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Abstract
Purpose: The detection of abdominal free fluid or hemoperitoneum can provide
critical information for clinical diagnosis and treatment, particularly in emer-
gencies. This study investigates the use of deep learning (DL) for identifying
peritoneal free fluid in ultrasonography (US) images of the abdominal cav-
ity, which can help inexperienced physicians or non-professional people in
diagnosis. It focuses specifically on first-response scenarios involving focused
assessment with sonography for trauma (FAST) technique.
Methods: A total of 2985 US images were collected from ascites patients
treated from 1 January 2016 to 31 December 2017 at the Shenzhen Second
People’s Hospital.The data were categorized as Ascites-1,Ascites-2,or Ascites-
3, based on the surrounding anatomy. A uniform standard for regions of interest
(ROIs) and the lack of obstruction from acoustic shadow was used to clas-
sify positive samples. These images were then divided into training (90%) and
test (10%) datasets to evaluate the performance of a U-net model, utilizing an
encoder–decoder architecture and contracting and expansive paths, developed
as part of the study.
Results: Test results produced sensitivity and specificity values of 94.38% and
68.13%, respectively, in the diagnosis of Ascites-1 US images, with an average
Dice coefficient of 0.65 (standard deviation [SD] = 0.21). Similarly, the sensi-
tivity and specificity for Ascites-2 were 97.12% and 86.33%, respectively, with
an average Dice coefficient of 0.79 (SD = 0.14). The accuracy and area under
the curve (AUC) were 81.25% and 0.76 for Ascites-1 and 91.73% and 0.91 for
Ascites-2.
Conclusion: The results produced by the U-net demonstrate the viability of DL
for automated ascites diagnosis. This suggests the proposed technique could
be highly valuable for improving FAST-based preliminary diagnoses,particularly
in emergency scenarios.
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1 INTRODUCTION

Abdominal trauma is a common injury1–10 poten-
tially leading to active bleeding, caused by liver or
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spleen damage, which is the leading cause of death
after trauma.11 Patients suffering from intra-abdominal
injuries can be divided into hemodynamically stable
and unstable categories.10 Those with obvious signs of
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hemodynamic instability require active intervention and
often a laparotomy. In contrast, a variety of alternative
examination methods are available for hemodynami-
cally stable individuals.12 The current clinical consensus
is that hemodynamic stability is the only determining fac-
tor for non-surgical treatment. However, approximately
10% of such patients undergo surgery during treatment,
often out of necessity.13

As such, the ability to produce an accurate diagnosis
quickly, in order to make accurate decisions concerning
the need for surgery,would be of significant clinical ben-
efit.For example, some blunt abdominal trauma patients
require emergency surgical consultation and a laparo-
tomy through physical examination, including cases of
peritonitis or open pelvic fractures. However, abdominal
injuries (liver or spleen rupture, gastrointestinal perfora-
tions, etc.) are often difficult to diagnose with a physical
examination and clinical signs typically do not provide
sufficient information concerning the need for an oper-
ation. In addition, it is possible for patients exhibiting
normal physical examinations and vital signs to be
suffering from abdominal injuries.12,14–17 As a result,
the assessment of abdominal trauma, particularly blunt
abdominal trauma, remains challenging.

Early image-based examinations are critical for
trauma identification. For instance, mortality increases
by approximately 1% for every 3 min of treatment
delay for patients who require a laparotomy. Focused
assessment with sonography for trauma (FAST) is
a non-invasive examination technique that has been
widely used in the detection of abdominal trauma.18

Specific areas in the abdomen are often examined for
the presence of abdominal free fluid, a strong indication
of severe intra-abdominal injuries that may require an
emergency laparotomy.16 Several studies have shown
that FAST can guide clinical decision-making and deter-
mine the need for angiography or surgery,particularly for
children,pregnant women,and patients exhibiting hemo-
dynamic instabilities.3,10,17,19–25 FAST can be performed
at the bedside in 3-4 min, repeatedly if need be, and
avoids the risks associated with transporting patients
and radiation.3,14,26 FAST identifies the presence of free
fluid in the abdominal cavity, which is typically thought
to be secondary to serious abdominal trauma.27 In the
supine position, free fluid typically accumulates in spe-
cific areas like the hepatorenal fossa. Peritoneal free
fluid detected by FAST may also provide information for
clinical diagnosis and treatment in patients with stable
conditions, such as the need for blood products.16,28–31

As such, the early detection of abdominal free fluid is
critical for the treatment of trauma patients in a variety
of situations.

The use of artificial intelligence (AI) for medical
applications has been expanding across multiple fields
in recent years and deep learning (DL), specifically,
has become one of the most popular computer-aided
diagnosis (CAD) techniques for ultrasonography (US)

images.32–38 DL has previously been applied to the
CAD of ascites.21 It is a data-driven methodology that
can be used to extract and learn nonlinear features
from data, without requiring domain expertise.39 This is
particularly beneficial for first-response and emergency
situations, where access to specialists is limited. The U-
net is a DL model with an encoder–decoder architecture
that was first proposed in 2015.40–42 U-nets have pre-
viously been applied to biomedical image processing
problems such as liver and tumor segmentation in com-
puted tomography (CT) scans, mass and calcification
detection in digital mammograms, and the segmenta-
tion of skin lesions.40,42–45 These models are composed
of multiple layers and thus learn different hierarchi-
cal features in each iteration.46 Scholars have recently
improved on the basic U-net structure, proposing more
powerful frameworks such as UNet++, UNET 3+, and
H-DenseUNet.41,43,47

It is not difficult for a physician with experience
in ultrasound to identify peritoneal free fluid in US
images. However, the identification of abdominal free
fluid can still be time consuming for novice physicians,
clinicians without ultrasonic imaging expertise, or non-
professional people.Thus,the proposed technique could
be used to rapidly identify and locate peritoneal free
fluid, thereby reducing examination times and leading
to faster intervention. In addition, portable ultrasound is
becoming more widely available and AI could enable
those without a diagnostic background, such as emer-
gency medical technicians, to use ultrasound in making
decisions. A system of this type could also help novice
physicians to learn and progress. As such, the primary
objective of this study is to determine the viability of
deep learning algorithms for timely CAD of abdominal
free fluid in US images collected using FAST.

2 MATERIALS AND METHODS

A total of 2985 US images were collected from 845
ascites patients (45.43 ± 20.68 years old) from 1
January 2016 to 31 December 2017 as part of the
ultrasonic picture archiving and communication systems
(PACS) of the Shenzhen Second People’s Hospital.The
intended application environment for our study is pri-
marily emergency and teaching situations. As such, we
do not assume uniform ultrasonic equipment, interfac-
ing software,scanning parameters,and so forth. In other
words, the images we collected come from multiven-
dor equipment, different doctors, and different scanning
parameters.Ascites image classification was conducted
using a predefined standard that can be described as
follows. (1) The images must clearly exhibit abdomi-
nal free fluid (the affected region must be visible in
the images). (2) Images containing the liver or spleen
are classified as Ascites-1. Images in which the liver,
spleen, uterus, or bladder cannot be seen are classified
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F IGURE 1 The U-net architecture with example for 32 × 32 pixels. Reprinted with permission from Springer Nature Customer Service
Center GmbH42

as Ascites-2. Images containing the uterus or bladder
are classified as Ascites-3 (not included as part of
the study). Images were anonymized and all personal
information from patients was removed during process-
ing. As a result, the need for informed consent was
waived.

A U-net model exhibiting contracting and expansive
paths, often the basis of biomedical image segmenta-
tion networks, was developed as part of the study. The
contracting path involved a repeated application of two
3 × 3 convolutions,each followed by a rectified linear unit
(ReLU). The contracting path also included one max-
pooling layer utilizing a 2 × 2 kernel. The expansive
path consisted of a repeated concatenation of features
extracted from corresponding layers in the contracting
path, two convolution layers, and one upsampling layer
(see Figure 1). The 2 × 2 convolution layer kernel was
the same as that of the contracting path and upsampling
layer. The U-net included 23 total convolutional layers,
the last of which exhibited a 1× 1 convolution kernel,and
was trained over 200 epochs with a batch size of 16.40,42

A binary cross-entropy loss function was applied with a
learning rate of 0.0001, an Adam optimizer, and a He-
normal weight initializer function.40,48,49 All experiments
were performed on an Intel Core i5 (12G) computer with
a single GeForce GTX 1080 Ti GPU. Python (version
3.6) running on a Windows 10 operating system was
used to process the images.

Supervised learning was implemented to simplify the
training and test process.50,51 The images need to be
annotated (pre-processed). Areas exhibiting clear free
fluid in positive images were manually delineated and
denoted as regions of interest (ROIs), excluding those
that could not be identified due to the presence of
acoustic shadows (see Figure 2). The detection of ROIs
and the annotation process are done by an experienced
physician.

The demand for large quantities of annotated data is
an obstacle to the development of robust AI systems.52

Data augmentation is a better solution. Data augmen-
tation can be used to reduce overfitting and improve
performance. In this process, new data (images) are
produced by manipulating the original data with strate-
gies such as flipping, rotation, translation, and noise
injection.42,52–55 In our study, we use the strategy
of horizontally flipping the images. Horizontally flip-
ping retained the boundaries, echo details, and other
important structural features, since the fluid always pro-
duces posterior acoustic enhancement effects in US
images (see Figure 3). GNU Image Manipulation Pro-
gram (GIMP, version 2.10.22) and Adobe Photoshop
CS6 software were used to process the annotated
results.The number of images reached 5970 by the data
augmentation step.

After data augmentation,positive and negative ascites
images were randomly assigned to training and test sets.
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F IGURE 2 (a) A sample image collected from picture archiving and communication systems (PACS). (b) Area-2 denotes regions of interest
(ROIs) while Area-1 indicates an obstruction from acoustic shadows. (c) The image after annotation. Pictures (a) and (c) were input to U-net

F IGURE 3 (a) An image prior to horizontal mirroring. (b) The image after horizontal mirroring (data augmentation)

The proportion of the training set and the test set was
about 90/10.External validation,with data not involved in
model development (here it refers to the previously men-
tioned test set), was used to assess U-net performance
and reduce overestimation of diagnostic accuracy.56

Receiver operating characteristic (ROC) curve, sensi-
tivity, specificity, accuracy, area under the curve (AUC),
and average Dice coefficient were included as evalua-
tion metrics.The Dice coefficient is a measure of contour
consistency for segmented lesions occupying the same
position and can be calculated as:

Dice =
2|X∩Y |

|X |+|Y |
# (1)

where |X| and |Y| indicate the number of voxels in
segmentations X and Y,and X ∩ Y defines the set of vox-
els that overlap between segmentations X and Y.57,58

The ascites images after annotation are regarded as a
reference and compared with the results of U-net.

3 PROCESSES AND RESULTS

In the first test, 900 US images exhibiting peritoneal free
fluid (including Ascites-1,Ascites-2,and Ascites-3) were
selected to form the training set, while 182 images com-
prised the test set. The program achieved an average
Dice coefficient of 0.61 (standard deviation [SD]= 0.26).
While this value is relatively low, the location and seg-
mentation of ROIs were secondary to diagnosing the
presence of ascites, which was the primary goal of the
study. Testing was repeated after grouping to compen-
sate for significant differences in US images exhibiting
peritoneal effusion in different areas. Model training
was conducted using 627 Ascites-1, 640 Ascites-2, and
422 Ascites-3 images. Testing involved 71 Ascites-1, 72
Ascites-2, and 47 Ascites-3 images. Test results pro-
duced average Dice coefficients of 0.51 (SD = 0.26),
0.76 (SD = 0.17), and 0.60 (SD = 0.25) for Ascites-1,
Ascites-2, and Ascites-3, respectively. Low correctness
was observed in the segmentation of Ascites-1 and
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TABLE 1 Numbers for training and test images used in the final training and test

Ascites-1 Ascites-2
Training set Test set Training set Test set Total

Positive 1436 160 1250 139 2985

Negative 1436 160 1250 139 2985

All 2872 320 2500 278 5970

TABLE 2 Results of the final test

Evaluation metrics

Sensitivity
(%)

Specificity
(%)

Average Dice
coefficient

Minimum
Dice
coefficient

Maximum
Dice
coefficient

Accuracy
(%) AUC

Ascites-1 94.38 68.13 0.65 (SD = 0.21) <0.01 0.93 81.25 0.76

Ascites-2 97.12 86.33 0.79 (SD = 0.14) 0.35 0.98 91.73 0.91

AUC, area under the curve; SD, standard deviation.
< 0.01 means that U-net identifies a wrong region.

Ascites-3, which suggests the U-net is ideally suited to
Ascites-2.

Error was reduced by uniformly investigating the ROIs
of all positive images, re-annotating according to a pre-
defined standard. Data augmentation was done at this
time. The U-net was then further trained using 2872
Ascites-1 images (1436 positive and 1436 negative) and
2500 Ascites-2 images (1250 positive and 1250 neg-
ative). The corresponding test set was composed of
320 Ascites-1 images (160 positive and 160 negative)
and 278 Ascites-2 images (139 positive and 139 nega-
tive). Diagnostic sensitivity and specificity for Ascites-1
were 94.38% and 68.13%, respectively, with an aver-
age Dice coefficient of 0.65 (SD = 0.21). The sensitivity
and specificity for Ascites-2 were 97.12% and 86.33%,
respectively,with an average Dice coefficient of 0.79 (SD
= 0.14). The accuracy was 81.25% for Ascites-1 and
91.73% for Ascites-2 (see Tables 1 and 2).The AUC was
0.76 for Ascites-1 and 0.91 for Ascites-2 (see Figure 4).

4 DISCUSSION

Test results showed the U-net offers high sensitivity but
low specificity in the diagnosis of Ascites-1 US images,
with moderate accuracy in the contouring of ascites
ROIs. Similarly, the U-net exhibited both high sensitivity
and high specificity in the diagnosis of Ascites-2, with
high accuracy for ascites ROIs division. After reading
the output data, we found that image recognition was
more accurate for large ascites areas (with large ROIs
areas),while the segmentation of lesion areas was con-
sistent.Conversely, image recognition was less accurate
for small ascites areas (with small ROIs areas) and more
prone to error identification. Ascites areas were rela-
tively small in the Ascites-1 images and relatively large in
the Ascites-2 images, which may explain why the U-net

F IGURE 4 A receiver operating characteristic (ROC) curve for
Ascites-1 and Ascites-2

performed better for Ascites-2 than Ascites-1. In addi-
tion, the model parameters selected may not be the best.
Although some results predicted by the model are true
positive or false positive, the predicted region is wrong.
Further study is needed to assess the ability of a U-net
to diagnose and segment small amounts of intraperi-
toneal fluid. More powerful frameworks like U-net 3+
may be suitable for Ascites-1 or Ascites-3, but this is yet
to be investigated.

This study did include some other limitations too, as
it utilized specific US images from the hospital and is
not necessarily robust to all different equipment ver-
sions or manufacturers. Participants were also primarily
from the surrounding area and thus represent a lim-
ited population sample. Examination parameters were
not controlled and varied slightly between individual
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doctors and treatment environments. In addition, the per-
formance of an AI model is highly dependent on the
quantity and quality of training data. Recent develop-
ments in US equipment have led to US images exhibiting
higher resolution and lower noise.Since the U-net devel-
oped in this study was trained with existing US images,
its diagnostic capabilities given higher quality data need
to be verified.52 Furthermore, our primary goal is to
identify the presence of intraperitoneal injuries. How-
ever, the ascites US images selected in this study were
not all from patients with abdominal trauma, which may
have affected trauma recognition accuracy. The effects
of fluid volume, intestinal fluid, and peritoneal effusion
under normal conditions were not considered. Non-
image information is included in the US images too,
which may affect the detection. Some human factors
may overestimate the performance of the model, such
as the unclear images excluded in the research process.
Thus, the differential diagnostic capabilities of the devel-
oped U-net for pathological ascites in US images should
be investigated further.

It is not expected that AI should be entirely consistent
with the diagnostic capabilities of experienced doctors.
Although correctly outlining lesion borders is valuable
for treatment planning, determining the presence or
absence of abdominal free fluid is the first step in our
proposed methodology. The Dice coefficients achieved
in this study reflect the difficulty of delineating ascites
areas.58 The low sensitivity can also be attributed to
issues with detecting lesions in abdominal parenchymal
organs. Thus, although ultrasound is generally accepted
as playing a significant role in the treatment of unstable
patients, its use with stable patients is still controversial
because it cannot rule out abdominal organ lesions. For
patients with blunt trauma, the inability to demonstrate
a lack of bleeding or delayed bleeding in the abdominal
cavity has proven to be a primary limitation of US, often
requiring patients to undergo contrast-enhanced com-
puted tomography.21,29,59 However, as demonstrated in
this study, the inclusion of AI could lead to earlier
intervention, more precise treatment, and improved out-
comes for trauma patients, particularly in emergency
situations.

5 CONCLUSIONS

The proposed DL-based methodology has been shown
to be accurate for identifying the presence of abdom-
inal free fluid and aiding doctors in diagnosing ascites.
Despite the varied resolution of US images, the reported
AUC values are comparable to those of recent stud-
ies investigating automated diagnosis of edema through
varying modalities.60 Further clinical validation of the
U-net is needed to demonstrate its effect on patient out-
comes, in addition to the reported performance metrics
(sensitivities of 94.38% and 97.12% for Ascites-1 and

Ascites-2, respectively). A robust clinical assessment
would require external testing among diverse cohorts
that fully represent potential ascites patient groups and
images, to avoid performance overestimation caused
by overfitting.56 In a future study, we will collect US
images from additional sources, including various man-
ufacturers, equipment types, scanning parameters, and
populations to improve U-net diagnostic performance.
We will also evaluate the potential for differential diagno-
sis and develop relevant software for use in emergency
centers and medical colleges.
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