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Abstract

Cysteine cathepsins have emerged as new players in inflammatory lung disorders. Their activities are dramatically increased
in the sputum of cystic fibrosis (CF) patients, suggesting that they are involved in the pathophysiology of CF. We have
characterized the cathepsins in CF expectorations and evaluated their use as markers of colonization by Pseudomonas
aeruginosa. The concentrations of active cathepsins B, H, K, L and S were the same in P. aeruginosa-positive (19 Ps+) and P.
aeruginosa-negative (6 Ps2) samples, unlike those of human neutrophil elastase. Also the cathepsin inhibitory potential and
the cathepsins/cathepsin inhibitors imbalance remained unchanged and similar (,2-fold) in the Ps+ and Ps2 groups
(p,0.001), which correlated with the breakdown of their circulating cystatin-like inhibitors (kininogens). Procathepsins,
which may be activated autocatalytically, are a potential proteolytic reservoir. Immunoblotting and active-site labeling
identified the double-chain cathepsin B, the major cathepsin in CF sputum, as the main molecular form in both Ps+ and Ps2
samples, despite the possible release of the ,31 kDa single-chain form from procathepsin B by sputum elastase. Thus, the
hydrolytic activity of cysteine cathepsins was not correlated with bacterial colonization, indicating that cathepsins, unlike
human neutrophil elastase, are not suitable markers of P. aeruginosa infection.
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Introduction

Cystic fibrosis is an inherited life-threatening disorder. It is

associated with a mutation of the CF transmembrane glycoprotein

that is involved in the transport of chloride ions [1,2]. This

exocrinopathy mainly affects cells producing mucus, sweat and

digestive fluids and causes severe lung damage and nutritional

deficiencies. While palliative care is presently available for these

patients, there is no effective cure [3]. The clinical manifestations

of chronic inflammation of the respiratory epithelium (overpro-

duction of mucus, persistent cough, wheezing, repeated lung and

sinus infections), are mainly due to the release of proteolytic

enzymes and the disruption of the protease-antiprotease balance.

This leads to the degradation of lung tissues and the impairment of

lung function. The involvement of serine proteases released from

polymorphonuclear neutrophils (elastase, cathepsin G, protease 3)

has been extensively studied [4,5] but the role of lung cysteine

proteases (CPs, family C1) is less well documented [6]. The

cysteine cathepsins B, H, L, K and S are involved in a variety of

proteolytic processes, such as the turnover of endocytosed proteins,

prohormone processing, MHC-II antigen presentation, and

extracellular matrix and basal membrane degradation. They are

also involved in diseases like tumor metastasis, osteoporosis, and

rheumatoid arthritis [7,8]. Lung CPs are mainly produced by

macrophages, fibroblasts and epithelial cells, while cathepsin H is

mainly found in type II pneumocytes [9,10]. Stimulated

monocyte-derived macrophages can release the CPs that are

found in the bronchoalveolar lavage fluids (BALFs) of smokers

suffering from emphysema [11]. Active forms of cysteine

cathepsins are also present in BAL fluids from patients suffering

from infiltrative inflammatory disorders like sarcoidosis and

alveolar proteinosis, and silicosis [12,13,14].

The hyperviscous mucus found in CF airways severely hinders

effective phagocytosis by neutrophils and makes the lungs more

susceptible to infection by Pseudomonas aeruginosa, Staphylococcus

aureus, and Haemophilus influenzae. While S. aureus is predominantly

found in the early stages of colonization, P. aeruginosa is more

resistant to antibiotics and soon becomes the main organism

infecting CF lungs [15]. Cysteine cathepsins may be important in

the pathophysiology of cystic fibrosis under these conditions [16].

The activity of cathepsin B is dramatically higher (,several 100-

fold) in the bronchoalveolar lavage fluids of CF patients than in

those of healthy patients [17]. This high proteolytic activity in CF

lungs may contribute to the dysfunction of the inflammatory

response and thus to local tissue damage [16]. Cathepsins may

also exacerbate lung disease by weakening the host defenses by

breaking down and inactivating SLPI (secretory leukocyte

protease inhibitor), beta-defensins 2 and 3 (HBD-2 and HBD-

3), and lactoferrin. The resulting loss of antimicrobial activity

favors infection and colonization by opportunistic pathogens
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[17,18,19]. The cathepsin activity in lavage fluid and sputum

from CF patients whose lungs are colonized by P. aeruginosa is

higher than reported for healthy controls [18]. A recent study

detected both cathepsins B and S in CF sputum samples and

proposed their use as markers of CF airway inflammation. The

authors also suggested that the concentrations of both enzyme

were correlated not only with each other but also with those of

neutrophil elastase and IL-8 [20].

However, changes in the concentration and activity of CPs must

be carefully examined before it can be stated that CPs may be

markers of inflammation and/or bacterial infection and coloniza-

tion [21]. Thus, the primary purpose of this study was to describe

the enzymatically active forms of cysteine cathepsins in P.

aeruginosa-positive (Ps+) and P. aeruginosa-negative (Ps2) CF

expectorations using a single protocol. We then estimated the

implications of the imbalance between CPs and their specific

circulating inhibitors (kininogens, cystatins) by quantitative kinetic

analysis based on protein content rather than sputum volume (or

weight), as reported elsewhere. Finally, we analysed these data to

determine whether CP activities were correlated with P. aeruginosa

colonization and whether CPs may be useful new biological

markers.

Materials and Methods

Substrates and synthetic inhibitors
Benzyloxycarbonyl-Arg-Arg-7-amino-4-methyl coumarin (Z-

Arg-Arg-AMC), H-Arg-AMC, Z-Gly-Pro-Arg-AMC and Z-Phe-

Arg-AMC were purchased from Bachem (Weil am Rhein,

Germany) and Z-Val-Leu-Arg-AMC from Enzyme System

Products (Livermore, CA, USA), ortho-aminobenzoic acid (Abz)-

Ala-Pro-Glu-Glu-Ile-Met-Arg-Arg-Gln-(3-NO2-Tyrosine) came

from GeneCust Europe (Dudelange, Luxembourg). L-3-carboxy-

trans-2, 3-epoxy-propionyl-leucylamide-(4-guanido)-butane (E-64),

PMSF, pepstatin A, EDTA, 4-(2-Aminoethyl) benzenesulfonyl

fluoride hydrochloride (AEBSF; Pefabloc) and MMTS were from

Sigma-Aldrich (Saint-Quentin Fallavier, France). N-(4-Biphenyla-

cetyl)-S-methylcysteine-(D)-Arg-Phe-b-phenethylamide and N-(L-

3-trans-propylcarbamoyloxirane-2-carbonyl)-L-isoleucyl-L-proline

(CA-074) were from Calbiochem (VWR International S.A.S.,

France). Morpholine urea-Leu- homophenylalanine-(vinylsulfo-

nyl)benzene (Mu-Leu-Hph-VSPh) was kindly provided by Dr J.H.

McKerrow (Department of Pathology, The Sandler Center for

Basic Research in Parasitic Diseases, University of California, San

Francisco, CA, USA). The biotinylated activity-based probe Biot-

LVG-CHN2 was synthesized as previously described [22]. DTT

(DL-dithiotreitol) came from Bachem. All other reagents were of

analytical grade.

Enzymes and inhibitors
Human cathepsins B, H, L and S were supplied by Calbiochem

and human neutrophil elastase by BioCentrum (Krakow, Poland).

High molecular weight kininogen (HMWK) was purchased from

Calbiochem and cystatin C from R&D Systems Europe.

Ethics Statement
Sputum samples were collected on a routine basis from adult

patients followed at the Teaching Hospital of Besançon (CHU

Jean Minjoz, France) between 2009 and 2010. Enzymatic assays

were performed in addition to routine bacteriological analyses

when the volume of sputums was sufficient for both types of tests.

Thus our protocol was considered as ‘‘waste’’ and we did not need

a specific agreement from the local research ethics committee.

CF sputum samples
Twenty five sputum samples were collected (status reported as

means 6 S.D: years, 27.1(9.4); forced expiratory volume (FEV),

2.0 (0.9) L; body mass index (BMI), 20.4 (2.8)). Very soon after

their recovery, the specimens were aseptically divided in two parts.

One half was submitted to conventional bacteriological analyses to

identify and quantify (colony-forming units per mL, cfu/mL)

bacterial pathogens [23]. Sensitivity of detection of P. aeruginosa

was $20 cfu/mL. Nineteen P. aeruginosa-positive samples and six

P. aeruginosa-negative samples used as controls were included in the

study. After thawing of the other half and to allow the accurate

handling of clinical specimens, a preservative buffer (final

concentrations: 100 mM sodium acetate, pH 5.0 plus the

peptidase inhibitors 0.5 mM PMSF, 0.5 mM EDTA, 40 mM

pepstatin A, and 1 mM MMTS) was instantly added to each CF

sputum sample before it was centrifuged at 5000 g at 4uC for

10 min. The resulting cell-free supernatants were collected,

aliquoted and frozen at 280uC. Alternatively a second buffer,

50 mM HEPES pH 7.4, 150 mM NaCl, 0.05% NP40, 0.5 mM

EDTA, 40 mM pepstatin A, and 1 mM E-64, was used for further

analysis of elastase activity.

Immunoblotting
The goat anti-human cathepsin S was obtained from R&D

Systems. Other primary polyclonal antibodies were raised in

rabbits: anti-human cathepsin B (Calbiochem), anti-human

cathepsin L (Calbiochem), anti-human cathepsin H (Fitzgerald,

Concord, USA), anti-human cystatin C (Upstate, Lake Placid,

USA) and anti-human low molecular weight kininogen [24]. The

anti-human neutrophil elastase (HNE) was raised in rabbits using a

16-mer peptide corresponding to position 88–103 (IFEN-

GYDPVNLLNDIV) of the proelastase sequence (numbering

based on the sequence of prochymotrypsinogen [5]) coupled to

ovalbumin for immunization. The IgG fraction obtained after

ammonium sulfate precipitation was further purified by affinity

chromatography on immobilized ovalbumin. Goat anti-rabbit and

rabbit anti-goat IgG-peroxidase conjugates were supplied by

Sigma-Aldrich. Bicinchoninic acid assays were used to determine

the protein concentrations in supernatants (BCA protein assay kit,

Interchim, Montluçon, France). Samples (30 mg protein) were

diluted in Laemmli buffer under reducing conditions, boiled for

5 min, separated by SDS-PAGE on 15% gels (prestained

molecular masses: Precision Plus Protein Standards, BioRad)

and electroblotted onto nitrocellulose membranes. These mem-

branes were incubated with the primary antibody (1:1000, in PBS,

0.1% Tween, 5% dried milk for 1 h at room temperature), then

with the secondary IgG-peroxidase conjugate (1:5000) for 1 h at

room temperature. Proteins were detected by chemiluminescence

(ECL Plus Western Blotting Detection system, Amersham

Biosciences, Buckinghamshire, UK). This protocol was used for

P. aeruginosa-positive (Ps+) and P. aeruginosa-negative (Ps2) samples.

Labeling cysteine cathepsins with a cystatin-derived
activity-based probe

Supernatants in buffer A (100 mM sodium acetate buffer

pH 5.5 containing 5 mM DTT, 2 mM EDTA and 0.01% Brij 35)

were incubated with a molar excess of Biot-LVG-CHN2

(cathepsin:probe, 1:300) for 1 h at 37uC, as described previously

[25]. In another set of experiments, we first incubated samples

with unlabelled inhibitors (100 mM): E-64 (a broad-spectrum

cathepsin inhibitor), CA-074 (a selective cathepsin B inhibitor) or

Mu-Leu-Hph-VSPh (a selective cathepsin S inhibitor) before

adding the biotinylated probe. Individual cathepsins B, H, L and S

Cysteine Cathepsins in Cystic Fibrosis
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were also used as control. Samples were then separated by SDS-

PAGE on 12% gels under reducing conditions and transferred to

nitrocellulose membranes by electroblotting. Free binding sites on

the membranes were saturated by incubation with 3% BSA in PBS

for 1 h at 37uC. The membranes were incubated with an

extravidin-peroxidase conjugate (1:2500; Sigma-Aldrich) for 2 h

at room temperature and the peroxidase activity was revealed by

chemiluminescence (ECL Plus Western Blotting Detection system).

Hydrolysis of kininogens by CF sputum
Human HMWK (1.8 mg) was incubated in 100 mM sodium

acetate buffer pH 5.5, 5 mM DTT, 2 mM EDTA, 0.01% Brij 35

with supernatant (corresponding to 10 mg protein) at 30uC for

5 hours. The mixture was then separated by 12.5% SDS-PAGE

under reducing conditions and the separated products transferred

to nitrocellulose membranes. Control mixtures contained E-64

and CA-074. HMWK hydrolysis was detected using a rabbit

polyclonal anti-kininogen antibody [24].

Enzyme activity
A panel of AMC-derived fluorogenic substrates was used to

measure the CP activities in supernatants diluted in buffer A.

Samples (final volume per well: 200 mL) in 96-well Nunc

microtiter plates (ThermoFisher Scientific, Illkirch, France) were

incubated at 37uC under gentle agitation, and their enzymatic

activities were monitored continuously at lexc = 350 nm and

lem = 460 nm (Gemini spectrofluorimeter, Molecular Devices,

Saint-Grégoire, France). The protocol for quantifying active

cathepsins in sputum supernatant was adapted from that used to

titrate the CPs in BAL fluids [12,13]. Supernatant was incubated

with concentrations of E-64 (0–100 nM) at 37uC for 30 min [26]

in buffer A and the residual endopeptidase CP activity towards Z-

Phe-Arg-AMC (20 mM) was then measured. Cathepsin B was

titrated with CA-074 (0–100 nM) using Z-Arg-Arg-AMC as

substrate (5 mM). Certain samples were incubated with CA-074

to inhibit cathepsin B before cathepsin K was titrated with E-64

using Z-Gly-Pro-Arg-AMC as substrate (50 mM), and cathepsin S

using Z-Val-Leu-Arg-AMC as substrate (20 mM). The concentra-

tion of cathepsin L was deduced from the difference between the

overall concentration of thiol-dependent endoproteases (i.e

cathepsins B+K+L+S) and the individual concentrations of

cathepsins B, K and S. The aminopeptidase activity of cathepsin

H was assayed using H-Arg-AMC (50 mM) as substrate. As

cathepsin S is more stable than the other CPs at neutral pH, its

specific activity was also assayed under mildly alkaline conditions

[27]. Supernatant was incubated in 100 mM Na-phosphate buffer

pH 7.4 (80 mL) for 1 hour at 37uC. An aliquot was then removed,

diluted with buffer A and used to measure the residual cathepsin S

activity at 37uC with Z-Val-Leu-Arg-AMC (20 mM) as the

substrate. HNE activity was measured in the supernatant (1:50)

using Abz-Ala-Pro-Glu-Glu-Ile-Met-Arg-Arg-Gln-(3-NO2-Tyr)

(10 mM) in buffer B ( 50 mM HEPES buffer pH 7.4, 150 mM

NaCl, 0.05% NP40).

Inhibitory potential of CF sputum
The procedure used to evaluate the inhibitory potential of

supernatants was adapted from Assfalg-Machleidt et al. [28]. As

most of the thiol-dependent endoprotease activities in sputum are

those of cathepsins B and L (about 80%), their CP activities were

blocked by incubating samples for 30 minutes with 0.2 mM CA-

074 and 2 mM N-(4-Biphenylacetyl)-S-methylcysteine-(D)-Arg-

Phe-b-phenethylamide. The inhibitory potential of CF sputum

was deduced by adding increasing amounts of sputum superna-

tants (0–14 mL) to E-64 titrated papain, using Z-Phe-Arg-AMC as

substrate (5 mM).

Zymogen activation in CF sputum
Diluted supernatants (20 mL, corresponding to 20 mg protein)

were incubated in 800 mL 100 mM sodium acetate buffer pH 4.3,

4 mM DTT, 10 mg/ml dextran sulfate (Sigma-Aldrich), or buffer

B at 37uC. Aliquots (2 mL) were removed at intervals (0–6 hours)

and the CP activity in them was measured at 37uC, in buffer A,

using Z-Phe-Arg-AMC (50 mM). E-64 was used as control.

Samples were analyzed in parallel by Western blotting, as

described above. Alternatively aliquots of supernatant were

incubated in 50 mM HEPES (pH 7.4), 150 mM NaCl, 0.05%

NP40 at 37uC to assay the elastase-dependent maturation of

cathepsin B, using AEBSF (Pefabloc) as control.

Statistical analyses
Results were analyzed with the non-parametric Mann–Whitney

U test; a P value,0.05 is considered to be statistically significant.

Results and Discussion

Immunodetection and labeling of cysteine cathepsins
and their inhibitors

The supernatants obtained by centrifuging the 25 Pseudomonas

aeruginosa-positive and Pseudomonas aeruginosa-negative CF sputum

samples were immediately buffered at pH 5.5 and stabilized (see

the experimental section) to preserve cysteine cathepsins from

inactivation at neutral pH and uncontrolled proteolysis. The

median protein concentration was 3.74 mg/ml with interquartile

ranges: IQR1, 3.31 mg/ml and IQR3, 4.50 mg/ml. We detected

aminopeptidase cathepsin H in all sputum supernatants in

addition to cathepsins B, L and S reported by Taggart et al.

[17] (see representative samples in Figure 1A). However the

activity profiles varied considerably, depending on the cysteine

protease studied. Cathepsin L was mostly in its proform; the

concentration of its mature form was below the limits of

immunodetection under our experimental conditions. The full

and/or partly processed proforms of cathepsin K were also

detected, but mature cathepsin K was not (data not shown; the

anti-cathepsin K antibody was a kind gift from Dr Dieter Brömme,

University of British Columbia, Vancouver, Canada). Conversely,

cathepsin H was detected mainly as its mature form. Both mature

cathepsin S and procathepsin S were found (full or partially

processed proform, depending on the sample). Mature cathepsin B

was intensely stained (mainly as its double-chain form). But the

zymogen of this most abundant and ubiquitous cathepsin was also

found. However, Martin et al. [20] did not report finding pro-

cathepsin B. This discrepancy could be due to dissimilar storage

conditions, since they diluted their expectorated sputum with an

unbuffered saline without adequate inhibitors to stabilize them.

There were small differences in the apparent molecular weights in

sputum CPs and controls that reflect their degree of glycosylation.

The enzyme/proenzyme profiles of sputum samples differed from

those of BAL fluids from patients suffering from infiltrative

inflammatory disorders [13], where cathepsins H and L were

mostly detected as mature forms and cathepsins B, K and S as

proforms. The enzyme profiles also differed from those of BAL

fluids from silicosis patients, where only the mature forms of

cathepsins B, H and L were immunodetected, while cathepsin H

was the most abundant CP [12]. However, the immunochemical

patterns of P. aeruginosa-positive and P. aeruginosa-negative samples

were fairly similar for cathepsins and their endogenous inhibitors.

Cysteine Cathepsins in Cystic Fibrosis
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Cystatin C and kininogens, the major plasma circulating

inhibitors of cathepsins, have been also found in some inflamma-

tory bronchoalveolar lavage fluids and epithelial lining fluids, but

never before in CF samples (see for review: [6]). Our Western blot

analysis detected cystatin C and high and/or low molecular weight

kininogens in CF sputum (Figure 1B). Despite sputum HNE was

reported to cleave cystatin C and release a N-terminally truncated

form [29], we did not observe the presence of a shorter molecular

form of cystatin C, as also suggested by agarose electrophoresis

(data not shown). Conversely no intact but extensively degraded

kininogens were detected. Similar degradation of kininogens have

been found in other inflammatory body fluids, like synovial and

amniotic fluids, and blood plasma (for review: [30]). The lack of

undamaged kininogens together with the presence of kininogen

fragments (circa 20–40 kDa) correlates with the recent demonstra-

tion that the inability of kininogens to inhibit cathepsin B (in

contrast to cathepsins L and S) is associated with their extensive

cleavage by cathepsin B [31]. We have also shown that Biot-LVG-

CHN2, a cystatin C-derived activity-based probe, binds to sputum

cysteine cathepsins. Biot-LVG-CHN2 efficiently labeled human

cathepsins B, H, L and S (Figure 1C) by specifically targeting the

nucleophilic active site thiol. One major band was found in CF

sputum both with and without a Pseudomonas infection. This

labeling was abolished by E-64, broadly impaired by preincuba-

tion with CA-074, and to a lesser extent by Mu-Leu-Hph-VSPh.

This provides strong evidence that cathepsin B (predominant

reactive band corresponding to its double-chain form) is the most

abundant CP, and that active cathepsin S is also present in CF

sputum. Specific labeling with Biot-LVG-CHN2 also confirmed

that CPs, despite their susceptibility to thiol oxidation and the

partially defective antioxidant defenses in the lung, may retain

their enzymatic activity for some time in an oxidative environment

[32,33,34].

As both high and low molecular weight kininogens were

broken down in both Ps+ and Ps2 CF sputum (Figure 1B), we

added exogenous uncleaved HMWK to CF supernatants and

analyzed the resulting mixture. E-64 and also CA-074 partially

blocked the cleavage of exogenous HMWK (Figure 2), indicating

that cathepsins play a part in the proteolysis of kininogens by CF

sputum. Our data also confirmed that significant amounts of

cathepsins may escape regulation by their endogenous inhibitors.

This, together with the recent demonstration that the poor

inactivation of cathepsin B (unlike the tight-binding inhibition of

cathepsins L and S) by kininogens is associated with their

extensive cleavage by cathepsin B [31], indicates that cathepsin B

is a major protease involved in this process in CF sputum. This is

Figure 1. Cysteine cathepsins and their inhibitors in supernatants of CF sputum. Only representative samples are shown. (A) Proteins
(30 mg/well) were separated by 15% SDS-PAGE under reducing conditions, transferred to nitrocellulose membranes, and analyzed with polyclonal
antibodies against human cathepsins B, H, L and S. (+): Pseudomonas aeruginosa-colonized CF sputum; (2): Pseudomonas aeruginosa-negative CF
sputum.v, single-chain cathepsin B; b, double-chain cathepsin B; r, mature cathepsins S and H; w, proforms. (B) Immunostaining with polyclonal
anti-cystatin C antibody and anti-kininogen antibody. (+): Pseudomonas aeruginosa-colonized CF sputum; (2): Pseudomonas aeruginosa-negative CF
sputum. Control: Cyst, Cystatin C; HK, HMWK. Recombinant human cystatin C (R&D systems) has an additional C-terminal 10 His-tag and an apparent
molecular mass of 17 kDa, according to the supplier. (C) Supernatants of CF sputum incubated with Biot-LVG-CHN2 (30 mM), for 1 h at 37uC [25].
Other samples were pre-incubated with E-64, CA-074, and Mu-Leu-Hph-VSPh prior to adding the biotinylated activity-based probe. Samples were
separated by 12% SDS-PAGE, electroblotted and incubated with extravidin-peroxidase conjugate. The peroxidase activity was revealed by
chemiluminescence. WB: individual cathepsins B, H, L and S immunoblotted as control. Control: (2), no pre-incubation with E-64; (+), pre-incubation
with E-64 prior to adding Biot-LVG-CHN2. Sputum: E-64, pre-incubation with E-64; CA, pre-incubation with CA-074; VS, pre-incubation with Mu-Leu-
HphVSPh.
doi:10.1371/journal.pone.0025577.g001
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also true for several other inflammatory disorders (for review:

[30]).

Quantitative analysis of sputum cysteine cathepsins and
their inhibitors

The characteristics of active proteases are expressed with

reference to the total protein concentration in CF samples and not

to volume (or dilution) of sputum supernatants in order to prevent

any bias associated with clinical specimen during sputum

collection. The BCA assays indicated that the median protein

concentration in the 25 samples tested was 3.74 mg/ml (IQR1,

3.31 mg/ml; IQR3, 4.50 mg/ml; range, 1.21–14.25 mg/ml). All

concentrations of active enzymes and inhibitors are given as

medians, with IQR1 and IQR3 values in brackets. We first

determined the specific activity of human neutrophil elastase using

the FRET substrate Abz-Ala-Pro-Glu-Glu-Ile-Met-Arg-Arg-Gln-

(3-NO2-Tyr) whose amino acid sequence is highly selective for

HNE [35]. The median values of active HNE in P. aeruginosa-

positive samples were 480.4 (261.5/552.4) nmol/g protein and

80.4 (74.9/229.4) nmol/g in P. aeruginosa-negative samples. Thus,

HNE activity in Ps+ CF sputum was significantly higher than in

the Ps-CF sputum (p-value,0.01) (Figure 3C). The increased

sputum HNE activity that is typically associated with a bacterial

infection (mainly S. aureus and P. aeruginosa) and the ensuing influx

of neutrophils agrees well with earlier reports indicating that

elastase is a valuable marker of infection for CF patients (see for

review: [36]). This is supported by the results of immunoblotting

following SDS-PAGE under reducing conditions. A polyclonal

anti-HNE antibody revealed a major band corresponding to free

unbound elastase in Ps+ CF sputum (Figure 3C), while HNE in

Ps2 CF samples was mostly as higher molecular forms that

correspond most probably to inhibitory complexes between HNE

and alpha1-protease inhibitor (a1-PI), the major serine protease

inhibitor in the lung [5]. Targeting of HNE by a1-PI obey the

suicide substrate inhibition mechanism of serpins with cleavage

within the reactive center loop of a1-PI and the formation of a 1:1

stoichiometric covalent inhibitory complex [37,38,39]. The

individual (Figure 3A) and overall (Figure 3B) concentrations of

active CF cathepsins were determined by titration (see ‘‘Material &

Methods’’ for details). The overall active cathepsins in P. aeruginosa-

positive samples was 211.5 (187.5/234.2) nmol/g, while the

activity in P. aeruginosa-negative samples was 221.7 (214.8/239.6)

nmol/g. This value is higher than that measured in silicosis

BALFs, but lower than the concentration of active CPs in BALFs

from patients with acute lung infiltrative inflammatory disorders

[6]. Cathepsin B is the most abundant cathepsin in CF sputum

(Ps+ median: 111.5 (90.4/127.9) nmol/g; Ps2 median: 112.1

(95.4/127.8) nmol/g), as suggested by immunochemical studies,

followed by the aminopeptidase cathepsin H (Ps+ median: 62.4

(21.7/103.3) nmol/g; Ps2 median: 29.5 (3.8/75.8) nmol/g) and

the endopeptidase cathepsin L (Ps+ median: 40.5 (31.8/47.4)

nmol/g; Ps2 median: 35.6 (29.7/53.3) nmol/g). The median

concentrations of cathepsin S were 19.1 (12.2/21.6) nmol/g in Ps+
sputum and 18.8 (13.3/21.6) nmol/g in Ps2 CF sputum; the

values for cathepsin K were similar: 17.7 (15.4/18.9) nmol/g in

Ps+ sputum and 17.7 (17.2/20.6) nmol/g in Ps2 CF sputum. The

differences between P. aeruginosa-positive and P. aeruginosa-negative

samples were not significant (p.0.05), including the apparent

variation in cathepsin H. We also found no correlation between

the elastase and cathepsin B activities, in contrast to the findings

for sputum from patients with bronchiectasis [29].

We assessed the residual CP inhibitory capacity (CPI, expressed

as inhibitory site equivalents) by measuring the ability of CF

sputum to inhibit E-64-titrated papain, according to Assfalg-

Machleidt et al. [28]. Again, we found no significant difference

between P. aeruginosa-positive (116 (83.8/168.2) nmol/g) and

negative (123.9 (104.7/186.6) nmol/g) samples (Figure 3B),

showing no significant difference between the two groups.

Conversely, the CP/CPI imbalance (,2-fold) was statistically

significant (p,0.001) in both cases. Taken together that cleavage

of cystatin C by HNE was known to lead to a critically weaker

inhibition (three orders of magnitude) of cathepsin B [29], and that

the CP/CPI imbalance is unchanged in both Ps+ and Ps2 groups,

results also support that cystatin C may be protected from the

harmful activity of HNE in CF expectorations. On the other hand

the CP/CPI imbalance is smaller than that in BALF from patients

with acute infiltrative inflammatory disorders (CP/CPI balance: 3-

to 5-fold), due to the concentration of active CPs being lower in

CF sputum. These data indicated that cathepsin activities are out

of control in chronic inflammation disorders, which supports the

hypothesis that CPs take part in the degradation and remodeling

of major ECM and BM components that are associated with the

progression of the disease. But the exact contributions of individual

cathepsins to the pathophysiology of CF remain unclear [16].

However our use of a standardized procedure in which

proteolytic activities are expressed with reference to the protein

content of each sample (nmole/g) confirms that HNE is a valuable

marker of infection by P. aeruginosa (P,0.01), regardless of the

method used. Our data also indicate that cathepsin activities may

not be used as a reliable indicator of bacterial colonization and

Pseudomonas infection, unlike a previous proposal [18]. Although it

is well established that increased clearance promotes an influx of

cells, which may increase the protein concentration in the sputum,

these contradictory results underline that our qualitative analysis

are not expressed with reference to sputum sample volume (or

weight), which can vary during specimen collection.

Zymogen activation
High-Mr forms of extracellular cathepsin B, corresponding to a

stable, noncovalent complex between cathepsin B and its 6-kDa

propeptide, have been found in the media of mammary tumor

explants and in purulent sputum from patients with bronchiectasis,

an obstructive lung disease like emphysema and cystic fibrosis,

with impaired clearance of mucous secretions [40]. Breakdown of

the inhibitory propeptide resulted in increased enzymatic activity,

indicating that extracellular stabilized cathepsin B can be

dormant. We detected no such complexes in CF sputum, but we

Figure 2. Degradation of human HMWK by CF sputum.
Exogenous HMWK was incubated in the activity buffer with superna-
tants of CF sputum at 30uC for 0–5 hours. Hydrolysis products were
separated by 12.5% SDS-PAGE, transferred to nitrocellulose membranes
and immunoblotted with rabbit polyclonal anti-kininogen antibody
[24]. Lane 1, 0-h incubation; lane 2, 2-h incubation; lane 3, 5-h
incubation; lane 4, 5-h incubation in the presence of CA-074; lane 5, 5-h
incubation in the presence of E-64. For clarity, one representative
sample is shown.
doi:10.1371/journal.pone.0025577.g002
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did find substantial extracellular amounts of immunoreactive

procathepsins B, L and S (Figure 1). Thus the presence of acid

oligosaccharides at cell surfaces [41] and the local acidic micro-

environnements in CF epithelial lining fluids [16] should lead to

weaker interactions between the proregion and the catalytic

domain, which may favor the autoproteolytic conversion to

mature active cathepsins (for review: [42]). We investigated the

in vitro activation of procathepsins B and S by incubating CF

sputum under acidic conditions (Figure 4A). The two procathep-

sins had similar maturation patterns, and both were abolished by

E-64 (data not shown). The band corresponding to the mature

protease intensified and became maximal at 5 hours. The

autocatalytic processing of cathepsin B led to the release of the

,24/25 kDa (double-chain), but not the ,31 kDa form, as

mainly observed in CF sputum (Figure 1). This was associated with

a relatively small (,1.6-fold) increase in proteolytic activity against

AMC peptides, due to the concomitant time-dependent inactiva-

tion of cysteine cathepsins at 37uC. The quiescent procathepsins in

CF sputum correspond to an activateable proteolytic reserve that

may strengthen the CP/CPI imbalance and promote the

deleterious elastinolytic and collagenolytic activities of cathepsins,

especially during exacerbation episodes. This is in contrast to the

situation in samples from patients with silicosis [6]. Incubation of

CF sputum at a weakly basic pH also led to the proteolytic release

of cathepsin B (,31 kDa; the single-chain form). Immunoblotting

also showed that the rate and yield of activation were much

greater in Ps+ sputum than in Ps2 CF sputum (Figure 4B), while

the processing of procathepsin B was impaired by Pefabloc, an

irreversible serine protease inhibitor. Taken together that HNE

activity in Ps+ CF sputum was significantly higher than in the Ps-

CF sputum and a former report by Buttle et al. [43], the present

observation supports that HNE may possibly process procathepsin

B to its active form. However, our data also suggest that a such

serine protease-dependent maturation of cathepsin B probably

does not occur primarily in either P. aeruginosa-positive or P.

aeruginosa-negative CF sputum, since the major band detected by

immunoblotting and active-site labeling corresponded to the

double-chain cathepsin B.

In conclusion, we identified active cathepsins B, H, K, L and S

in sputum from CF patients, as well as proforms that may be

processed autocatalytically or possibly by elastase (cathepsin B), in

agreement with the overproduction and secretion of cysteine

cathepsins in chronic lung inflammatory diseases [44]. We also

found that kininogens, their natural circulating inhibitors, are

extensively degraded. Thus the overall imbalance between

cysteine proteases and related inhibitors favors the uncontrolled

proteolytic activities of cathepsins. These uncontrolled cathepsins

could then contribute to the pathophysiological breakdown/

Figure 3. CP and HNE activities, and CP/CPI balance in CF sputum. (+): P. aeruginosa-colonized CF sputum; (2): P. aeruginosa-negative CF
sputum. Cathepsins B, H, K, L and S and HNE activities were quantified as reported in details in the experimental section. Data are shown as individual
points and statistically significant P values are shown. The horizontal bars indicate medians. (A) Cathepsins B, L, S, K and H. (B) CP/CPI balance. CPI:
expressed as inhibitory site (cystatin-like) equivalent. (C) Elastase activities: the horizontal bars indicate medians. The western blot analysis was
performed using a rabbit anti-HNE antibody (representative samples are shown). b, unbound HNE; w, bound HNE.
doi:10.1371/journal.pone.0025577.g003
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remodeling of the extra cellular matrix components that occurs in

cystic fibrosis. Cathepsins also seem play a critical role in the

regulation of the antimicrobial activity of innate immunity proteins

in cystic fibrosis, thus favoring the colonization by pathogens like

P. aeruginosa, and infection. Cysteine cathepsins cleave beta-

defensins, lactoferrin, and secretory leukocyte protease inhibitor

and abrogate their microbicidal activity [44]. However we

observed no significant difference in the CP activities and CP/

CPI imbalance of P. aeruginosa-positive samples and P. aeruginosa-

negative samples. Hence the cathepsin activities cannot be used as

an indicator of colonization by this pathogen in CF patients.

Unlike neutrophil elastase, human cathepsins are not consistent

markers of infection by P. aeruginosa in CF patients.
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