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To adapt to habitat temperature, vertebrates have developed
sophisticated physiological and ecological mechanisms through
evolution. Transient receptor potential melastatin 8 (TRPM8) serves
as the primary sensor for cold. However, how cold activates TRPM8
and how this sensor is tuned for thermal adaptation remain largely
unknown. Here we established a molecular framework of how cold
is sensed in TRPM8 with a combination of patch-clamp recording,
unnatural amino acid imaging, and structural modeling. We first
observed that the maximum cold activation of TRPM8 in eight
different vertebrates (i.e., African elephant and emperor penguin)
with distinct side-chain hydrophobicity (SCH) in the pore domain
(PD) is tuned to match their habitat temperature. We further
showed that altering SCH for residues in the PD with solvent-
accessibility changes leads to specific tuning of the cold response in
TRPM8. We also observed that knockin mice expressing the
penguin’s TRPM8 exhibited remarkable tolerance to cold. Together,
our findings suggest a paradigm of thermal adaptation in verte-
brates, where the evolutionary tuning of the cold activation in the
TRPM8 ion channel through altering SCH and solvent accessibility in
its PD largely contributes to the setting of the cold-sensitive/
tolerant phenotype.
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To survive and thrive, all living beings have to perceive and
adapt to ambient temperature (1), which varies over a wide

range from below −50 °C in polar areas to above 50 °C in deserts
(2). Therefore, sophisticated physiological and ecological mecha-
nisms have been developed through evolution to first detect and
then adapt to ambient temperature (3–5). The transient receptor
potential melastatin 8 (TRPM8) channel is the prototypical sensor
for cold in vertebrates (6, 7), which has been validated in both
knockout mice (8) and pharmacological studies (9). However, how
cold activates TRPM8 remains obscure. From the perspective of
channel structure, an earlier study suggested that its C terminus is
crucial for cold activation (10), while subsequent work demon-
strated that the transmembrane core domain (5) or the pore domain
(11) is essential for setting cold response. Although high-resolution
structures of TRPM8 have been resolved by cryoelectron micros-
copy in both the apo and ligand-bound states (12–14), its cold-
activated state structure is still unavailable. From the perspec-
tive of thermodynamics, large enthalpic (ΔH) and entropic (ΔS)
changes are associated with TRPM8 cold activation (15, 16).
Changes in heat capacity have also been hypothesized to mediate
cold activation (17), though experimental evidence for such a
hypothesis is limited to voltage-gated potassium channels (18).
Interestingly, cold activation of TRPM8 is tuned during evolution
in several tested vertebrate species (5, 11, 19). To understand both

the structural and thermodynamic bases of TRPM8 cold activa-
tion, we attempted to gain insights from TRPM8 orthologs in
vertebrate species inhabiting distinct ambient temperatures.

Results
TRPM8 Cold Activation Correlates with Habitat Temperature.We first
measured maximum cold activation compared with saturated
menthol (1 mM) activation in TRPM8 orthologs (Fig. 1 A and B
and SI Appendix, Table S1). In TRPM8_LA (the TRPM8 of the
African elephant Loxodonta africana), we observed that cooling
to 6 °C elicited a robust activation that was at 84.3 ± 3.7% (n = 5)
of menthol-induced activation, while the same cooling only ac-
tivated a minute current level (14.8 ± 1.5% of menthol-induced
activation; n = 5) in TRPM8_AF (the TRPM8 of the emperor
penguin Aptenodytes forsteri). Such a distinction in maximum
cold activation among TRPM8 orthologs prompted us to examine
the relationship between the habitat temperature and TRPM8
channel of these species.
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We measured the cold activation of TRPM8 orthologs from
vertebrate species covering a large habitat-temperature range.
We observed that the maximum cold activation of these channels
positively correlates with habitat temperature (Fig. 1C). The
emperor penguin living in the Antarctic region and African el-
ephant living in the Sahel desert showed the lowest and highest
cold-activated currents, respectively, while other TRPM8 ortho-
logs exhibited cold activation in-between (Fig. 1 B and C and SI
Appendix, Fig. S1). Such results suggest that the cold activation of
the TRPM8 channel is tuned for thermal adaptation. This en-
couraged us to perform a detailed functional analysis of thermo-
dynamic parameters for TRPM8_LA and TRPM8_AF, of which
the difference in habitat temperature is the largest, aiming to
understand how cold activation is tuned.
To quantify the thermodynamics of cold activation in TRPM8,

like the previous study (16), we measured the temperature–
current relationship (Fig. 1D) and then calculated the tempera-
ture dependence of the equilibrium constant (Keq) from Van’t
Hoff plots (Fig. 1E) to derive ΔH and ΔS changes, which are the
slope and intercept of the plots, respectively. We observed that in
addition to larger maximum cold-activation current, TRPM8_LA

exhibited a much steeper temperature dependence of cur-
rent (Fig. 1E) than TRPM8_AF, and therefore ΔH and ΔS of
TRPM8_LA are much larger than those of TRPM8_AF (Fig. 1F).
The cold activation of the TRPM8 channel was suggested to be
affected by voltage gating (6, 16, 20), so we tested and found that
these channels were very similar in voltage dependence (SI Ap-
pendix, Fig. S2). These results indicate that intrinsic cold-activation
properties such as ΔH and ΔS are the primary factors for the
difference in cold activation of TRPM8_LA and TRPM8_AF.

Site 919 Is Crucial for TRPM8 Cold Activation. To probe the origin of
differences in ΔH and ΔS, we focused on nonconserved residues
within the pore domain (PD) of TRPM8_LA and TRPM8_AF
(Fig. 2A), because swapping domains outside the PD between
these channels barely altered the cold activation (SI Appendix,
Fig. S3 and Tables S2 and S3). By interchanging nonconserved
residues with mutagenesis (Fig. 2B, SI Appendix, Fig. S4, and
Datasets S1 and S2), we found that V919Y, a single-point mutation
located in the pore helix of TRPM8_LA, significantly reduced the
maximum cold-activation current, while in TRPM8_AF the reverse
mutation (Y919V) increased cold activation (Fig. 2 C and D).
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Fig. 1. TRPM8 channels in different species are distinct in cold activation.
(A) Representative currents of TRPM8_LA and TRPM8_AF activated by cold
(6 °C) and 1 mM menthol, respectively. (B) Comparison of the cold activation
of eight TRPM8 orthologs. The maximum cold-activated current amplitudes
were normalized to saturated menthol-induced activation. TRPM8 orthologs
activated by 1 mM menthol served as maximum activation (mean ± SEM;
*P < 0.05, **P < 0.01, ***P < 0.001; n = 5). (C) The correlation between
normalized cold responses of specific TRPM8 orthologs and their habitat
temperatures (mean; n = 5). AF, A. forsteri; BM, Bos mutus; CB, Camelus
bactrianus; HS, Homo sapiens; JJ, Jaculus jaculus; LA, L. Africana; MM, Mus
musculus; PH, Pantholops hodgsonii. (D) Representative temperature-driven
responses of TRPM8_LA and TRPM8_AF. The cold-activated currents were
normalized to saturated menthol-induced activation. (E) Van’t Hoff plots for
the cold-activated TRPM8 currents shown in D. Dotted lines represent fits of
the Van’t Hoff equation, from which ΔH and ΔS are estimated. (F) Measured
ΔH values (filled bars, left axis) and ΔS values (open bars, right axis) of
TRPM8_LA and TRPM8_AF (mean ± SEM; ***P < 0.001; n = 5).
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Fig. 2. Mutations at site 919 in the PD alter the thermodynamic properties
of TRPM8 cold activation. (A) Sequence alignment of amino acids in the PD
of TRPM8_LA and TRPM8_AF. The species-specific residues are highlighted.
(B) Normalized maximum cold-activated currents of TRPM8_LA and its mu-
tants. The cold-activated currents were normalized to saturated menthol-
induced activation (mean ± SEM; ***P < 0.001; n = 5). (C) Representative
temperature-driven activation of wild-type TRPM8_LA and its V919Y mutant.
(D) Representative temperature-driven activation of wild-type TRPM8_AF and
its Y919V mutant. (E) Van’t Hoff plots for the cold-activated TRPM8 currents
shown in C. Dotted lines represent fits of the Van’t Hoff equation. ΔH and ΔS
were calculated directly from the slope and intercept of the plots. (F) Van’t
Hoff plots for the cold-activated TRPM8 currents shown in D. (G) Measured ΔH
(filled bars, left axis) and ΔS values (open bars, right axis) of TRPM8_LA,
TRPM8_AF, and the channel mutants (mean ± SEM; ***P < 0.001; n = 5).

8634 | www.pnas.org/cgi/doi/10.1073/pnas.1922714117 Yang et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922714117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922714117


Furthermore, V919Y in TRPM8_LA decreased the ΔH and ΔS of
cold activation, while Y919V in TRPM8_AF increased the ΔH and
ΔS (Fig. 2 E–G). Therefore, our observations support the critical
role of the TRPM8 PD in cold activation as mutations at site 919
significantly influence cold-activation properties.

Conformational States of Key Residues during Cold Activation. To
reveal the general principle underlying changes in cold activa-
tion caused by such a single substitution, we first examined po-
tential mutations that can alter thermodynamic properties of the
host channels. Based on thermodynamic principles (17), it was
hypothesized that change in channel protein-specific heat ca-
pacity (ΔCp) is associated with temperature gating of TRP
channels, so when the side chain of a hydrophobic residue
transits from buried state to water-exposed state, changes in ΔCp
will be positive, leading to an increase in cold response (18). We
intended to test whether our observations could be explained
within such a molecular framework of temperature gating.
To test this hypothesis, two tasks were to be accomplished: 1)

We needed to know the side chain of which residues undergo
buried/exposed conformational changes during cold activation;
and 2) for the residues changing buried/exposed states, we needed
to systematically alter the side-chain hydrophobicity (SCH) and
then measure the changes in cold response. To first probe buried/
exposed conformational changes of the side chain, we employed
an unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-
aminopropanoic acid (ANAP) (Fig. 3A) (21). Given that the
emission peak of ANAP shifts to a higher wavelength in more
hydrophilic environments due to the changes in solvation of the
side chains of ANAP-incorporated residues (21), we used it to

monitor ligand- and heat-induced conformational rearrangements
in the transient receptor potential vanilloid 1 (TRPV1) channel
(22, 23). We incorporated ANAP at 142 sites throughout the
transmembrane domains of TRPM8_LA (Datasets S3 and S4),
where 15 ANAP-incorporated TRPM8 channels were still acti-
vated by cold. These functional ANAP-incorporated mutants
allowed us to determine at least a set of residues with buried/
exposed conformational changes in their side chains. Among these
channels, we observed that three mutants (G925ANAP, L943ANAP,
and L947ANAP) exhibited a significant red shift in their ANAP
emission peak upon cold activation (Fig. 3 B–F), suggesting that
these residues changed from buried to exposed state during cold
activation. They showed similar single-channel conductance values
and channel activation as the wild-type channel (SI Appendix, Figs.
S5 and S6), indicating that ANAP incorporation did not disrupt
ion permeation. As the selectivity filter remains virtually unob-
served in cryoelectron microscopy structures of the collared fly-
catcher TRPM8 channel (12, 13), we computationally modeled
the intact pore of TRPM8_LA with multiple rounds of kinematic
loop modeling (SI Appendix, Fig. S7 A and B), where the pore
radius at the selectivity filter turned out to be too narrow to allow
ions and water molecules to pass (SI Appendix, Fig. S8A). We
mapped the shifts in ANAP emission onto this closed-state model
of TRPM8_LA and observed that these three sites with the largest
shifts are clustered within the PD (Fig. 3G), which again supports
the critical role of the PD in cold activation of the channel (5, 11).

Side-Chain Hydrophobicity Alters Cold Response. Next, we system-
atically tuned the cold response of TRPM8_LA by introducing
point mutations with varying SCHs at sites 925, 943, and 947
(Dataset S5), for which ANAP experiments have specified their
buried/exposed conformational changes during cold activation
(Fig. 3 B–F). Altering the SCH of these residues would tune the
cold response of the channel in a predictable way. We expected
that changing the amino acid to a more hydrophobic residue
would increase cold response, while the substitution of a more
hydrophilic residue would cause a decrease. To experimentally
determine the hydrophobicity of ANAP, we further employed
reverse-phase chromatography to compare the elution time of
ANAP relative to natural amino acids. Leucine has been de-
termined in different systems as one of the most hydrophobic
amino acids (24–26). As expected, the elution time of leucine is
longer than that of the hydrophilic glutamine. We observed that
the elution time of ANAP was even longer than that of leucine,
suggesting that ANAP is more hydrophobic than natural amino
acids including leucine (Fig. 4A). For site 925, we measured the
ΔH and ΔS of cold activation when its side chain was that of
ANAP, isoleucine, glycine (wild type), or glutamine. With the
increase in SCH by using ANAP or isoleucine, the ΔH and ΔS
values were significantly increased; in contrast, the hydrophilic
glutamine yielded decreased ΔH and ΔS (Fig. 4 B and C). The
cold sensitivity (as indicated by ΔH values) positively correlated
well with SCH (Fig. 4B). For the mutation at sites 943 and 947,
we observed the same trend: An increase in SCH with ANAP led
to greater cold sensitivity, while a decrease in SCH with lysine or
glutamine reduced cold sensitivity (Fig. 4 D–G). Therefore, the
molecular framework of temperature gating was supported by
our observations at sites 925, 943, and 947.

Site 919 in TRPM8 Cold Activation.Unfortunately, when ANAP was
incorporated at site 919 of TRPM8_LA, where a point mutation
largely altered thermodynamic properties, the channel became
unresponsive to cold and menthol stimuli (SI Appendix, Fig. S6),
preventing direct measurement of conformational rearrange-
ments in the side chain at this site during cold activation. To
estimate how the buried/exposed state changes at site 919, we
employed ANAP emission shifts as experimentally derived con-
straints to facilitate computational modeling of the cold-induced
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open state. Briefly, a red shift in ANAP emission indicates that
the solvent-accessible surface area (SASA) of its side chain is
increased. Since SASA can be directly measured from the three-
dimensional structure of the channel, we had previously used this
strategy to computationally model the capsaicin-activated state
and the heat-desensitized state of the TRPV1 channel (22, 23).
With constraints and multiple rounds of kinematic loop model-
ing and relaxation in Rosetta (SI Appendix, Fig. S7 C and D), we
modeled the cold-activated state of TRPM8_LA, where the pore
radius at the selectivity filter was large enough for ion permeation
(SI Appendix, Fig. S8A). By comparing TRPM8_LA structure
models in the closed and cold-activated states, we observed an
increased SASA of the V919 side chain during cold activation (SI
Appendix, Fig. S8 B and C). We were aware that computational
modeling was prone to inaccuracy despite the experimental con-
straints we employed here. Assuming SASA of the V919 side
chain in TRPM8_LA was indeed increased during cold activation
as suggested by our models, we further mutated valine to iso-
leucine, which made site 919 more hydrophobic. With patch-
clamp recording, we observed that both ΔH and ΔS of the
V919I mutant were significantly increased. In contrast, as threo-
nine is much more hydrophilic than valine, the V919T mutant led
to significantly reduced ΔH and ΔS (Fig. 4H). The V919Y mutant
showed decreased cold sensitivity (Figs. 2G and 4H). Tyrosine,
which preferably locates at the water–membrane interface (27–
31), is an aromatic residue with a polar hydroxyl group on its side
chain, which may make it hydrophobic in some studies (32–35) but
hydrophilic in others (26, 36, 37). With all these complications, our
observations of the V919I and V919T mutants support the
molecular framework of temperature gating where both the

buried/exposed state and SCH control the temperature sensi-
tivity of TRPM8 (Fig. 4I).

Cold-Activation Properties of TRPM8 Contribute to Thermal Adaptation.
Such a framework of temperature gating predicted that cold could
induce similar conformational rearrangements in TRPM8 ortho-
logs. Indeed, we observed that the accumulated SCH of the PD by
summing up hydrophobicity values (24, 25) of nonconserved resi-
dues (Materials and Methods) positively correlated with both the
habitat temperature of each species (Fig. 5 A and B) and the
maximum cold activation of TRPM8 (Fig. 5C). Such a correlation
prompted us to hypothesize that those changes in TRPM8 cold
activation by tuning SCH likely serve as one of the mechanisms for
thermal adaptation in vertebrate species.
To test this hypothesis, we first used the trpm8 gene from the

emperor penguin to replace that of mice by a transgenic approach
(AF mice). AF mice showed normal physiological characteristics
in blood tests (SI Appendix, Tables S5 and S6) and unchanged
transcription levels of TRPM8 messenger RNA as well as other
thermal sensing-related ion channels (SI Appendix, Fig. S9 A and
B). As expected, TRPM8_AF channels were well-expressed in the
trigeminal ganglion (SI Appendix, Fig. S9 C–E) and dorsal root
ganglion (SI Appendix, Fig. S10) of AF mice, where these channels
were still activated by menthol and cold (SI Appendix, Fig. S10).
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ΔS values (open bars, right axis) of wild-type TRPM8_LA and channel mu-
tants (mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001; n = 5). (H) Measured
ΔH (filled bars, left axis) and ΔS values (open bars, right axis) of wild-type
TRPM8_LA and its mutants with point substitution at site 919 (mean ± SEM;
**P < 0.01, ***P < 0.001; n = 5). (I) A schematic illustration where a hy-
drophobic residue transits from the buried (Top) to exposed state (Bottom). A
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Fig. 5. Tuning of SCH serves as the adaptation strategy for habitat tem-
perature. (A and B) The relationship between the accumulated SCH value of
each TRPM8 ortholog’s PD and the habitat temperature of each vertebrate.
SCH values were taken from ref. 24 (A) or ref. 25 (B). (C) The relationship
between the accumulated SCH value and the normalized cold response. (D)
Images of mice at the comfortable position, indicating the favored tem-
perature. KO, knockout. (Scale bar, 4 to 37 °C.) (E) The detention time of
mice at each temperature area was normalized to the total time of the
temperature-preference test. Average values represent mean ± SEM (n =
10). (F) Mice were allowed to move freely in a two-temperature choice test
with control plate (30 °C) and test plate (ranging from 6 to 30 °C). The
percentage of time spent at the control plate was measured every 3 min
(mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.001; n = 10). (G) A cartoon
illustrating the molecular mechanism of TRPM8 cold-induced activation and
thermal adaptation in vertebrates.
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We observed that compared with wild-type mice (25 to 28 °C),
both the AF mice (16 to 19 °C) and trpm8−/− knockout mice (13 to
16 °C) preferred a cooler temperature (Fig. 5 D and E). Similarly,
unlike wild-type mice, AF mice were able to tolerate the cold
temperature (9 to 24 °C) in the two-temperature choice tests (Fig.
5F and Movie S1). Although TRPM8-deficient mice exhibited
equal ability to adapt to a cold environment compared with AF
mice, other TRPM8-related physiological functions were com-
promised, such as response to chemical stimuli (8, 38, 39).
Therefore, tuning cold-activation properties of the single-gene–
encoded TRPM8 channel is likely the most efficient and low-
cost strategy, which contributes to better adaptation of the em-
peror penguin and other vertebrates to their habitat temperature.

Discussion
In summary, we demonstrated that by first identifying the resi-
dues with their side chains that undergo buried/exposed confor-
mational rearrangements with ANAP imaging, we could specifically
increase or decrease the cold sensitivity (as indicated by ΔH) of
the TRPM8 channel by making these residues more hydrophobic
or hydrophilic, respectively (Fig. 4). The TRPM8 channel is an
allosteric protein where stimulus-sensing apparatuses are ener-
getically coupled to the activation gate like in other TRP channels
(40, 41), so the maximum cold activation is determined by the
equilibrium constant of the channel gate itself (42, 43). As we also
observed that maximum cold activation is tuned similarly as cold
sensitivity (Figs. 2 C–G and 5C) and the channel gate is located
within the PD (12–14), we suggested that in agreement with pre-
vious reports (5, 11), the TRPM8 PD is critical for cold-activation
properties, which may be involved as part of the cold-sensing
apparatus. Accordingly, the PD in TRPV1 and TRPV3 has also
been shown to be critical for heat activation (15, 44–46). However,
for site 919 in particular, where mutations largely altered cold
activation in TRPM8 orthologs (Fig. 2 C–G), there are several
possibilities regarding its specific role in temperature-gating
mechanisms: 1) The PD may contain a temperature sensor with
site 919 acting as part of the upper gate, though whether the se-
lectivity filter serves as a gate for ion permeation needs to be
further tested (47); 2) site 919 may be a modulatory site while the
actual “temperature sensor” is located elsewhere; and 3) site 919
is part of a scattered but somewhat coordinated group of residues
“sensing” temperature as proposed in a previous study (17). Be-
cause we observed that tuning the SCH of other sites (925, 943,
and 947) in the PD also specifically tuned the cold sensitivity in
TRPM8 (Fig. 4), site 919 is more likely to be part of a scattered
but somewhat coordinated group of residues sensing temperature,
though further experiments are required to establish the roles of
these residues.

Given that the hydration shell formed by water molecules
surrounding the exposed hydrophobic side chain is more stable
at lower temperatures (18), we postulated a temperature-gating
mechanism where cold makes the exposed state of hydrophobic
residues in the PD be energetically favorable, leading to the
opening of activation gate inside the PD. In contrast to TRPM8,
TRPV1 is activated by noxious heat. Based on high-throughput
mutagenesis, it has been shown that TRPV1 heat activation is
specifically sensitive to strong decreases in amino acid hydro-
phobicity (48), which is in agreement with the temperature-sensing
framework we proposed. In some vertebrates, though the transient
receptor potential ankyrin 1 (TRPA1) channel has been suggested
to detect cold (49, 50), TRPM8 is still the most established cold
sensor. Therefore, such a molecular framework of temperature
gating has also been employed in an evolutionary paradigm where
cold-activation properties in TRPM8 orthologs are tuned with the
SCH of residues in the PD for better thermal adaptation in ver-
tebrates (Fig. 5G).

Materials and Methods
Animals. All experiments involving animals conformed to the recommen-
dations in the Guide for the Care and Use of Laboratory Animals of the
Kunming Institute of Zoology, Chinese Academy of Sciences. All experimental
procedures were approved by the Institutional Animal Care and Use Com-
mittees at the Kunming Institute of Zoology, Chinese Academy of Sciences
(approval ID SMKX-2018018). All possible efforts were made to reduce the
sample size and also to minimize animal suffering.

Data Availability. All data needed to evaluate the conclusions are present in
this paper and/or the supporting information. Additional data are available
from the authors upon request. Sequencing data (accession no. PRJNA600306)
of mouse trigeminal ganglions have been deposited in the National Center for
Biotechnology Information Sequence Read Archive. To record the cold-driven
activation, the cells expressing TRPM8 were first placed and recorded in a 37 °C
bath solution. To ensure accuracy in monitoring of the local temperature, a
TA-29 miniature bead thermistor (Harvard Apparatus) was placed right next to
the pipette. Briefly, a detailed version of this study’s materials and methods for
the transient transfection, gene synthesis, mutation, molecular modeling,
fluorescence imaging, and electrophysiological measurements is pro-
vided in SI Appendix. These assays were all performed using standard
approaches.
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