatic beta-cells [35]. 

In human subjects, data on the effect of fructose on glycemic control and glucose-regulating 

hormones are inconsistent. A number of studies demonstrated that fructose ingestion (7.5 g) or 

fructose-enriched meals (25% of energy requirements as fructose) markedly reduced plasma glucose, 

serum fructosamine, serum glycated hemoglobin, serum glycosylated albumin and serum insulin in 

healthy, impaired glucose-tolerant, overweight, obese, type 1 and type 2 diabetic subjects [52–57]. Low 

or moderate doses (0.25, 0.5, 0.75 or 1.0 g or 3.5 µmol/kg/min) of fructose intake or infusion  

also increased glycogen synthesis, glycogen synthase flux and endogenous lactate and pyruvate 

production [58–60]. Besides, it was reported that consumption of fructose-sweetened beverages with 

meals lowered the levels of insulin and blood glucose in normal-weight, obese men and women [61]. 

Some complex carbohydrates, which are rich in fructose [11–15], are known to markedly lower the 

elevations in blood glucose and plasma insulin compared to simple sugars in type 2 diabetic  

patients [62]. However, some studies found no effects of moderate or even high doses (3.5 g 

fructose/kg fat-free mass/day) of fructose ingestion or infusion on serum/plasma levels of glucose, 

postprandial plasma glucose, glycated hemoglobin, glycosylated albumin, insulin and insulin 

sensitivity in healthy, lean, obese non-diabetic, obese or type 2 diabetic subjects [63–65]. Findings 

suggest that the ability of fructose to stimulate insulin secretion may depend on the level of circulating 

glucose [66,67]. Nevertheless, it is also worth mentioning that some studies have associated fructose 

consumption or feeding with elevated glucose, impaired glucose tolerance, elevated insulin 

concentrations, decreased insulin sensitivity and insulin resistance [68,69]. However, these effects 

were observed only with increased or high fructose consumption or feeding (3.5 g fructose/kg fat-free 

mass/day) [68,69]. 

7. Effects of Fructose on Appetite-Regulating Hormones 

The role of fructose is implicated in the modulation of appetite-regulating hormones such as  

ghrelin and leptin. Ghrelin is a 28 amino acid peptide hormone produced in the stomach that stimulates 

hunger [70]. Its levels increase before meals and decrease after meals [70]. Similarly, leptin is a  

167 amino-residue peptide hormone secreted by adipose tissue [70]. It plays an important role in the 

regulation of appetite, food intake and energy expenditure [70]. Its secretion is influenced by 

circulating levels of insulin [70]. A study by Teff et al. [61] reported that fructose ingestion  

(30% of energy requirements as fructose) reduced the levels of leptin in normal-weight women while 

no such effect was observed with glucose consumption [61]. The change in the concentrations of  

leptin between the morning nadir and the late night peak was also reduced following fructose 

consumption [61]. Another study in obese subjects found that consumption of fructose-sweetened 

beverages was associated with reduced circulating levels of leptin [71]. Lowered concentrations of 

circulating insulin and/or glucose resulting from fructose consumption may cause reduced serum 

leptin, which may contribute to weight gain [61,72]. However, a study reported that fructose 

(compared to glucose) did not reduce or increase leptin level [73], while high fructose consumption 

(1.5 g fructose/kg body weight) was found to increase fasting levels of leptin [74]. Besides the 

possibility of fructose consumption causing reduced levels of leptin, leptin resistance has been reported 
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with the consumption of high fructose diet in rats [75,76]. Leptin resistance is a phenomenon whereby 

elevated levels of leptin failed to reduce appetite or mediate weight loss [75,76]. In a nutshell, these 

studies indicate that low or moderate doses (30% of fructose-derived kilocalories) of fructose reduce 

leptin levels [61,71], whereas increased or high consumption (1.5 g fructose/kg body weight or 60% 

fructose diet) of fructose increases leptin levels [74–76]. 

8. Effects of Fructose on Body Weight, Food Intake, Oxidation of Carbohydrate and  

Energy Expenditure 

Similar to other parameters, fructose consumption or feeding also influences body weight and 

food/energy intake. In rats, high fructose feeding resulted in increased weight gain [77,78]. A similar 

finding was also reported in mice [79]. An evidence-based review of literature revealed that normal or 

moderate dietary consumption of fructose does not cause weight gain in overweight and obese 

individuals [80]. Findings from another recent study showed that a low- (<20 g/day) or moderate  

(50–70 g/day)-fructose diet with natural fruit supplements in obese subjects caused weight loss 

compared with baseline [81]. The study also indicated that the moderate-fructose diet with natural fruit 

supplements markedly reduced weight loss more than did the low-fructose diet [81]. However, some 

studies have linked increased consumption of fructose- or sugar-sweetened beverages to excess calorie 

intake and increased body weight [82,83]. On the other hand, some studies found no significant  

effect of fructose on body weight [76,84,85]. Findings indicate that fructose suppresses food or  

energy intake in rats [86,87]. Similarly, a study that compared the effect of preloads of 50 g of glucose 

or fructose showed that fructose-preloaded subjects consumed fewer calories and less fat than did 

glucose-preloaded subjects [88]. Similar results were also reported in healthy, lean, obese and type 2 

diabetic subjects [89,90]. 

The effects of fructose on oxidation of carbohydrate and energy expenditure have also been 

investigated. A study showed that in healthy volunteers, fructose elicited a greater increase in 

oxidation of carbohydrate and energy expenditure than did glucose [91]. Similar results were also 

reported in young control subjects [92]. Schwarz et al. showed that diet-induced thermogenesis and 

oxidation of carbohydrate were considerably greater with fructose than with glucose [93]. It is 

suggested that increased energy expenditure following fructose consumption may be due to increased 

carbohydrate oxidation; and the fact that conversion of fructose to glycogen requires more energy than 

that of glucose to glycogen [22]. Similarly, in healthy lean male volunteers, fructose and sucrose 

elicited greater increments in carbohydrate oxidation and total energy expenditure than did glucose and 

starch [94]. Similar findings were reported during exercise [95]. Hence, these studies indicate that 

fructose may increase or reduce body weight depending on the doses. The findings also reveal that 

fructose feeding suppresses food or energy intake and increases carbohydrate oxidation and energy 

expenditure. Thus, these data suggest that if fructose is taken at moderate doses (<20 g/day or  

50–70 g/day), it has a potential to reduce but not increase weight gain. 
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9. Effects of Honey which are Similar to Those of Fructose 

By and large, these findings on the effects of fructose are very remarkable. This is in view of the 

fact that honey comprises predominantly fructose and glucose [5–10]. A study by Münstedt et al. 

showed that honey intake (75 g) increased serum levels of fructose in healthy humans [10]. However, 

small variations in fructose-to-glucose ratio of honey varieties may not make much difference in 

glycemic and/or insulinemic indices [6,10,96]. A study that compared the effects of honey and a 

honey-comparable glucose-fructose solution found that honey supplementation significantly lowered 

serum concentrations of glucose, insulin and C-peptide than the honey-comparable glucose-fructose 

solution in healthy subjects [97]. A study by Deibert et al. also supports the potential role of fructose 

in mediating the hypoglycemic effect of honey [7]. In their study, the authors found that the fructose 

content of honey, rather than its fructose-glucose ratio, was negatively correlated with the glycemic 

index [7]. Similarly, subjects with normal glucose tolerance, impaired glucose tolerance, mild diabetes 

or type 2 diabetes mellitus were reported to exhibit markedly lower serum/plasma concentrations of 

glucose, insulin and C-peptide after honey supplementation than after dextrose, sucrose or simulated 

honey [98–100]. These data are similar to those reported for fructose in subjects with normal or 

impaired glucose tolerance or diabetes in whom fructose significantly reduced serum/plasma levels of 

glucose, insulin and C-peptide [52,61,71]. Similar to findings obtained with fructose [63,64], some 

studies also found no significant effect of honey on serum/plasma levels of glucose and insulin in 

diabetic patients [101,102]. 

A study found that, in both alloxan- and fructose-induced diabetic rats, honey feeding (10 mL 

honey/kg/5 mL distilled water) for three weeks resulted in reduced blood glucose concentrations [103]. 

Also, administration of honey (1.0 g/kg body weight) was reported to reduce serum levels of glucose 

and fructosamine in diabetic rats [9]. Considerable improvement in pancreatic islets and increased 

serum insulin levels were reported in honey (1.0 g/kg)-treated diabetic rats [9,51,104]. In non-diabetic 

rats, reduced glycated hemoglobin was reported after honey (10%) supplementation [105]. However, a 

study did not find any significant difference in concentrations of glucose and insulin in normal rats  

fed honey-based diet and sucrose [106]. This may be due to the similar proportion of fructose in  

both honey and sucrose. These findings also corroborate ours in which we found that honey 

supplementation (1.0 g/kg body weight) in non-diabetic rats produced no significant effects on the 

levels of serum insulin, glucose and fructosamine [9]. Similarly, pancreatic islets of normal rats treated 

with honey did not differ from those of untreated normal rats [104].  

Studies have also shown that honey supplementation (10 or 20%) significantly reduced body weight 

gain and food/energy intake in rats [105–107]. In humans, honey was found to mildly decrease body 

weight while it does not increase body weight in overweight or obese subjects [108]. These data  

are comparable to the effects reported for fructose in rats [86,87] and overweight or obese  

subjects [80,81]. A recent study showed that the levels of leptin in rats administered honey were 

considerably lower than in those given sucrose [106]. Similar observations or findings were also 

documented for fructose [61,71]. Larson-Meyer and colleagues showed that honey, compared with 

sucrose-containing meal, delayed postprandial ghrelin response and enhanced the total peptide YY 

response [109]. Peptide YY is a protein secreted by cells in the ileum and colon in response to food 

ingestion or intake, and suppresses appetite [109]. Taken together, the similarities of findings of the 
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effects of fructose and honey suggest that hypoglycemic effect of honey might depend partly on the 

fructose content of honey. 

10. Conclusions and Future Perspectives 

These studies indicate that the presence of fructose increases its transporter levels resulting in 

increased fructose absorption. Besides, evidence reveals that the presence of glucose enhances fructose 

absorption. The review also presents findings that support a possible synergistic effect of glucose on 

fructose in stimulating insulin release from the pancreas. It also presents data that demonstrate the 

beneficial effects of fructose in the liver. Even though the data or findings on the effects of fructose 

show some discrepancies, the majority of the data indicate that low or moderate doses of fructose exert 

beneficial hepatic effects such as activation of hepatic glucokinase, enhanced hepatic glucose uptake, 

increased hepatic glucose6-phosphate, activation of hepatic glycogen synthase, increased glycogen 

synthesis and deposition. These hepatic effects would suffice to elicit improved glycemic control. The 

consistency of data on the effects of fructose in the liver, despite little or no insulinotropic effect, 

suggests that fructose acting through the liver might play a role in the hypoglycemic effect of honey. 

Therefore, based on the similarities of findings of the effects of fructose and honey, and coupled with 

the fact that honey comprises mainly fructose and glucose, the evidence may support the role of 

fructose in mediating the hypoglycemic effect of honey. Therefore, studies that investigate the 

potential role of fructose in the euglycemic and hypoglycemic effects of honey are warranted. Besides, 

further studies that unravel the potential role of liver in mediating the hypoglycemic effect of honey 

are recommended. With this review, we have not excluded the prospect of a yet to be identified 

substance in honey contributing to improved glycemic control. In view of limited data, we recommend 

randomized, controlled studies in diabetic and non-diabetic human subjects to determine the effects of 

honey (and its graded doses) on glycemic control (glucose and fructosamine/glycated hemoglobin), 

glucose-regulating hormones (insulin and glucagon), appetite-regulating hormones (leptin and 

ghrelin), weight gain, calorie intake and energy expenditure.  
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