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ABSTRACT With growing interest in monitoring mutational processes in normal tissues, tumor heteroge-
neity, and cancer evolution under therapy, the ability to accurately and economically detect ultra-rare
mutations is becoming increasingly important. However, this capability has often been compromised by
significant sequencing, PCR and DNA preparation error rates. Here, we describe FERMI (Fast Extremely
Rare Mutation Identification) - a novel method designed to eliminate the majority of these sequencing and
library-preparation errors in order to significantly improve rare somatic mutation detection. This method
leverages barcoded targeting probes to capture and sequence DNA of interest with single copy resolution.
The variant calls from the barcoded sequencing data are then further filtered in a position-dependent
fashion against an adaptive, context-aware null model in order to distinguish true variants. As a proof of
principle, we employ FERMI to probe bone marrow biopsies from leukemia patients, and show that rare
mutations and clonal evolution can be tracked throughout cancer treatment, including during historically
intractable periods like minimum residual disease. Importantly, FERMI is able to accurately detect nascent
clonal expansions within leukemias in a manner that may facilitate the early detection and characterization
of cancer relapse.
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The simultaneous growth in accuracy and reduction in cost of
DNA sequencing has encouraged its use throughout many diverse
areas of biology. Accompanying this explosion of applications
for sequencing has been a natural demand for increasingly sensi-
tive sequencing methods. While the detection of high frequency
variants like germline SNPs is not particularly challenging by
most sequencing technologies, sequencer and library-preparation
error rates are typically high enough to mask most rare or somatic
variants. What is perhaps most challenging about library prepa-
ration is that the very isolation of DNA exposes it to oxidation that

can change base identities (Shibutani et al. 1991; Cheng et al.
1992), and high-temperature exposure can thermally alter nu-
cleotide identities (Lindahl and Karlstrom 1973; Lindahl and
Nyberg 1974).

Because of these sequencing and library-preparation limita-
tions, quantitative PCR (qPCR) and multiparameter flow cytom-
etry (MFC) have remained common methods of rare variant
detection (Terwijn et al. 2013). More recent technologies such
as high-throughput digital droplet PCR (Sykes et al. 1992;
Vogelstein and Kinzler 1999; Hindson et al. 2011), COLD-PCR
(Li et al. 2008; Milbury et al. 2012), and BEAMing (Dressman
et al. 2003) have shown promise for rare mutation detection,
but are often limited to variant allele frequencies (VAFs) greater
than 1% or are restricted to assaying only a few chosen mutations
at a time.

A number of studies have sought improvements in sequencing
technologyaccuraciesby targetingand labeling small regionsof genomic
DNA such as sMIPs (Hiatt et al. 2013), by paired strand collapsing
(Kennedy et al. 2014) and through other targeting methods (Flaherty
et al. 2012; Kim et al. 2013; Albitar et al. 2017; Onecha et al. 2019;
Mansukhani et al. 2018; Thol et al. 2018). Some groups have also in-
corporated error-correction methods to eliminate sequencing and PCR
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errors, like PELE-Seq (Preston et al. 2016), and error-correcting
enrichment processes (Schmitt et al. 2015). While these targeting
and enrichment methods have certainly improved rare variant detec-
tion, they are still often limited to detecting variants that exist in at least
1% of a sample, or are limited to simultaneous detection of only a
handful of variants.

Here, we describe a novel integrated genomic method that
utilizes single molecule tagging and position specific background
correction to push the limit of detection to variants existing in as
little as 0.01% of a sample. Initial detection improvements come
from the quantitative tracking ability of molecular barcodes
that facilitate the elimination of the vast majority of sequencer
and PCR amplification errors. Combinedwith paired-end sequence
collapsing, consensus reads are produced that contain reduced
numbers of false variants.

In a similar manner to previous methods (Newman et al. 2016;
Young et al. 2016), we then experimentally derive a background of
expected errors for each position within the consensus reads. As
we know that sequence context impacts nucleotide stability
(Benzer 1961; Nachman and Crowell 2000; Lercher et al. 2001;
Hwang and Green 2004; Gaffney and Keightley 2005), we use this
background to correct our consensus reads based on probability
density functions created for each assayed nucleotide position.
We build on previous methods by then extensively characterizing
the background error probabilities that generally occur in our
sequencing library preparations. These characterizations were suf-
ficiently comprehensive when applying different degrees of bot-
tlenecks to cell lines, it appeared that no variants were detected
when none existed within the 1/10,000 detectable range, sup-
porting the possibility that FERMI often eliminates all back-
ground mutations.

One recent application of especially sensitive sequencing tech-
nologies is assaying and understanding clonal evolution within
cancerous tissues (Greaves and Maley 2012). The rarity of somatic
mutations, even within the clonally expanding pool of cells that
exists within a tumor, has limited the observation of changes that
can occur. Such an understanding would be valuable, as cancer
therapies often leave behind a small number of cells that can fre-
quently lead to relapse. In leukemias, the state during which
these small numbers of cells remain after initial treatment is re-
ferred to as minimal residual disease (MRD). During this MRD
stage, residual leukemia cells continue to evolve, and successful
detection of relapsing leukemia at early stages would facilitate
improved prognosis and treatment strategies (Krönke et al. 2011;
Ivey et al. 2016).

As a proof of principle, we directly sample leukocyte genomic
DNA and demonstrate the ability of FERMI to detect oncogenic
changes during the MRD state, and monitor clonal changes with time.
We also show that by concurrently sampling a diverse panel of onco-
genic regions, we can detect the expansion of new oncogenic variants
during MRD. Such observations could be critically important in pre-
dicting relapse in patients.

MATERIALS AND METHODS

Amplicon design
Amplicon probes for targeted annealing regions were created
using the Illumina Custom Amplicon DesignStudio (https://
designstudio.illumina.com/). UMIs were then added to the designed
probe regions and generated by IDT using machine mixing
for the randomized DNA. Probes were PAGE purified by IDT.

All probes are listed in Table S2 along with binding locations and
expected lengths of captured sequence.

Genomic DNA isolation
Human blood samples were purchased from the Bonfils Blood Center
Headquarters ofDenverColorado.Ouruseof thesedeidentified samples
was determined to be “Not Human Subjects” by our Institutional Re-
viewBoard. Biopsies were collected as unfractionatedwhole blood from
apparently healthy donors, though samples were not tested for infec-
tion. Samples were approximately 10 mL in volume, and collected in
BD Vacutainer spray-coated EDTA tubes. Following collection, sam-
ples were stored at 4� until processing, which occurred within 5 hr of
donation. To remove plasma from the blood, samples were put in
50 mL conical tubes (Corning #430828) and centrifuged for 10 min
at 515 rcf. Following centrifugation, plasma was aspirated and 200 mL
of 4� hemolytic buffer (8.3g NH4Cl, 1.0g NaHCO3, 0.04 Na2 in
1L ddH2O) was added to the samples and incubated at 4� for
10 min. Hemolyzed cells were centrifuged at 515 rcf for 10 min, super-
natant was aspirated, and pellet was washed with 200 mL of 4� PBS.
Washed cells were centrifuged for at 515rcf for 10 min, from which
gDNA was extracted using a DNeasy Blood & Tissue Kit (Qiagen
REF 69504).

Amplicon capture
For amplicon capture from gDNA, we modified the Illumina protocol
called “Preparing Libraries for Sequencing on the MiSeq” (Illumina
Part #15039740 Revision D). DNA was quantified with a NanoDrop
2000c (ThermoFisher Catalog #ND-2000C). 500ng of input DNA in
15ml was used for each reaction instead of the recommended quantities.
In place of 5ml of Illumina ‘CAT’ amplicons, 5ml of 4500ng/ml of our
amplicons were used. During the hybridization reaction, after gDNA
and amplicon reactionmixture was prepared, sealed, and centrifuged as
instructed, gDNAwasmelted for 10min at 95� in a heat block (SciGene
Hybex Microsample Incubator Catalog #1057-30-O). Heat block tem-
perature was then set to 60�, allowed to passively cool from 95� and
incubated for 24hr. Following incubation, the heat block was set to 40�
and allowed to passively cool for 1hr. The extension-ligation reaction
was prepared using 90 ml of ELM4 master mix per sample and in-
cubated at 37� for 24hr. PCR amplification was performed at recom-
mended temperatures and times for 29 cycles. Successful amplification
was confirmed immediately following PCR amplification using a
Bioanalyzer (Agilent Genomics 2200 Tapestation Catalog #G2964-
90002, High Sensitivity D1000 ScreenTape Catalog #5067-5584, High
Sensitivity D1000 Reagents Catalog #5067-5585). PCR cleanup was
then performed as described in Illumina’s protocol using 45 ml of
AMPure XP beads. Libraries were then normalized for sequencing
using the Illumina KapaBiosystems qPCR kit (KapaBiosystems Refer-
ence # 07960336001).

Sequencing
Prepared libraries were pooled at a concentration of 5 nM. Libraries
were sequenced on the Illumina HiSeq 4000 at a density of 12 samples
per lane with 5% PhiX DNA included, or on the Illumina NovaSeq
6000, allocating approximately 30 million reads per sample.

Bioinformatics
The analysis pipeline used to process sequencing results can be found
under FERMI here: http://software.laliggett.com/ or here: https://
github.com/liggettla/FERMI. For a detailed understanding of each
function provided by the analysis pipeline, please refer directly to the
software. The overall goal of the software built for this project is to
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analyze amplicon captured DNA that is tagged with equal length UMIs
on the 59 and 39 ends of captures, and has been paired-end sequenced
using dual indexes. Input fastq files are either automatically or manu-
ally combined with their paired-end sequencing partners into a single
fastq file. Paired reads are combined by eliminating any base that does
notmatch between Read1 andRead2, and concatenating this consensus
read with the 59 and 39 UMIs. A barcode is then created for each
consensus read from the 59 and 39 UMIs and the first five bases at
the 59 end of the consensus. All consensus sequences are then binned
together by their unique barcodes. The threshold for barcodemismatch
can be specified when running the software, and for all data shown in
this manuscript one mismatched base was allowed for a sequence to
still count as the same barcode. Bins are then collapsed into a single
consensus read by first removing the 59 and 39 UMIs. Following UMI
removal, consensus sequences are derived by incorporating the most
commonly observed nucleotide at each position, so long as the same
nucleotide is observed in at least a specified percent of supporting reads
(75%of readswas used for results in thismanuscript) and there are least
some minimum number of reads supporting a capture (5 supporting
reads was used for results in this manuscript). Any nucleotide that does
not meet the minimum threshold for read support is not added to the
consensus read, and alignment is attempted with an unknown base at
that position. From this set of consensus reads, experimental quality
measurements are made, such as total captures, total sequencing reads,
average capture coverage, and estimated error rates. Typically we re-
quired 5 total captures of a variant to be observed for the variant to
be counted as real.

Derived consensus reads are then aligned to the specified reference
genome using Burrows-Wheeler (Li and Durbin 2009), and indexed
using SAMtools (Li et al. 2009). For this manuscript consensus reads
were aligned to the human reference genome hg19 (Lander et al. 2001;
Fujita et al. 2010) (though the software should be compatible with other
reference genomes). Sequencing alignments are then used to call var-
iants using the Bayesian haplotype-based variant detector, FreeBayes
(Garrison and Marth 2012). Identified variants are then decomposed
and block decomposed using the variant toolset vt (Tan et al. 2015).
Variants are then filtered to eliminate any that have been identified
outside of probed genomic regions. If necessary, variants can also be
eliminated if below certain coverage or observation thresholds such that
variants must be independently observed multiple times in different
captures to be included.

The final variants called from the consensus sequences were then
compared to experimentally derived confidence intervals for each
probed position. These confidence intervals were created by using
FERMI to sequence control peripheral blood samples from the same
experiment as test samples. Following the logic described in Results, it
was assumed that low frequency variants that are detected across
multiple individuals (including in blood and sperm, where few variants
are expected) were not real signal but rather false positive background.
All of thevariants fromthesecontrol sampleswere thususedtoconstruct
a standard background. This background was calculated for each
position at which a variant was observed within the standard control
samples, and was uniquely calculated for each type of change. Often, in
the construction of the background, the highest frequency alleles were
eliminated in an effort to minimize the effect of true mutations on the
background. A student’s t continuous random variable function was
used to create a probability density function that describes the back-
ground distribution for each substitution type at every probed locus
(Oliphant 2007). By specifying a particular alpha fraction of the distri-
bution, high and low VAF endpoints were derived that were then used
to determine if an experimental signal was significantly above background.

While the number of samples required to make a useful background
will certainly specific to a particular experiment, for the analyses
performed in this manuscript and associated work, 5-10 samples
seemed to provide sufficient data for the construction of a back-
ground. As outlier variants can also be eliminated at each nucleotide
position, it is helpful to note that in some cases, samples can be in-
ternally controlled without requiring separate samples.

Elimination of false positive sequencing and library
creation artifacts
A number of steps have been included within sample preparation and
bioinformatics analysis specifically to reduce false background signal.
Using the dilution series shown in Figures 1C-D, we can show sufficient
sensitivity to identify signal diluted to levels as rare as 1024.While these
dilutions show significantly improved sensitivity over many current
sequencing methods, background error could still exist. The two
largest sources of erroneous mutation when sequencing DNA will
typically be from PCR amplification mutations (caused both by po-
lymerase errors and exogenous insults like oxidative damage), and
sequencing errors.

These are the steps taken to eliminate errors before final background
derivation:

• Elimination of first round PCR amplification errors
• Elimination of subsequent PCR amplification errors
• Elimination of sequencing errors

Elimination of first round PCR amplification errors in
consensus reads
The first round of PCR amplification performed during library-
preparation causes mutations that are challenging to distinguish from
those that occurred endogenously. Since there is little difference between
those mutations that occur during the first round of PCR amplifica-
tion and those that occurred endogenously, we rely on probability to
eliminate these errors. Since we are performing sequencing of individ-
ually captured alleles, we can ask whether requiring that a mutation be
observed in multiple captured alleles before it is called as a true
positive signal alters the frequency of variants identified. We expect
about 400 first round PCR amplification errors, and the probability
that the identical mutation will occur in multiple cells becomes
exponentially unlikely. By requiring a mutation be observed in just
five captures before it is called as real signal, theoretically, none of the
first round PCR amplification errors should make it into the final
consensus reads.

Elimination of subsequent PCR amplification errors
Elimination of PCR amplification errors after the first round of PCR is
done usingUMI collapsing (Figure 1A). Each time a strand is amplified,
the UMI will keep track of its identity. Any mutations that occur after
the first round of PCR will be found on average in 25% of the reads (or
fewer for subsequent rounds). This allows us to collapse each unique
capture and eliminate any rarely observed variants (,75%) associated
with a given UMI. Utilizing the UMI in this way allows us to essentially
eliminate any PCR amplification errors that occurred after the first
round of PCR. The method should also eliminate most errors resulting
from DNA oxidation in vitro.

Elimination of sequencing errors
Sequencing errors are eliminated in two ways. This first method is by
using paired-end sequencing to read each strand of a DNA fragment
(Figure 1A). The sequence of these reads (Read1 and Read2) should
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match if no sequencing errors have been made. For an error to escape
elimination it would need to occur at the same position (changing to
the same new base) within both Read1 and Read2. Therefore,
when the base call differs at a position on Reads 1 and 2, these
changes are eliminated from the final sequence. This collapsing
should eliminate most sequencing errors, although sequencing
errors of the same identity occurring at the same position will
escape. These errors should be removed when collapsing into
single capture bins (Figure 1A). As with the logic when elimi-
nating subsequent PCR amplification errors, most sequences
associated with each UMI pair should be identical. Therefore,
sequencing errors passing through Read1 and Read2 will be very
unlikely to match other sequenced strands from the same cap-
ture event, and are eliminated during consensus sequence
derivation.

Data availability
The raw sequence data produced for this study are available in the
SequenceReadArchive. The data are available as raw fastqfiles which
have been prepared and sequenced as described in this manuscript.
These fastq files can be analyzed using the FERMI software provided
on https://github.com/liggettla/FERMI. The fastq files can be found
in the BioProject repository under BioProject ID PRJNA525088.
This is the direct link to the hosted files: https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA525088. Sequence data are available at BioProject
with the accession number: PRJNA525088. The code used to generate
and analyze the data can be found at https://github.com/liggettla/fermi
The authors affirm that all other data necessary for confirming the
conclusions of the article are present within the article, figures, and tables.

Supplemental material available at FigShare: https://doi.org/10.25387/
g3.9037457.

RESULTS

Method overview
We devised FERMI as a method to overcome current sequencing
challenges facing raremutation detection. FERMI is based on Illumina’s
TrueSeq Custom Amplicon and AmpliSeq Myeloid protocols, which
are designed for mutation detection across selected genomic regions. In
FERMI, sequences found within human genomic DNA (gDNA) are
captured by targeted oligomer probes, which are then sequenced and
analyzed for the presence of any existing mutations. We adapted the
AmpliSeq process to target a much smaller number of regions of the
genome (32 vs. 1500 regions) in order to achieve a greater sequencing
depth per location with a reduced sequencing cost. We designed DNA
probes to our 32 selected regions, each approximately 150bp in length,
that span either AML-associated oncogenic mutations or Tier III (non-
conserved, non-protein coding and non-repetitive sequence) regions of
the human genome. The exonic regions were selected to efficiently
cover loci that are commonly oncogenically mutated by substitutions
in leukemias based on COSMIC classifications. The gDNA used for
capture and sequencing was purified either from blood, cancer cell line
or sperm cells, though most of our work focused on peripheral blood
cells. The method should be adaptable to any species.

Barcode-guided single molecule sequencing
Capture of gDNA, including any existing variants, begins by incubating
double-stranded gDNA togetherwith oligomer probes designed to bind

Figure 1 Method overview. A) Schematic representing
the steps involved in identifying mutations with FERMI. B)
The average number of unique captures varies by probe
location. Error is standard deviation across 20 samples.
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specified regions of the genome (Figure 1A). These probes span regions
of approximately 150bp in length and contain two identifying indexes.
The first index is a 16-bp sequence specific to each sample being pro-
cessed, and the second is a 12-bp unique molecular identifier (UMI) of
randomized DNA that should be unique to each captured strand of
gDNA. Double-stranded gDNA is melted apart to allow these targeting
probes to bind the resulting single-stranded DNA. Probe annealing is
then achieved by slowly cooling the samples to allow for efficient
targeting.

Following hybridization of the probes and gDNA, DNApolymerase
is used to copy the template, and DNA ligase joins the strands together
into a single contiguous amplicon. Using the sample indexes and the
capture-specific UMIs to ensure each capture is tracked, amplicons are
amplified by polymerase chain reaction (PCR) and pooled together for
sequencing. Samples were sequenced using paired-end 150 bp sequenc-
ing, allocating approximately 30 million Illumina HiSeq or NovoSeq
reads per sample. This coverage encompasses on average about
1,000,000 capture reactions per sample, resulting in about 30X sequenc-
ing coverage for each capture (given an average of 30,000 captures
per probed region). Though capture efficiency was not uniform for
the different probes, which exhibit a fivefold range in the numbers of
successful unique captures, we show sufficient coverage at each probed
location to capture mutations at least as rare as 0.01% (Figure 1B).

Assessment of background error profile
Following sequencing, reads are distributed into sample-specific bins by
their sample index.Within these sample-specific bins, paired-end reads
are combined into single consensus reads by marking all mismatched
base calls as an unknown identity. This approach yielded better results
than elimination of pairs with some threshold of mismatches, as it
retained substantially more sequencing information. These paired-end
consensus reads are then sorted into capture-specific bins by their UMI
sequences. These capture-specific bins are then collapsed into final
consensus reads. In order to qualify for this final UMI-based consensus
derivation, a UMI-specified capture is required to have at least 5 sup-
porting sequencing reads, and the base at each position is only called if
75%of supportingreadsagreewith its identity.Thefinal consensus reads
are thencomparedagainst anexperimentally determinedbackground to
distinguish true-positive variants from false positive signal, as described
below.

Though UMI barcode collapsing of sequencing probes is an impor-
tant technique by which sequencing sensitivity and accuracy can be
increased (Hiatt et al. 2013), we find that UMI-collapsed data still
retains a significant amount of false-positive variant signal. Using leu-
kocyte gDNA purified from putatively healthy blood donors, we find
approximately 5000 unique variants within our UMI collapsed consen-
sus sequences in each individual. To estimate how much of this signal
might be false-positive background, consensus sequences were compu-
tationally binned by the presence or absence of heterozygous SNPs
found within our probed individuals. This sorting created bins of se-
quencing that should have originated from only a single allele. Theo-
retically, if rare variants were indicative of mutations that existed
in-vivo, by their very nature of being rare, the mutations should exhibit
an associative bias with only one of the two alleles. When we call
variants within these two allele-specific bins however, we find that
the variants associate quite uniformly across both alleles, suggesting
that much of the variant signal found within our final consensus reads
is erroneous (Figure 2A).

Further suggestive of a significant false-positive presence within
consensus reads, we show that when the rare variants found within
the blood of any two individuals are compared, the same variants are

found in each sample at nearly the same allele frequencies (Figure 2B).
This similarity is not limited to inter-blood sample comparisons, as
sperm gDNA shows similar patterns (Supplemental Figure 1). Finally,
being similar to that in blood, the somatic mutation load we observe in
sperm cells is well above previous estimates of less than 100 mutations
per genome (Lynch 2016). Furthermore, when blood from healthy
individuals was compared, mutations were no more similar in re-
peats from the same individual than between individuals (Supplemen-
tal Figure 4). Combined, these observations suggest that a false-positive
background exists relatively uniformly across samples and sample
types, and invites the possibility for a correction algorithm to distin-
guish real from false signal in order to significantly improve sequencing
detection limits.

While over 90% of detected background variants were substitutions,
occasionally insertions anddeletions (indels)were observed.Asmanyof
these indels were observed inmultiple captures for the same regions, we
thought they might represent real mutations. However, as shown in
Figure 2C, individual samples contain roughly 500 insertions or dele-
tions, and about 250 of these are conserved across all samples. Further-
more, when a group of 20 individuals was pooled, only one insertion
was not found at least twice within the pool. As these indels are often
found in multiple captures, the repetitive occurrence between individ-
ual samples suggests that some mutagenic mechanism during sample
processing is responsible for indel occurrence. Because of this recurrent
observation, without modification to the protocol it seems detecting
indels would be quite challenging.

Within our final consensus reads, single-nucleotide substitutions
account for the majority of falsely identified variants, and within this
group of variants, there is significant identity bias. We find that C. T
substitutions account for nearly 50% of the variants present in our final
consensus reads, while other changes like C . G and T . G are far
more rare indicative of differences in nucleotide stability or mutability
(Figure 2D). Breaking down these substitutions into their trinucleotide
contexts by including the bases located 59 and 39 of each change, we
find that sequence context significantly impacts the probability of a
false variant being identified (Figure 2E). Among the trinucleotide
contexts, false variants within CpG sites are overrepresented within
our final consensus reads.

Importantly, the patterns we identify in the trinucleotide context-
independent and context-dependent substitutions mirror those identi-
fied in other studies of both normal tissues and cancers (Alexandrov
et al. 2013; Martincorena et al. 2015; Blokzijl et al. 2016). The similarity
of these patterns provides a cautionary note for mutation detection,
as obedience to known patterns does not necessarily provide confi-
dence in the accuracy of calls. It is possible that in-vivo mechanisms
of mutation generation are similar to those experienced by template
DNA ex-vivo, and therefore results in similar patterns within the
background.

Nucleotide context insufficiently explains
background signal
In search of common patterns within our false positive background, we
looked for surrounding sequence contexts that play a role in the
prevalence of a false variant. While trinucleotide context does impact
the probability that a substitution is found within our final consensus
read pool, it often incompletely predicts the resulting variant allele
frequency (VAF). We observe that many of the background substitu-
tions found within our final consensus reads such as C. A within the
contexts of CCA and ACA, exist within two relatively distinct VAF
groups (Figure 3A). This separation indicates that within a given
trinucleotide context, a substitution such as C . A will occur with
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either a high or a low frequency. Alternatively, some substitutions such
as C . A within the CCG context largely occur with a low frequency,
while other changes such as T. G in the context of CTA almost never
exist at a high frequency. Both results suggest that trinucleotide context
is not sufficient to predict background substitution rates at a given locus
(Supplemental Table 1), consistent with recent reports that broader
(epi)genomic contexts play key roles in replication errors, DNA dam-
age, and repair (Coleman and De 2018). We do find, that regardless of
the substitution identity or the trinucleotide context, a substitution
defined only by trinucleotide context never exclusively occurs at high
frequency.

If the background variants are separated by their presence in
either the upper or the lower VAF population, we find that for some
changes such as C . A, both the 59 and the 39 nucleotides of the
trinucleotide context significantly impact the VAF of the change
(Figure 3B). This impact of the trinucleotide context is however
not present for all changes, such as C . T substitutions, which
show minimal bias of any of the possible trinucleotide contexts.
We further searched for patterns within the 10bp upstream and
downstream of a given change and find that only the triplet context

showed any meaningful impact on mutation rate (Supplemental
Figure 2).

Algorithmic background subtraction eliminates most
false positive signal
Although the trinucleotide context alone does not provide a sufficient
amount of contextual information to determine the frequency with
which a background variant is observed, nucleotide position strongly
impacts the VAF of a substitution within the final consensus sequences.
Throughout the probed regions, each nucleotide locus shows a unique
background signal pattern that is relatively conserved across individuals
(Figure 4A; similar conservation of background signal is observed
across all other segments, data not shown). Some of the mutational
patterns we observe within our background signal are similar to those
found in The Cancer Genome Atlas (TCGA) (Supplemental Figure 3).
Notably, enrichment for previously defined signatures are evident in
background variants, representing artifacts of damage to isolated
gDNA.

Within our observed backgrounds, some nucleotide loci exhibit a
strong bias toward a particular base change, showing only one type of

Figure 2 The background of false positive variants is similar across individuals. A) Using heterozygous SNPs to identify different alleles
in human leukocyte gDNA, rare variants within consensus reads equally associate with each of the alleles suggesting they are occurring
randomly ex-vivo. Axes are VAFs of variants found on corresponding alleles. B) Using FERMI to measure somatic mutation loads within
two different samples shows that background signal is similar within leukocyte gDNA. Axes are VAFs of variants found within each
individual. Points represent specific substitutions at each locus. C) The insertions/deletions found within three different individuals were
identified. Indel counts are shown on the y-axis. Black dots represent sample groups, where the indel counts are those found within all
samples indicated (either each sample alone, or commonly found across the indicated samples; for example, the next to the last vertical
bar reflects indels found in both samples 3 and 2). Horizontal bars quantify the total number of indels found in a sample. D) Relative
prevalence of observed substitutions within background signal found in leukocyte gDNA consensus reads. Complementary changes
such as C . T and G . A are combined. Error is standard deviation across 20 individuals. E) Relative prevalence of observed substi-
tutions classified by the neighboring upstream and downstream nucleotides (trinucleotide context). Error is standard deviation across
20 individuals.
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substitution across all tested individuals. This effect is most commonly
observed at nucleotides that exhibit a C . T substitution, where it is
often the only observed change at that locus. Other nucleotide positions
exhibit multiple different background substitutions, some changing to
all three possible other bases. We noticed that while the background
signal was surprisingly conserved across samples, that variability did
exist (Figure 4B). It is often the case that a particular nucleotide locus
will exhibit the same types of variants across different samples, but the
allele frequencies vary.

Because each nucleotide locus tends to show a similar background
across all tested individuals (Figure 2B), it was possible to derive a
governing probability distribution for each observed substitution at
every probed position. To create this distribution, a probability density
function was created using a student’s t continuous random variable
function. This probability density function was then used to calculate
the high and low VAF endpoints of a confidence range by using a
specified alpha fraction of the distribution.

We compared a number of different types of backgrounds to un-
derstand which best allowed us to eliminate false variants (Figure 4C).
Initially a generic background was created by deriving a probability
density function for each type of nucleotide change based on its neigh-
bors (the three nucleotide patterns shown in Figure 2D), independent
of genomic position. This approach was modestly effective at eliminat-
ing background variants from samples, as it reduced the total variant
calls by about 80% (Figure 4C, “Generic”). By incorporating positional
information and deriving a density function for each observed sub-
stitution at all nucleotide positions, about 99.9% of variant calls were
eliminated, providing very clean sequencing data. Importantly, exper-
imental variability seems to play a significant role in the accuracy of the
background. While the same sample sequenced across multiple exper-
iments generally shows a very similar background, experimental vari-
ability does appear (Supplemental Figure 4). While a background
derived from samples taken from a different experiment (“External”)
will result in about 10 variants being called as real in a given peripheral

blood sample, a background created from samples run in the same
experiment (“Internal”) will result in about 1-3 variants being called
as real (Figure 4C). As expected variants are always retained, but
the total number of significant variants is minimized when using an
internal background created from samples of the same experiment,
internal backgrounds are used for all subsequent analyses.

To understand what alpha fraction of the probability density func-
tions should be called as bona fidemutations, we used 10 healthy blood
samples to derive a confidence interval range for each observed sub-
stitution across all probed nucleotide positions. These confidence in-
tervals were then compiled into a comprehensive false-positive
background against which experimental samples were then compared.

For 5 healthy blood samples, variants were called from their derived
consensus sequences, and then compared against the comprehensive
background.Within these 5 samples, variants were called as confidently
above background if their VAFs were high enough to fall within the
specific alpha of their governing probability density function. As
expected, as the confidence interval alpha fraction was increased from
0.9 (One 9) to 0.999999999999999 (Fifteen 9’s) the number of variants
called as confidently above background exponentially decreases (Figure
4D). This method eliminates nearly all background signal by confi-
dence interval alpha fractions in the range of ten 9’s. Furthermore, at
higher confidence intervals even germline variants are often eliminated
for being too close to background, indicating excessive stringency.
Peripheral samples taken from leukemic patients at different points
during therapy were also tested, and show similar exponential decreases
in confident variant calls, though the overall numbers of variants are
higher than in healthy blood (Figure 4E).

Assessing FERMI sensitivity and specificity
To help understand the specificity of FERMI in detecting only true
mutations,Molm13acutemyeloid leukemia cellswere expanded in vitro
after passing them through bottlenecks of 1, 100, or 1 million cells. We
show that many mutations can be observed within the cell cultures

Figure 3 Trinucleotide context is insufficient to predict VAF. A) Mean VAF of background variants calculated from two different groups of
10 individuals probed with FERMI. Variants are either classified by substitution identity alone or within a particular trinucleotide context. B)
Relative substitution rates for different substitutions classified by triplet context across all probed regions. Error is standard deviation across
20 individuals.
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started from 100 cells, given that the 100-cell bottleneck should create
clones at approximately 1% frequency each with occasional variants in
our probed region (Figure 5A). Heterozygousmutations are expected at
allele frequencies of 0.005 at 2N loci, and at lower VAFs if a variant falls

in a region with greater ploidy. Indeed, most variants fall within this
range. As expected, very few mutations are detected in gDNA isolated
from the cell cultures started from 1 million cells, as most mutations
will exist at rare allele frequencies (below our limit of detection).

Figure 4 Background confidence intervals eliminate most variants. A) Observed substitution VAFs for a Tier III probe, illustrating the varying
mutation presence at each nucleotide locus. Error is standard deviation across 20 individuals. B) Subsets of the IDH2 probe region from two
different groups of 10 individuals illustrates the degree of similarity and differences that are commonly observed between samples. Error is
standard deviation across the individuals. C) Total number of variants deemed significantly above background when only triplet context was used
to generate expected background substitution rates (Generic), or when position-specific substitution rates generated from a different experiment
(External) or the same experiment (Internal) are used. D) The total numbers of variants called as significantly above background for 5 individuals
(labeled as sample number) at confidence intervals from 0.9 - 0.999999999999999. where the number of trailing 9’s is indicated by x-axis value. E)
The total numbers of variants called as significantly above background for two leukemic patients using sample 4 from MRD1 and sample 3 from
MRD2 (See Figure 6), which are both points that had followed treatment, and at which leukemic burden was low.

Figure 5 Assessing FERMI specificity and accuracy. A)
MOLM-13 cells grown from 1, 100, or 1 million initial
cells were expanded to a pool of 1 million cells, and
then probed with FERMI. Samples illustrate how clon-
ality impacts mutation detection by FERMI by altering
the VAFs of somatic variants. B) Observed frequen-
cies of a serially diluted blood gDNA sample with a
heterozygous germline SNP show successful detection
at allele frequencies from 1/2 to 1/10,000 (legend
indicates the dilutions not the allele frequencies, where
a 1/5,000 dilution of a heterozygous mutation should
result in a 1/10,000 allele frequency). Background
signal mean and standard deviation shown in red and
purple respectively, calculated from 12 samples. C)
Limit of detection improvements observed when mul-
tiple mutations in linkage disequilibrium are leveraged
to eliminate erroneous reads. Background signal calcu-
lated from 12 samples.
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Similarly, we observed no mutations within the cultures initiated with
single cells, consistent with the low odds that amutationwould occur in
our probed region during the �14 cell divisions required to generate
the 10,000 cell limit of detection. The absence of mutations detected in
the cultures initiated with 1 cell each, but the presence of mutations
within the cultures initiated with 100 cells, indicates that we have
sufficiently limited false positive variants, but retained true mutations.

Toassess the sensitivity and limit of detectionof FERMI, gDNAfrom
human blood containing knownheterozygous SNPswas serially diluted
intobloodgDNAlacking these SNPs.Wefind that thedetection limitsof
tracking single dilutions to be variable as the level of backgroundnoise is
position specific, but diluted germline variants were detected at fre-
quencies at least as rare as 1:10,000 at the expectedVAFs (Figure 5B). In
other positions, where the background can be much higher, a dilution
series would not be detected as low as 1:10,000.

One of the samples tested in the dilution series contained three
heterozygous SNPs within the same probe region, on the same allele,
allowing for an extra level of error correction.Within this sample, it was
assumed that only those consensus reads with all three SNPs or those
without any of the SNPs were correct, and all other reads were
eliminated. This analysis significantly reduced the background error
rates at the SNP positions, and allowed detection of dilutedmutations at
least as low as 1:10,000 (Figure 5C).

Oncogenic driver detection in leukemias
To test the ability of FERMI to detect and followmutations throughout
leukemia treatments, patient biopsieswere collectedat disease inception,
throughout treatment, and during relapsewhenpossible. Using FERMI,
we are able to detect thesemutations when they are present and observe
clonal evolution as it occurs. In some cases, we detect the principle

oncogenic driver and watch it fluctuate in frequency in response to
treatment without ever disappearing below background (Figure 6A). In
another case, a JAK2 mutation is initially observed at high frequency,
but treatment eliminates the clone. As relapse occurs, blast counts
increase (Figure 6, D–F), but the initial JAK2 clone does not increase
in frequency, as the genetics of the leukemia has clearly changed with
treatment (Figure 6B). In a third sample, we observe a patient relapse
with a previously undetected JAK2 mutation (Figure 6C). While this
time point was taken at relapse, we detect it at a frequency significantly
below that of most sequencingmethod sensitivities, requiring only 5 ml
of peripheral blood. The early detection of such a clone could allow
treatment with a kinase inhibitor before overt disease relapse.

DISCUSSION
In this study,wedesigneda sensitive sequencingmethod that enables the
accurate detection of rare variants and clonal evolution within primary
samples. In leveraging the quantitative power of capture-unique UMI
barcodes, we achieve single-allele sequencing resolution from gDNA,
and by then combining these sequencing results with a comprehensive
analysis of expectedbackground signal,we achieve exceptional sequenc-
ing fidelity.

While capture-specific barcoding has been effectively used in the
past, an inability to achieve sufficient capture numbers and high
background have often held the theoretical limit of detection to variants
existing at a frequency of.1/1,000. By probing roughly 30,000 different
unique captures for each region of interest per sample, we pushed our
theoretical limit of detection to at least 1/10,000. This limit is governed
by the magnitude of false positive background observed at a particular
location, as variants are difficult to identify when they exist at allele
frequencies below the background signal.

Figure 6 Oncogenic mutation detection during leukemia treatments. A) Oncogenic driver detection using FERMI on bone marrow biopsies taken
at 6 different timepoints starting with clinical presentation of the patient and ending with relapse (x-axis is in chronological order of leukemia
samplings). Background signal mean and standard deviation shown in red and purple respectively, and is derived from 20 samples. B) Oncogenic
driver detection throughout leukemia treatment in a case where relapse was not driven by a mutation within our panel. Background derived from
20 samples. 27. C) Example of a leukemic relapse in which the detected driver was not unknown prior to blood sampling. Background derived
from 8 samples. D,E,F) Corresponding blast counts as percentage of bone marrow biopsies.
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Paired-end collapsing has been successfully used to reduce the
number of sequencing errors within sequencing data. Unfortunately,
errors also occur during library-preparation, and while the molecular
barcodes assist with the elimination of these library-preparation errors,
mistakes made before or during the first round of PCR will typically
appear indistinguishable from a heterozygous variant, such that neither
paired-end collapsing nor molecular barcode collapsing will be capable
of eliminating them. This understanding prompted the development of
an expected false positive background that could be used to filter out
common mistakes that occur during library preparation.

Ourexperimentallyderivedbackgroundsprovedvitally important in
determining whether or not a variant found in a sample was sufficiently
elevated in allele frequency that it could be classified as truly existing in
the in-vivo gDNA from which it originated. Similar to background
subtraction employed by other groups (Newman et al. 2016; Chaudhuri
et al. 2017), our generalized background allowed us to not only detect
expected mutations, but also discover new mutations within samples.

It is interesting to note that within our correction background, we
observe similar mutation patterns to those observed for other studies,
and even similar mutational signatures (Alexandrov et al. 2013; Behjati
et al. 2014). This reproducibility may indicate a surprising degree of
similarity between the intrinsic mutagenic processes in-vivo and error-
causing processes involved in sample preparation. It is possible that this
similarity is the result of the conserved behavior of error-inducing
machinery like DNA polymerase and DNA ligase both in-vivo and
in-vitro, or even similarmutagenic exposures such as oxidative damage.
These observed similarities suggest caution against using mutation
signatures as validation of the accuracy of sequencing data when
attempting to identify rare variants.

The early detection of clonal evolution within cancer samples has
held the promise of more comprehensive diagnoses and improved
treatment strategies for patients. While deep sequencing has been
applied to patient leukemias in the past, mutation discovery accuracies
have typically limited these approaches tomoreof a validation role (Thol
et al. 2018). We obtained a number of leukemic patient biopsies, taken
at initial clinical presentation, and throughout treatment, and used
FERMI to search for somatic mutations. We find that while the de-
tection limit of FERMI is quite low, the greatest improvements are
made through its accurate mutation detection ability. Because we elim-
inate nearly all background variants, we can accurately detect unex-
pected relapse mutations and drivers of clonal expansions.

In requiring only around 5ml of blood, FERMI could be easily used
in a clinical setting to quickly, cheaply and easily identify important
driver mutations and clonal evolution within patient’s cancers. If re-
lapsemutationswere caught by FERMIwhen they are still rare, targeted
therapies could be used to prevent them from clonally expanding to
fixation and driving leukemic relapse. Additional applications of
FERMI could include analyses of mutational patterns in normal epi-
thelial tissues, premalignancies and carcinomas obtained through direct
biopsies or via detection in blood.
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