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ABSTRACT Accurate estimation of genetic correlation requires large sample sizes and access to genetically informative data, which are
not always available. Accordingly, phenotypic correlations are often assumed to reflect genotypic correlations in evolutionary biology.
Cheverud’s conjecture asserts that the use of phenotypic correlations as proxies for genetic correlations is appropriate. Empirical
evidence of the conjecture has been found across plant and animal species, with results suggesting that there is indeed a robust
relationship between the two. Here, we investigate the conjecture in human populations, an analysis made possible by recent
developments in availability of human genomic data and computing resources. A sample of 108,035 British European individuals
from the UK Biobank was split equally into discovery and replication datasets. Seventeen traits were selected based on sample size,
distribution, and heritability. Genetic correlations were calculated using linkage disequilibrium score regression applied to the genome-
wide association summary statistics of pairs of traits, and compared within and across datasets. Strong and significant correlations were
found for the between-dataset comparison, suggesting that the genetic correlations from one independent sample were able to
predict the phenotypic correlations from another independent sample within the same population. Designating the selected traits as
morphological or nonmorphological indicated little difference in correlation. The results of this study support the existence of a
relationship between genetic and phenotypic correlations in humans. This finding is of specific interest in anthropological studies,
which use measured phenotypic correlations to make inferences about the genetics of ancient human populations.
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GENETIC correlations are a measure of genetic factors
shared between two traits. When two traits are highly

genetically correlated, the genes that contribute to the traits
are usually co-inherited (Lynch and Walsh 1998). While tra-
ditionally used in animal breeding (Lynch and Walsh 1998),
in a broader research context, genetic correlations contribute
to understanding the development and pathways of traits,
population-level gene flow, and the co-occurrences of traits
(Via and Hawthorne 2005). For this reason, genetic correla-
tions play an important role in evolutionary biology, and

estimates of genetic correlations are also used in theoretical
modeling of human populations.

Genetic correlations (rg) are calculated from the additive
genetic variance and covariance between traits, as shown for
traits X and Y,

rg ¼ covgðX; YÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VgXVgY

p
; or for standardized traits where

the phenotypic variances are one, rg ¼ covgðX; YÞ=
ffiffiffiffiffiffiffiffiffiffiffi
h2Xh

2
Y

p
;

where h2X and where h2Y are the heritability estimates of the
two traits and VgX and VgY are the variances of the traits.

Traditionally, genetic correlations are calculated from
pedigree data using statistical methods to partition phenotypic
(co)variance into genetic variance and genetic covariance
(Henderson 1986). More recent methods make use of ge-
nome-wide single nucleotide polymorphism (SNP) data and
the very small coefficients of relationship between very large
numbers of unrelated individuals to calculate these parame-
ters (Lee et al. 2012). Since only common variants are in-
cluded in the calculations, this approach assumes that the
genetic correlation is the same across the allelic frequency
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spectrum. Accepting this caveat as reasonable, the approach
has an advantage over the traditional methods, as unrelated
individuals are less likely to have had exposure to similar
environmental effects, reducing confounding from shared
environment. Additionally, as genotyping becomes cheaper,
genome-wide SNP data are becoming more readily and
widely available than pedigree data. Moreover, unbiased es-
timates of genetic correlations are achievable with minimal
computing resources from analysis of summary statistics from
genome-wide association studies (GWAS) via the linkage dis-
equilibrium score (LD score) regression method (Bulik-
Sullivan et al. 2015a; Ni et al. 2017).

The sampling variance of a genetic correlation estimate
depends on, and is larger than, the sampling variances of
the concurrently estimated heritabilities (Robertson 1959;
Visscher et al. 2014). Hence, large sample sizes are needed
to estimate genetic correlations with accuracy. James Che-
verud proposed in 1988 that phenotypic correlations (rp) could
be used as a proxy for genetic correlations (Cheverud 1988).

While there has been criticism of the conjecture, most
notably by Willis et al. (1991), subsequent studies in various
organisms have provided much empirical evidence and the-
ory supporting the conclusion. Roff (1996) considered a
variety of traits from previously published datasets. This in-
vestigation showed that the relationship between the two
correlations was most concordant in morphological traits, as
opposed to behavioral or life history traits. In addition, while
the average absolute disparity (Dabs = |rp 2 rg|; Willis et al.
1991) between the correlations was relatively high (0.24–
0.46), this difference could be attributed to the sampling
error of rg. Kruuk et al. (2008) repeated the analysis of Roff’s
1996 article withmore recent data with an increased sample
size, reaching similar conclusions.

The suitability of using phenotypic correlations as a proxy
for genetic ones in various traits has been discussed by
Hadfield et al. (2007), concluding that while the conjecture
may be true in traits with high heritability, particularly those
related to growth, there are still exceptions and the conjec-
ture most likely does not apply to all traits generally. Since
phenotypic correlations depend both on the correlation of
additive genetic and on the correlation of environmental ef-
fects (with the term environmental representing any effects
that are not additive genetic), differences between pheno-
typic and genetic correlations must be explained by the re-
lationship between genetic and environmental effects.
Cheverud (1984) suggests that most environmental effects
often act in the same direction and through the same path-
ways as genetic effects, which leads to a similarity between
phenotypic and genetic correlations. Hadfield et al. (2007),
on the other hand, suggested that certain traits have environ-
mental effects that act in the opposite direction to the genetic
effects, which could reflect the conclusion of Roff (1996),
who found lower correlation for life history and behavioral
traits than morphological ones.

Despite the possible deficiencies of the conjecture when
applied to nonmorphological traits, behavioral researchers

often assume that correlations between behaviors can give
insight into the genetics behind the behavior. To test this
assumption, Dochtermann (2011) tested the relationship be-
tween published behavioral genetic and phenotypic correla-
tions from animal studies. The author found that while the
correlation between the phenotypic and genetic correlations
was high (r = 0.86), the mean absolute difference between
traits was also high (0.27), suggesting that phenotypic cor-
relations were not a good predictor of genetic correlations
between behavioral traits. Dochtermann found that while not
a good predictor, the phenotypic correlation is able to reliably
provide information on the direction of the genetic effect for
behavioral research, still allowing to make certain genetic
conclusions based on phenotypic data.

To date, studies investigating the existence of Cheverud’s
conjecture in specific populations have looked at morpholog-
ical traits in insects (Roff 1995; Reusch and Blanckenhorn
1998), tamarins (Ackermann and Cheverud 2002), and
plants (Waitt and Levin 1998), with results corroborating
the findings of Cheverud and Roff. While the conjecture has
not been investigated in humans, it has been applied in hu-
man modeling. As genetic data are not directly accessible in
many ancient human populations, phenotypic traits have
been used tomake conclusions regarding genetic information
(Relethford and Blangero 1990; Weaver et al. 2007).

While the proportionality of phenotypic and genetic cor-
relations has been assumed to be true in human populations,
there has yet to be a study to investigate the conjecture in the
context of humans. This study aims to fill the gap in un-
derstanding how the conjecture applies in human popula-
tions. Moreover, it aims to show whether human data differs
fromthe results seen inanimalandplant studies.Here,firstwe
investigate the relationship between phenotypic and genetic
correlations across 17 traits. We then investigate the relation-
ship by considering two general types of traits: morphological
traits and other (nonmorphological) traits. It was hypothe-
sized that, similar to other species, genetic and phenotypic
correlations are concordant in human traits, with a strong
relationship particularly in morphological traits. Historically,
the studyofgenetic correlations inhumanshasbeen limitedby
availability of data. This study uses genetic and phenotypic
data, drawn from the first phase of the UK Biobank—a large
sample of unrelated individuals (Sudlow et al. 2015). This
wealth of data allows a new look at Cheverud’s conjecture in
the context of humans.

Methods

Participants from the UK Biobank with British/Irish ancestry
were selected based on self-reported ancestry and leading
principal components calculated fromSNPdata, resulting in a
sample size of 108,035 participants with available genotypes
cleaned and imputed to a combined reference panel of
1000 Genomes and UK10K [see UK Biobank documentation
for details about quality control and imputation, with sample
selection following Robinson et al. (2017)]. For our analyses
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we selectedHapmap3SNPs,withminor allele frequency.0.01,
a Hardy–Weinberg equilibrium test P-value .1.0E26, and
imputation info-score.0.3. The total sample was randomly
split into two sets (n = 54,017 and n = 54,018), with no
evidence for differences in demographic variables (Supple-
mental Material, Supplementary Table 1). This allowed us
to estimate genetic and phenotypic correlations within in
each set, and also allowed estimation of genetic correlations
between the two independent sets.

Traits with .10,000 observations in each dataset were
selected for analysis. Selection of these traits included
inspecting the distribution, and traits with drastically non-
normal distributions were excluded. Key covariates and ex-
clusion variables were identified for all traits. Exclusions
were handled on a trait-by-trait basis. For example, subjects
were excluded from analysis for spirometry traits if they had
smokedwithin the last hour (see Table S2). The effects of sex,
age, age2, and testing center were regressed out of the data
using a linear model. Traits relating to the cardiovascular
system had the effect of blood pressure medication regressed
out (medication use was taken as a binary variable). Genet-
ically derived principal components were also used as cova-
riates, but only when calculating genetic correlations and not
phenotypic ones. This was done to emulate a situation where
genetic information is not available, which is where Cheverud’s
conjecture is relevant. Finally, the residuals were trans-
formed with a rank normal transformation (Van der Waerden
transformation; Lehmann 1975).

Phenotypic correlations were estimated as Pearson corre-
lations between each pair of traits, within both discovery and
replication datasets (Figure 1). A GWAS analysis was per-
formed using PLINK 1.9 (Chang et al. 2015) for each trait
in discovery and replication samples separately, using a linear
association model. The proportion of variance attribut-
able to genome-wide SNPs (SNP-heritability) and the genetic

correlation attributable to genome-wide SNPs was estimated
from the GWAS summary statistics using an LD-score regres-
sion analysis as implemented by Bulik-Sullivan et al. (2015b)
in the LDSC software package, using LD-scores estimated
from the full data set. Briefly, genetic variances (or covari-
ances) are estimated as a function of regressions of the square
(or product) of association analysis z-statistics of SNPs for
traits (or pairs of traits) on their LD scores, where an LD score
is the sum of LD r2 made by the SNP with all other SNPs. The
method assumes that traits have a polygenic genetic archi-
tecture. LD score estimates of genetic correlations agree well
with those based on mixed model analysis of full individual-
level genotype data (e.g., genetic restricted maximum likeli-
hood (GREML) in genome-wide complex trait analysis (GCTA);
Yang et al. 2010; Lee et al. 2012), but are achieved at a small
fraction of computing resources, albeit with higher SE (Bulik-
Sullivan et al. 2015a; Ni et al. 2017). Traits with estimated SNP-
heritability ,0.05 were removed, as the estimates of genetic
correlation are unstable for traits with low SNP-heritability.
Seventeen traits were used in the final analysis (Table 1),
which were characterized as either morphological (n = 10)
or nonmorphological (n= 7), thereby generating 45 pairwise
correlations within the morphological traits, 21 between non-
morphological traits and 70 correlations between-traits for
each dataset. Genetic correlations were also estimated be-
tween all pairs of traits between the two datasets.

Pearson correlation coefficient, linear regression, and ab-
solute disparity (Willis et al. 1991), were calculated for
within-trait, between-trait, and all traits (combined) in both
within-dataset and between-dataset comparisons (see Figure
1). The difference of the slope from the unity line was
assessed by comparing the least squares linear regression
to a linear model with a slope of one. Significance of the
slope being different from onewas set at P, 0.003125, with
Bonferroni correction for 16 tests.

Figure 1 Schematic diagram of
statistical analyses performed.
108,035 British European individ-
uals were evenly divided into dis-
covery and replication datasets.
Genetic and phenotypic correla-
tions were calculated within group
for 17 traits. Black arrows show the
comparisons performed. Empty gray
arrows indicate comparisons similar
to the equivalent gray arrow (i.e.,
the within-replication, between-trait
comparison is the same as the
within-discovery, between-trait com-
parison). * Figure 3, Table 2, and y
Table 3.
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Comparisons of the environmental correlations (re)
and genetic correlations were also performed, where

re ¼ rp 2 rG
ffiffiffiffiffiffiffiffiffiffi
h21h

2
2

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12 h21Þð12 h22Þ

q
(Supplementary

Text 1). Similar analyses were performed as with the pheno-
typic correlation, but using the environmental correlation in
its place. The results of the analysis are shown in Supplemen-
tary Figure 1 and Supplementary Table 3.

Finally, in sensitivity analyses to assess the similarity of the
structure of the matrices, various matrix similarity tests were
applied, as discussed by Roff et al. (2012). It is suggested that
a variety of these tests should be used, as it is possible that
they are not all sensitive to the same differences between
matrices. The random skewers, T-test and T2-test, and mod-
ified Mantel test were applied to compare phenotypic and
genetic correlations. The random skewers method investi-
gates whether two matrices respond similarly to selection
(Cheverud andMarroig 2007), the T-test and T2-test consider
the equality by examining the sum of the absolute difference
or squared difference between matrix elements, and the mod-
ified Mantel test looks at the correlation between the matrix
elements. Results for each of the tests are shown in Supple-
mentary Table 4.

Given the sample sizes available, phenotypic correlations
were estimated with high accuracy. There is no current liter-
ature on the expected SE or power from LD score regression;
however, it can be compared to those expected from the linear
mixed model maximum likelihood method (GREML), which
estimates SNP-heritabilities and genetic correlations from
GWAS genotype data (Visscher et al. 2014). Empirical com-
parisons have shown that the error associated with using LD
score regression is�50% larger than that of GREML (Ni et al.
2017). Using the GCTA-GREML power calculator developed
by Visscher et al. (2014), the trait with the smallest sample
size (heel bone density, n = 31,254/31,174) has a power of
“0.99” to detect the heritability cutoff of 0.05, with a SE of
0.0101. The pair of traits with lowest sample size (heel bone
density and forced vital capacity) had a power of 0.98, and a
SE of 0.0219 to detect the genetic correlation of 20.089, as
estimated by LDSC. In comparison, the observed SE from

LDSC was 0.051, a little more than double that predicted
for bivariate GREML, although still relatively low. Hence,
we conclude that the UK Biobank Pilot data are well powered
for the analyses conducted.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in themanuscript are represented fully
within the manuscript. Supplemental material available at
Figshare: https://doi.org/10.25386/genetics.6213968.

Results

Across all traits the estimated SNP-heritabilities ranged from
0.073 to 0.52, with a mean of 0.20 (Figure 2). The SE of the
heritability estimates reflected the sample sizes and ranged
from 0.009 to 0.042. Morphological traits had a higher aver-
age estimated SNP-heritability (0.23) than nonmorphologi-
cal traits (0.16), but the difference was not significant (P =
0.22). The Pearson correlation coefficients between the phe-
notypic and genetic correlations for the combined compari-
son of all 17 traits were r= 0.97 and r= 0.96 for each of the
between-dataset comparisons (Table 2). The least squares
linear regression coefficient was significantly different from
the unity line when considering all traits combined; however,
it was not significant when considering onlymorphological or
nonmorphological traits (Table 2). The mean difference be-
tween correlations was 0.06 in both cases, calculated using
the method described by Willis et al. (1991) and described
earlier (Dabs = |rp 2 rg|). This difference was not signifi-
cantly different from 0 for both discovery and replication
datasets. The maximum difference between two correlations
was 0.24 and the minimum was 0.0004. On average, the
magnitude of genetic correlations was 0.04 higher than phe-
notypic ones.

Comparison between morphological and nonmorpholog-
ical traits showed some general differences between the two
types of traits. Both types of traits had strong positive corre-
lations across both datasets (between r= 0.92 and r= 0.97,
Table 2). However, the distribution of correlations was dif-
ferent between the two groups: morphological traits were

Table 1 Final list of traits used in study with corresponding sample size for both discovery and replication samples

Morphological traits Nonmorphological traits

Trait Sample sizea Trait Sample sizea

Body mass index 53,871/53,867 Basal metabolic rate 53,112/53,087
Body fat percentage 53,086/53,046 Diastolic blood pressure 50,801/50,682
Forced vital capacity 42,341/42,336 Heel bone density 31,254/31,174
Height 53,931/53,926 Neuroticism score 43,940/44,204
Hip circumference 53,940/53,937 Pulse rate 50,801/50,682
Peak expiratory flow 48,399/48,262 Reaction time 53,693/53,716
Waist circumference 53,942/53,941 Systolic blood pressure 50,801/50,682
Weight 53,886/53,885
Grip strength (R) 53,802/53,789
Grip strength (L) 53,803/53,796
Average 48,927/48,897 Average 48,927/48,897
a Formatted as discovery/replication.
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normally distributed with a range of genetic and phenotypic
correlations (between 0 and 1) while distribution of the non-
morphological trait correlations was right-hand skewed with
a mean closer to 0 (Figure 3). In both sets of traits, however,
least squares linear regression was not significantly different
from the unity line. The mean absolute disparity between
correlations ranged between 0.05 and 0.09 (Table 2). Very
similar results to those above were seen in within-dataset
analysis (Table 3). None of the parameters changed appre-
ciably, and any differences were lost when rounding values.

Repeating the same analysis with environmental correla-
tion showeda similar result, albeitwith slightly lower levels of
correlation (r = 0.90–0.96), and slightly higher mean abso-
lute disparity (0.06–0.11). Of note, nonmorphological com-
parisons were lower than the morphological comparison for
the within-trait correlation in the discovery dataset. Full re-
sults can be found in Supplementary Table 3.

Comparison between the phenotypic and genetic correla-
tions using the random skewers method had P-values of 1.0
for all comparisons, giving no evidence to reject the null
hypothesis (Supplementary Table 4). Both the T-test and T2-test
comparisons showed no overall difference between the

off-diagonal elements of the matrices, and the modified
Mantel test had a P-value of 1.0, supporting the null hy-
pothesis of correlation between the matrix elements (Roff et al.
2012). Plots of difference in correlation vs.mean heritability and
mean sample size, as well as SE vs. mean heritability and mean
sample size can be found in Supplementary Figure 2.

Discussion

The aim of this study was to investigate the relationship
betweengenetic andphenotypic correlations in humansusing
data from large samples of unrelated individuals (i.e., very
distantly related) from the UK Biobank. Based on reports
from other species, we hypothesized a strong correlation
between genetic and phenotypic correlations but with a
stronger correlation between morphological than non-
morphological traits. Our analyses confirmed these hypoth-
eses, but it is notable that the phenotypic and genetic
correlations between nonmorphological traits, while often
different from zero, were smaller than those between mor-
phological traits. High Pearson correlation coefficients were
seen across both of the between-dataset comparisons (0.92–
0.97), as well as in within-dataset correlations (0.93–0.97)
(Table 2 and Table 3). These findings indicate that the results
are reproducible in independent samples, and more practi-
cally, that overall the phenotypic correlations from one group
are good predictors of genetic correlations in an independent
sample of the same ethnicity. The mean absolute disparity
between the combined phenotypic and genetic correlations
was not significantly different from zero in both between-
dataset comparisons (Table 2), as well as in within-dataset
comparisons (Table 3). These values support the conclusion
of Roff (1996) and Kruuk et al. (2008), who suggested that
their reported differences (0.24–0.46 and 0.245, respec-
tively) are a reflection of sampling error of rg. The mean
absolute disparity in our study is much lower, reflecting the
larger sample sizes lowering the sampling error of rg. Addi-
tionally, application of the random skewers, T-test, T 2-test,
and modified Mantel test methods (Cheverud and Marroig
2007; Roff et al. 2012) indicated similar structure between
the covariance matrices (Supplementary Table 4). In conclu-
sion, these results confirm the prior assumptions used in
anthropometric studies. Just as is true in other species,

Figure 2 Boxplots of the distribution of estimated SNP-heritabilities for all
traits (combined, 17 traits), morphological traits (10 traits), and nonmor-
phological traits (seven traits). Quantitative traits were selected from the
UK Biobank and SNP-heritabilities estimated through LD score regression.
Sample sizes used to calculate SNP-heritabilities range from 31,174 to
53,942 individuals.

Table 2 Summary statistics of least squares linear regression between-dataset phenotypic and genetic correlations for all traits
(combined), morphological traits, and nonmorphological traits

Discovery genetic, replication phenotypic Discovery phenotypic, replication genetic

Trait r Slope Intercept Average Dabs
a r Slope Intercept Average Dabs

a

Morphological 0.97b (0.03) 1.08c 0.01 0.09 (0.04) 0.97b (0.03) 1.03 0.04 0.08 (0.04)
Nonmorphological 0.93b (0.06) 0.92 20.01 0.06 (0.07) 0.93b (0.06) 0.90 0.00 0.05 (0.06)
Morphological/nonmorphological 0.96b (0.03) 1.08 20.01 0.05 (0.05) 0.96b (0.03) 1.10 20.03 0.05 (0.05)
Combined 0.97b (0.02) 1.09c 20.01 0.06 (0.05) 0.97b (0.02) 1.07c 0.00 0.06 (0.05)

Table headings indicate which correlations are being compared between the groups.
a Average of absolute disparity.
b Significant at P , 0.003125 (Bonferroni multiple testing correction).
c Significant difference from unity line (P , 0.003125).
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phenotypic correlations are good proxies for genetic correla-
tions in human traits.

Comparison between morphological and nonmorpholog-
ical traits showed little difference between the two in terms of
the relationship betweenphenotypic andgenetic correlations,
although there was a difference in the average magnitude of
the correlations (mean magnitude of genetic correlations
between morphological traits was 0.39 (SE = 0.04) and
between nonmorphological traits was 0.11(SE = 0.07, dif-
ference P = 5 3 1025). While the correlation coefficient of
the morphological within-trait, between-dataset comparison
(r = 0.97/0.97, Table 2) was higher than that of the non-
morphological comparison (r=0.93/0.92, Table 2), this was
not a significant difference. This finding was also true in the
within-dataset comparisons. It is possible that this difference
in correlation is driven by the difference in SNP-heritability
(Figure 2), and thus accuracy of rg estimation. However,
while geometric mean heritability of the pair of traits and
the SE of rg is negatively correlated (Supplementary Figure
2), this is not true between the mean heritability and the
difference between the phenotypic and genetic correlations
(Supplementary Figure 2). This would suggest that the dif-
ference in SNP-heritability between the traits does not play a
major role in the differences between phenotypic and genetic
correlations, and thus does not contribute to the differences
between morphological and nonmorphological traits seen in
this study. The between-trait, between-dataset comparison
showed high correlation between the two types of traits (Fig-
ure 3 and Table 2). It is worth noting that the strong overall

phenotypic correlation between morphological and nonmor-
phological traits may be a characteristic of the nonmorpho-
logical traits selected in this study. The selected traits may not
be representative of the whole spectrum of nonmorphologi-
cal traits. Consequently, the relationship of other nonmor-
phological traits could be different from that observed here.

To summarize, a strong correlation of phenotypic and
genetic correlations was found in human traits. This finding
is novel in the context of humans, as previous analyses of this
kindwere limited by sample size and techniques. Additionally,
the correlation relationship between phenotypic and genetic
correlations was consistent between morphological and non-
morphological traits. This is a surprising result given previous
literature in the area, which suggested that morphological
traits may fit the conjecture better than life history traits (Roff
1996), but as discussed, this could partly be due to the traits
selected for this study as the nonmorphological traits are not
representative of life history traits. Additionally, the distinc-
tion between the categories of morphological and nonmor-
phological is unclear for some traits. For example, forced vital
capacity is directly related to lung volume, a morphological
trait. On the other hand, nonmorphological factors such as
lung compliance, muscle strength, and mucus secretions also
affect the forced vital capacity, making it difficult to classify
the trait. While the phenotypic and genetic correlations be-
tween nonmorphological traits were relatively low, those be-
tween morphological and nonmorphological traits covered a
similar range, but had on average a slightly lower magnitude
than those between the morphological traits. An important

Figure 3 Plots of genetic correlation vs. phenotypic correlation for the between-dataset comparison. 108,035 British European individuals were
distributed into discovery (n = 54,017) and replication (n = 54,018) datasets. Genetic and phenotypic correlations were calculated within group for
17 traits. (A) Genetic correlations from the discovery dataset and phenotypic correlations from the replication dataset. (B) Genetic correlations from the
replication dataset and phenotypic correlations from the discovery dataset. The between-trait comparison refers to the correlations between morpho-
logical (M) and nonmorphological traits (N).
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assumption of our approach is that the genetic correlations
estimated from genome-wide SNP data are representative of
the genetic correlations of variants across the allelic spec-
trum, but this seems to be a reasonable assumption. For ex-
ample, the genetic correlation estimate calculated in this
paper between body mass index and body fat percent-
age was 0.86, consistent with estimates from twin studies
(Faith et al. 1999). Another example is the correlation between
systolic blood pressure and body mass index, which was 0.21
in this study, consistent with twin studies (Cui et al. 2002).

The biological mechanism for the expected difference be-
tween types of traits discussed by Waitt and Levin (1998) is
that of phenotypic plasticity—additive environmental effects
on a trait. One of the criticisms of Cheverud’s conjecture by
Willis et al. (1991) was that most of the data used in the
original article came from laboratory grown animals, leading
to an underestimation of the environmental effects, which
would be found in nature. Cheverud (1984) suggested that
environmental and genetic effects are governed by the same
developmental constraints and thus should have similar pat-
terns, decreasing the effect on the correlation between traits.
Hadfield et al. (2007), on the other hand, suggested that for
certain groups of traits, the genetic and environmental effects
act in opposing directions, decreasing correlation. In this
study, rg and re were positively correlated (r = 0.90–0.96,
Supplementary Table 3), suggesting that the genetic and en-
vironmental effects have similar correlational patterns. This
provides support for Cheverud’s suggestion, and overcomes
the “underestimation of environmental effects” argument
posed by Willis et al. (1991), as the UK Biobank is a popula-
tion-based community sample. However, in the case of non-
morphological traits, it may also indicate that our sample of
traits is not fully representative of the whole spectrum.

Whencalculating thegenetic correlations,manycovariates
were used to best estimate the value of rg, including geneti-
cally derived principal components. To simulate a scenario
where no genetic information is available, phenotypic corre-
lations did not include covariates that contained genetic in-
formation. Instead, they were limited to covariates that
would have been available without such information (age,
age2, sex, and location). When these covariates were not
accounted for, the mean absolute disparity ranged between
0.06 and 0.20 (Supplementary Table 5), higher than when

covariates are accounted for (Table 2 and Table 3). While the
disparity without covariates is still quite low compared to
prior literature, this finding indicates that environmental ef-
fects do play a role in modulating the phenotypic correlation,
as suggested by phenotypic plasticity. Thus, it is important
to account for some of the major confounding effects when
using phenotypic correlations to estimate genetic ones,
although in some studies confounding factors may not be
recorded.

The results of this study are of specific interest in anthro-
pological studies where anthropometric measurements are
used as a proxy for genetic information. The results presented
show support for this approximation in human studies, al-
though care should be takenwhen extrapolating the results of
this study to other populations and environmental contexts,
such as in ancient human populations subject to anthropo-
logical studies. The evidence provided here is based on ob-
servations in modern human populations, which may differ
from earlier human populations. For example, large-scale
famine and infections would have often affected earlier hu-
man populations, but are less of an issue for modern Euro-
peans. Despite this, it is often already assumed that the
phenotypic and genetic variance-covariancematrices are pro-
portional between modern humans and even Neanderthals
(Weaver et al. 2007). Another caveat is that themorphological
traits used in this study differ from those used in anthropomet-
ric studies. Nonetheless, the evidence from this study suggests
that morphological traits do appear to fit Cheverud’s conjec-
ture well, supporting its use in these kinds of traits.

In conclusion, this study investigated Cheverud’s conjec-
ture in the context of human genetics. Correlations calculated
using LD score regression utilizing data from the UK Biobank
support the validity of the conjecture in human populations.
This study provides the quantitative evidence to support the
use of phenotypic correlations as a proxy for genetic correla-
tions in studies where genetic information is not available.
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