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Abstract

Background: Despite their notorious diversity, biological cells are mechanically well characterized by only a few robust and
universal laws. Intriguingly, the law characterizing the nonlinear response to stretch appears self-contradictory. Various cell
types have been reported to both stiffen and soften, or ‘‘fluidize’’ upon stretch. Within the classical paradigm of cells as
viscoelastic bodies, this constitutes a paradox.

Principal Findings: Our measurements reveal that minimalistic reconstituted cytoskeletal networks (F-actin/HMM) exhibit a
similarly peculiar response. A mathematical model of transiently crosslinked polymer networks, the so-called inelastic glassy
wormlike chain (iGWLC) model, can simulate the data and resolve the apparent contradiction. It explains the observations in
terms of two antagonistic physical mechanisms, the nonlinear viscoelastic resistance of biopolymers to stretch, and the
breaking of weak transient bonds between them.

Conclusions: Our results imply that the classical paradigm of cells as viscoelastic bodies has to be replaced by such an
inelastic mechanical model.
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Introduction

Cells stiffen upon stretch [1–3]. But cells also soften upon stretch

[4,5]. We call this the stiffening-softening paradox of cell

mechanics, since both apparently contradictory effects are

attributed to the same structural entity or ‘‘functional module’’

[6] of the cell, the cytoskeleton [7]. The cytoskeleton is essentially a

semidilute meshwork of semiflexible biopolymers, calling for an

explanation by a mechanistic polymer-physics based model [8,9].

Indeed, in-vitro reconstituted cytoskeletal networks were also found

to stiffen [10–12] and soften [12]. Within the classical mechanical

paradigm of cells and biopolymer networks as viscoelastic bodies,

such contradictory responses constitute a paradox, as they elude

attempts of a unified explanation. Accordingly, the different

behaviors were previously attributed to distinct network architec-

tures [10]. In the following, we want to challenge this view by

revealing that even a passive in-vitro cytoskeletal model network

exhibits a two-faced mechanical response. Using a simple

mathematical model for the inelastic mechanics of a transiently

crosslinked biopolymer network, we explain how the apparently

paradoxical behavior may naturally emerge from a unified

mechanism. Taken together, our results thus show a plausible

way of how to resolve the stiffening-softening paradox within a

unified framework of inelastic network mechanics, with important

implications for cell function, development, and disease [13,14].

We performed shear rheometry with a biomimetic cytoskeletal

model system, an F-actin network isotropically and transiently

crosslinked by rigor heavy meromyosin (HMM). The F-actin/

HMM system was chosen for its structural simplicity and

experimental reproducibility, not for its physiological significance.

Its frequency-dependent linear rheology has been well charac-

terized before [15]. Our aim was to demonstrate that even such

simple model networks, which are arguably accessible to a

schematic mathematical modeling, exhibit a complex two-faced

nonlinear rheological response akin to that reported for living

cells.

Results

Nonlinear Rheology of F-actin/HMM Networks
We applied a staircase of sinusoidal shear excitations. For small

amplitude ĉc, the resulting stress-strain curves have elliptical shapes

(Fig. 1a). This means that the stress response s(t) is sinusoidal, like

the stimulus c(t), but shifted in phase, as characteristic of a linear

viscoelastic (dissipative) response. Upon raising the oscillation

amplitude ĉc step by step after every 30 cycles (Fig. 2a), deviations

from the elliptical shape become increasingly pronounced (Fig. 1b),

in line with previous observations for F-actin/a-actinin networks

[16] and even pure F-actin solutions [17]. Within each cycle, the

material stiffens appreciably, which manifests itself in convex

stress-strain relations, i.e. the ellipses bending upwards. This is the

equilibrium viscoelastic stiffening commonly attributed to the

nonlinear resistance of individual semiflexible polymers to stretch

[9–11,18]. But note that, at the same time, the sample exhibits

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e40063



signatures of softening near the maximum strain ĉc, where the

stress-strain curves become concave. As a consequence of such

repeated softening phases, the maximum stress ŝs reached in

subsequent identical loading cycles decreases continuously until

the stress-strain curve settles on a limit cycle. This phenomenon,

known as ‘‘shakedown’’ or dynamic softening, is the hallmark of

inelastic behavior.

To better illustrate how stiffening and dynamic softening

interfere, we reduce the full information contained in the

nonlinear stress-strain curves in Fig. 1 by introducing a reduced

description in terms of the maximum amplitudes ŝsn and ĉcn of

stress and strain, respectively, for each cycle n. Their ratio

K̂K(n):ŝsn=ĉcn defines a nonlinear modulus as a function of the

oscillation frequency and the cycle number n, hence of the cycle-

to-cycle history of the sample. It captures the essence of stiffening

and dynamic softening, while discarding some finer details

encoded in the individual stress-strain cycles. The oscillatory

staircase protocol with its monotonically increasing amplitude ĉc

(Fig. 2a) results in a non-monotonic evolution of K̂K (Fig. 2b). One

can distinguish a ‘‘transient response’’ to sudden steps in the

driving amplitude ĉc––generically a rapid stiffening followed by a

gradual shakedown––from a ‘‘stationary response’’ prospectively

attained when the shakedown has ceased after many identical

driving cycles. Note that this implies that the modulus K̂K(n) reveals

underlying dynamics on multiple time scales. It is a non-

monotonic function of the cycle number n both for the transient

and for the stationary response. Such behavior could not easily be

explained by a mere elastic stiffening [18–20] or softening [21,22],

alone.

It finds a very natural interpretation in terms of an inelastic

response, though. To demonstrate this, we adopted a cell

rheology protocol aimed at isolating the inelastic contributions

to the response by minimizing viscoelastic contributions [4].

The protocol consists of a transient shear pulse of a given

amplitude, followed by a recovery phase during which the linear

mechanical material properties are monitored over time, as

illustrated in the inset of Fig. 3. The main figure depicts the

dynamic evolution of the sample stiffness, characterized by the

linear storage modulus G’(v), after the application of the strain

pulse. Right after the pulse, the stiffness of the F-actin/HMM

networks is systematically reduced. Similarly to what was

previously reported for cells, the effect is sensitive to the

amplitude of the pulse (at fixed duration), and the mechanical

recovery is slow. The softening is moreover accompanied by an

increase in the loss angle (see Fig. F in Supporting Information S1).

In accordance with the cell-mechanical terminology we thus

speak of ‘‘fluidization’’ [4,23].

Figure 1. Stress-strain curves for an oscillatory shear strain ª(t)~ª̂ªsin(vt). (a, b) Experiment: passive transient F-actin/HMM gels
(cA~0:4 mg/ml, cHMM=cA~0:1) sheared at strain amplitudes of ĉc~5% and ĉc~28%, corresponding to a weakly/strongly non-linear response,
respectively. The upward bending of the ellipses signals stiffening, their concave regions near maximum strain imply softening. The softening and the
ensuing ‘‘shakedown’’ of the stress-strain curves towards a limit cycle are indicative of inelastic fluidization. (c, d) Corresponding theory curves from
the inelastic glassy wormlike chain (i GWLC) model [25] (parameters f0~0, E~10, U~0:8, v~10 Hz; single-polymer displacement and force were
converted to network strain and stress as described in Methods). The absolute stress and strain scales in theory and experiment are compatible on
the present (mean-field) level of modeling, but the theory somewhat overestimates the stiffening during the initial large-amplitude loading cycle,
and, as a consequence, also the peak force and the strength of the shakedown.
doi:10.1371/journal.pone.0040063.g001

The Stiffening-Softening Paradox in Cell Mechanics

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40063



Mathematical Model
The notion of fluidization unifies four of the features described

so far: the dynamic softening or shakedown (Figs. 1, 2), the

reduction and slow recovery of the modulus after stretch (Fig. 3),

and the stationary softening observed in Fig. 2 over long times.

For the physical origin of fluidization the transient breaking of

weak bonds provides a plausible microscopic mechanism [24].

To support this interpretation, we now turn to a quantitative

analysis of our data, based on the inelastic glassy wormlike chain

model [25]. The glassy wormlike chain (GWLC) model is a

minimalistic phenomenological model for the Brownian dynam-

ics of biopolymer solutions. It is rooted in the standard polymer-

physics model for a semiflexible chain molecule in solution, the

wormlike chain (WLC). But it effectively accounts also for the

caging and enthalpic trapping of such a polymer by the

surrounding polymer matrix, resulting in a microscopic mechan-

ical susceptibility a�GWLC(v; f0,E), depending on the frequency v,

prestressing force f0, and a stretching parameter E, interpreted as

a characteristic bond breaking enthalpy in units of the thermal

energy kBT . The WLC and the GWLC can parametrize a wealth

of mechanical data obtained in single molecule experiments [26]

and rheometric measurements of biopolymer solutions, networks

and cells [27]. The inelastic GWLC (i GWLC) adds to this an

effective description of bond kinetics [25], i.e. it is applicable to

nonequilibrium situations characterized by an appreciable

dynamical evolution of the bond network mutually connecting

the polymers (see Fig. D in Supporting Information S1 for an

illustrative sketch). This is realized by introducing a dependence

of the microscopic susceptibility a� on the mean fraction n of

closed bonds, a�iGWLC:a�iGWLC(v; f0,E,n). To keep the model as

simple as possible, we limit our discussions to ‘‘inelastic’’ (as

opposed to ‘‘plastic’’) deformations by requiring reversible

binding-unbinding kinetics. Broken bonds ultimately reform in

their original equilibrium states after the external load has been

released. This means that we refrain, at the present stage, from

distinguishing between the breaking of sacrificial bonds that

triggers a transient domain unfolding [28] and the breaking and

reforming of cytoskeletal filaments [29] or the unbinding and

rebinding of their mutual sticky contacts [30], crosslinkinking

molecules [15,16], or actin-myosin cross bridges [31].

Figure 2. Nonlinear inelastic response of F-actin/HMM networks. (a) Schematic of the oscillatory driving protocol (the strain amplitude ĉc is

increased in steps after every 30 cycles, driving frequency v~0:025 Hz). (b) Measured reduced nonlinear modulus K̂K(n):ŝsn=ĉcn (peak stress over
peak strain) as a function of the cycle number n. The shaded background indicates the monotonic increase of the strain amplitude ĉc (indicated in
percent). Note that the modulus responds nonmonotonically to both transient and stationary loading, hinting at antagonistic mechanisms with
multiple time scales. Inset: Theory curve from the i GWLC model [25] reproducing the key features, transient and stationary stiffening and softening
with the parameters from Fig. 1 (see also Methods and Fig. E in Supporting Information S1).
doi:10.1371/journal.pone.0040063.g002
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A more detailed description of the model is given in Supporting

Information S1. For the sake of our present discussion, its essential

predictions for the shear modulus G are (i) a roughly linear

increase with prestress if bond-breaking is negligible,

G(v0; f0,E,n)Dn:const:*f0, (ii) a reciprocal relation to the number

of bonds at constant stress, G(v0; f0,E,n)Df0:const:*n{x, with

xw0, and (iii) bond softening under stress. The latter is

implemented by a Bell-type exponential force dependence of the

bond opening and closing rates, k{(f )*efDxb=kBT ,

kz(f )*e{fDxu=kBT with the widths Dxb and Dxu of the bound

and unbound state.

Discussion

The interplay between the nonlinear mechanical response of

individual polymers and the slow but stress-sensitive bond

dynamics gives rise to a rich and complex mechanical behavior

of the i GWLC. It naturally predicts the bent stress-strain curves and

their softening characteristics and gradual shakedown, as exem-

plified in Fig. 1d, and the fluidization and slow recovery after a

transient strain pulse (Fig. 3, lines). Even the stiffness evolution on

multiple time scales, depicted in Fig. 2, is well reproduced by the

model (inset). Here, we always considered the prestressing force f0

as a (small) constant. It represents frozen-in stresses in the network,

which are supposedly weak for our passive reversibly crosslinked

networks. But we note in passing that f0 might play a much more

dynamic role in applications of the i GWLC to cell rheological data,

where it might under certain circumstances be needed to represent

an active contractile cell response.

Beyond providing an economical parametrization of our own

data and known literature results [4,5,10–12,30,32], the i GWLC

makes a plausible and intuitive quantitative proposal for the

underlying molecular mechanism. More precisely, by analyzing

the model equations, stiffening can be attributed directly to the

characteristic nonlinear stretch response of individual semiflexible

biopolymers, causing a prompt viscoelastic response to an applied

stress. Softening emerges as an aftermath to an applied strain from

the slow and stress-sensitive dynamical evolution of the mutual

bonds between the biopolymers, and is therefore better charac-

terized as an inelastic fluidization. The time-scale separation

between viscoelastic stiffening and bond softening turns out to be

at the heart of the observed complex nonlinear dynamical

response, because large internal stresses can build up before

eventually relaxing via inelastic bond breaking. The stationary

effects, in contrast, rely on a static balance between polymeric

stiffening and bond breaking. The model quantitatively relates

these essential properties to each other and also to other

characteristic features of the mechanical response of biopolymer

networks and cells. For example, scale-free power-law spectra, as

observed in cell rheology [33], are a characteristic feature of the

model (see Ref. [27] and Supporting Information S1). Finally, the i

GWLC makes a number of interesting testable predictions for future

investigations. For instance, as a direct consequence of the Bell-

type stress-dependence of the bond strength, we find that the peak

force reached in a large strain ramp or pulse grows essentially

logarithmically with the characteristic rate at which the force

increases. Conversely, the fraction of broken bonds––and there-

fore the resulting fluidization of the sample––is quite insensitive to

the duration of the stimulating pulse, over a broad range of time

scales. This particular feature has indeed already been demon-

strated for live cells [5]. However, beyond a certain effective ‘‘yield

threshold’’, the bond fraction sensitively depends on the (imposed

or attained) maximum strain, no matter what the yield force is (see

Supporting Information S1 for a quantitative description).

The observation that the rate and amplitude of an imposed

deformation affect the nonlinear response so differently suggests to

delineate a non-equilibrium constitutive diagram in the reduced

parameter plane spanned by the rate and amplitude of an imposed

deformation (Fig. 4 central panel). The background shading and

the small representative stress-strain cycles distinguish domains of

deformation rate and amplitude with a qualitatively distinct

mechanical response. The limiting behaviors at vanishing rate and

vanishing amplitude, i.e. near to the coordinate axes, are further

characterized in the side panels (note the different labelings on

their outer axes). The upper panel depicts the rate-dependent

viscoelastic response for vanishing amplitude, hence essentially the

linear frequency-dependent shear modulus on a log-log scale,

exhibiting power-law rheology. The left panel (linear axes) shows

the nonlinear shear modulus in the limit of slow driving. Note the

turnabout from inelastic stiffening to softening in response to a

quasi-static driving, which is responsible for the initially ascending

and later descending plateaus in the nonlinear modulus K̂K(n) in

Fig. 2. This non-monotonic stationary stress-stiffness relation

originates in the sigmoidal sensitivity of the bond fraction to the

force (see Supporting Information S1). For slightly larger rates, the

stiffening becomes steeper, which gives rise to a ‘‘kinematic-

hardening’’ type behavior (central panel). Finally, if the deforma-

tion rate and amplitude of the loading are both large, the response

features steep initial stress stiffening and ensuing dynamic

fluidization, as caused by the amplitude steps in Fig. 2, as well

as the fluidization-recovery pattern illustrated in Fig. 3. The

depicted representative stress-strain cycle exhibits shakedown, as

in Fig. 1. Though it should not be confused with a thermodynamic

state diagram, the constitutive diagram in the central panel of

Fig. 4, if judiciously interpreted, can serve as a compact

characterization of the multifaceted nonlinear mechanical re-

sponse of transiently crosslinked biopolymer networks and as a

potentially useful road map for cell rheologists.

In summary, we have explored the stiffening-softening paradox

of cell mechanics, both by rheological measurements of minimal

Figure 3. Fluidization and slow mechanical recovery of an F-
actin/HMM gel after a transient strain pulse ª(t) (inset). Stiffness
is quantified by the normalized (‘‘n’’) real part G’(v) of the linear shear
modulus, measured by small sinusoidal oscillations at fixed oscillation
frequency v~1s{1 , before and after the stretch. The softening
immediately after the stretch is found to be sensitive to the maximum
strain ĉc~10% (circles) and ĉc~30% (squares) of the pulse, albeit less
pronounced as for cells, where the same pattern is observed at 3–4
times smaller strain amplitudes [4]. Error bars are SE, ensemble size is
N~75; lines represent theoretical (exponential) fits by the i GWLC model
[25]; see Methods and Supporting Information S1 for further explana-
tions.
doi:10.1371/journal.pone.0040063.g003
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cytoskeletal model systems (F-actin/HMM) and by theory. The

nonlinear nonequilibrium mechanical response of the reconstitut-

ed networks was found to provide a close match to previous cell

rheological measurements, albeit at 3–4 times larger amplitude. It

was moreover well parametrized by the inelastic glassy wormlike

chain model, which suggests a unified mechanistic explanation.

Stiffening, as a direct viscoelastic response to an applied stress, is

attributed to the characteristic nonlinear stretch resistance of

individual semiflexible biopolymers. Conversely, softening emerg-

es as an aftermath to an applied strain from the dynamical

evolution of the mutual bonds between the biopolymers, and it is

better characterized as an inelastic fluidization. By emphasizing the

key role played by inelastic processes, the proposed polymer-

physics based explanation of the stiffening-softening paradox

clearly transcends the classical mechanical paradigm of biopoly-

mer networks and cells as viscoelastic bodies. Our unifying

explanation based upon inelastic processes is specific concerning

the basic mechanism, yet robust against details of its implemen-

tation. It makes reference to microscopic elements in the

molecular structure of the cytoskeleton, such as biopolymers and

their mutual transient bonds, and relates them quantitatively to a

wide range of rheological responses. It would also be straightfor-

ward to accommodate more sophisticated physical constituents

accounting for dynamic prestresses generated by molecular

motors, stress-induced domain unfolding, or catch bonds. In the

minimalistic implementation discussed here, our model is, at the

same time, still schematic and deliberately employs bold simpli-

fications. In particular, it does not address network and cross-

linking geometries, nor is it parametrically fine-tuned to a

particular molecular architecture, as would be required for

extracting reliable parameter values (such as binding affinities of

crosslinkers) from fits to experimental data. In return, one may

hope that it can qualitatively capture major elements of the

mechanical phenomenology of both networks and cells, irrespective

of their utterly different degrees of molecular complexity.

Methods

Protein Preparation and Rheology
Passive rigor F-actin/HMM networks at various concentrations

were prepared as previously described [34], except that no gelsolin

was added. Nonlinear oscillatory experiments were performed at

actin concentration cA~0:4 mg/ml and HMM molar ratio

R~cHMM=cA~0:1. Data for pulsed loading were pooled over

two different actin concentrations cA~0:4 mg/ml and

cA~0:8 mg/ml and values of R, 0ƒRƒ0:2, see Table A in

Supporting Information S1 for details. We used a commercial AR G2

shear rheometer (TA Instruments, New Castle, USA) in cone-plate

geometry (40 mm diameter, cone opening angle 1u). About 370 ml

sample were loaded within 1 minute into the rheometer. The

transition to rigor HMM upon ATP depletion is followed by

recording the elastic response of the F-actin/HMM network over

time (see Fig. B in Supporting Information S1). Two different

rheological protocols were applied. The first protocol, termed

‘‘nonlinear oscillations’’, consisted of shear oscillations at 0.025 Hz

with a staircase increase in the amplitude. The amplitude was kept

constant for 30 cycles and then increased to a higher value, where

it again was kept constant for 30 cycles, and so forth. Amplitude

Figure 4. Constitutive diagram for the iGWLC model. The central panel gives a qualitative graphical summary of the mechanical response
predicted by the model as a function of the amplitude and characteristic rate of an imposed deformation pulse. At low amplitudes, in the linear
regime, it exhibits power-law rheology (upper panel, log-log scale). At low rates, in the quasistatic regime, it exhibits stiffening at low amplitudes,
where entropic stiffening of the polymer backbone dominates, and softening at high amplitudes, where the stiffening is eventually overruled by the
exponential bond softening (left panel, linear scale). This mechanism underlies the initially ascending and later descending steps in the nonlinear
modulus in Fig. 2. At high rates and high amplitudes, a steep initial stiffening with subsequent fluidization and slow recovery governs the response
(central panel). The schematic stress-strain curves for oscillatory driving exemplify the salient features of the nonlinear response in the various
parameter regions.
doi:10.1371/journal.pone.0040063.g004
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values were 5%, 9%, 16%, 28%, and 40% (cf. Fig. 2a). The second

protocol, termed ‘‘fluidization protocol’’, was chosen to specifically

probe the inelastic contribution to the response, as pioneered in

cell rheology [4]. A triangular shear pulse of four minutes duration

and variable amplitude was applied to the sample, followed by a

waiting time of at least 20 minutes. During the waiting time, the

linear frequency-dependent modulus was constantly recorded by

applying small shear oscillations of 1% amplitude at frequencies of

2 Hz (cf. Fig. 3).

Data Analysis
For the nonlinear oscillations, raw data were extracted from the

rheometer. Spline smoothing was applied to the data using a

custom-made Python script. Torque t and angle h were converted

to stress s and strain c using s~cst and c~cch, with conversion

factors of cs~1:2|105=m3 and cc~57:3, respectively, which are

calculated from the cone geometry. From the resulting stress-strain

data, a nonlinear modulus K̂K was calculated as described in the

main text. The response to the nonlinear oscillations was

qualitatively reproducible among different samples (Fig. E in

Supporting Information S1). No averaging over samples was

performed.

To relate theoretically calculated filament forces f to network

strains s, we used the relation [35] s&f =j2, with the mesh size

[36] j~0:3=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cA½mg=ml�

p
; an estimate for the strain was obtained

by normalizing the displacement by the mesh size j.

For the pulsed loading experiments, the linear stiffness

responded to a strain pulse by a systematic decrease followed by

a recovery. Often, the recovery did not reach the pre-shear value.

The failure to fully recover is probably due to slow, uncontrolled

network reorganization processes, because, independent of the

shear pulses, the modulus always exhibited a slow, nearly linear

drift (Fig. B in Supporting Information S1). To correct for this

‘‘background drift’’, the data were parametrized by a linear

function fl(t)~bzS at late times w13 min, where all curves were

to a good approximation linear in time. The data were then

normalized by this linear asymptote (Fig. C in Supporting Information

S1), G’n(t):G’(t)=fl(t) and then averaged over N~75 samples.

Statistical analysis of the recovery data was performed using a

Monte-Carlo resampling bootstrapping method, as described in

the following. For each time step, the respective values of N~75
normalized experimental curves were pooled. A resampled curve

was created by drawing (with replacement) one value from this

pool for every time step. To a total of 1000 resampled recovery

curves, exponential functions.

g(t; a,tr)~1{e{t=tr :(1{a) ð1Þ

were fitted, with the value a of the normalized stiffness after

stimulus cessation and recovery time tr. We obtained

a~0:93+0:005 and tr~(240+20)s for 10% pulse amplitude

and a~0:85+0:006 and tr~(300+10)s for 30% pulse ampli-

tude. Errors are standard errors of the mean. Note that the

recovery time for the large pulse is larger than the respective time

for the small pulse. This behavior is actually expected from

theoretical considerations (Supporting Information S1).

Model
The inelastic glassy wormlike chain (i GWLC) [25] is an extension

of the (equilibrium) glassy wormlike chain (GWLC) model, which, in

turn, is a phenomenological extension of the wormlike chain

(WLC), the standard coarse-grained mathematical description of an

individual semiflexible polymer in solution [37]. Beyond the

common WLC, the equilibrium GWLC phenomenologically ac-

counts for the caging and trapping of a test polymer by the

surrounding polymer network. The corresponding slowdown of

the long wavelength bending undulations of the polymer backbone

is, in mathematical terms, represented by a stretching of the

ordinary WLC relaxation spectrum. Beyond a characteristic

minimum interaction wavelength L (on the order of the

entanglement length) the relaxation times tn of all WLC modes n

of wavelength ln are modified by a mode-dependent Arrhenius

factor

tn?~ttn~
tn lnvL

tn exp E(ln=L{1)½ � ln§L

�
: ð2Þ

This modification of the relaxation spectrum gives rise to a

dramatic slowdown of the dynamics at long times or small

frequencies [37], producing power-law rheology with a small

apparent power-law exponent 3=E [27], as ubiquitously observed

for cells [7].

A pertinent example for an observable characterizing the

mechanical response under an optional prestressing force f is the

complex microscopic susceptibility to transverse displacements

[37], given by

af (v)~
L3

kBTlpp4

X?
n~1

1

(n4zn2f =fL)(1ziv~ttn)
, ð3Þ

with the polymer length L, persistence length lp, Euler buckling

force fL, and thermal energy kBT . In the limit of infinitely long

polymers, the expression becomes independent of the length and

can be converted to an integral. Note that equation (3) implicitly

depends on L and therefore is better written as af (v):a(v; f ,L).

To evaluate the force response to a given strain stimulus c(t) in

linear response, a superposition principle can be used,

f (t; f ,L)~
1ffiffiffiffiffiffi
2p
p

ð?
{?
F{1 a{1 v,f ,L½ �

� �
(t{t’)c(t’)dt’, ð4Þ

where F{1 denotes the inverse Fourier transform.

In the inelastic GWLC (i GWLC) model, we interpret L as the

average backbone length between adjacent bonds of the test chain

with the background network, and E as the height of the free

energy barrier (in units of thermal energy) that has to be overcome

to break a bond. In contrast to the equilibrium GWLC, L is not

assumed to be a fixed equilibrium quantity L0, but is allowed to

evolve with time (Fig. D in Supporting Information S1). It is related to

the state variable n(t), describing the mean fraction of closed bonds

(or ‘‘bond fraction’’) at a given time t, by L(t)~L0=n(t). The

equilibrium GWLC is recovered as the special case of a fixed

average bond fraction n(t):1.

The bond fraction evolves according to a simple generic first-

order kinetic equation,

_nn(t) ~{k{(f ):n(t)zkz(f ):½1{n(t)�
~{ k{(f )zkz(f )½ �:n(t)zkz(f ),

ð5Þ

where k{(f ) and kz(f ) are force-dependent off- and on rates,

respectively. The transition rates are taken to depend exponen-

tially on the polymer backbone tension f in the standard way [38],
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k{t0~e{EzDxbf , kzt0~e{EzU{Dxuf , ð6Þ

where t0 is a characteristic time scale that depends on the

properties of the binding potential, Dxb and Dxu are the widths of

potential wells corresponding to the bound and unbound state,

respectively, and eU is the relative binding affinity [38,39].

To summarize, the model combines two fundamental nonlinear

mechanical paradigms, namely single-polymer stiffening and a

transient bond softening under load. The resulting nonlinear

response is evaluated numerically using a nonlinear update scheme

implemented in C++. In brief, in each time step t, the bond

fraction n(t) is updated according to equations (5) and (6) and the

force history f (t). Both n(t) and f (t) then determine the GWLC

response, at a given time t, via the GWLC mode spectrum ~tt n [25].
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