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Abstract

YAMP (”Yet Another Metagenomics Pipeline”) is a user-friendly workflow that enables the analysis of whole shotgun
metagenomic data while using containerization to ensure computational reproducibility and facilitate collaborative
research. YAMP can be executed on any UNIX-like system and offers seamless support for multiple job schedulers as well
as for the Amazon AWS cloud. Although YAMP was developed to be ready to use by nonexperts, bioinformaticians will
appreciate its flexibility, modularization, and simple customization.
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Background

Thanks to the increased cost-effectiveness of high-throughput
technologies, the number of studies collecting and analyzing
large amounts of data has surged, opening new challenges for
data analysis and research reproducibility. A ubiquitous lack of
repeatability and reproducibility has, in fact, been observed, and
a recent Nature survey of 1,576 researchers showed that more
than 50% and 70% failed to reproduce their own and other sci-
entists’ experiments, respectively [1]. Unavailability of primary
data and computational experimentation have been named as
the major culprits for this reproducibility crisis, with many stud-
ies relying on ad hoc scripts and not publishing the necessary
code and/nor sufficient details to reproduce the reported re-
sults [2–4]. In addition, variations across workstations and oper-
ating systems represent another obstacle [5, 6]. To overcome this
issue, tools that allow the development of workflows [7] and soft-
ware containers [8] have been proposed [9]. In fact, container-
ized, well-structured workflows allow storage of every detail of
the workflow execution, including the software’s versions and
parameters (provenance [10]), and nullify system variations [6],
therefore, guaranteeing a study’s repeatability and reproducibil-

ity. Containerized workflows also facilitate collaborative projects
by ensuring identical analysis processes, thus, comparable re-
sults, and allow the automatization of data-intensive repetitive
tasks [11]. Moreover, they save users with little bioinformatics
or computational expertise from the hassles of installing the re-
quired pieces of software and of designing and implementing of-
ten complex analysis orchestrations, while expert bioinformati-
cians can use them as a starting point for customized analyses,
thus avoiding redundant solutions.

In metagenomics research, several analysis pipelines have
been developed. However, they either do not support con-
tainerization (e.g., MetAMOS [12], MOCAT2 [13], RAMMCAP [14]),
thus, potentially compromising reproducibility, or they re-
quire users to upload their unpublished and/or confidential
data on third-party servers (e.g., IMG/M [15], the EBI metage-
nomics pipeline [16], MG-RAST [17]). Based on the available re-
sources, they can spend several days on these servers waiting
to be processed [18], with data privacy concerns for some re-
searchers [19]. Scalable metagenomic pipelines that allow both
local and cloud execution have been proposed, such as CloVR-
Metagenomics [20], and those implemented using the Galaxy
platform [21, 22]. However, the former lacks steps for quality
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control (QC) and allows processing reads only generated with
the Roche 454 pyrosequencing platform [23], and the latter re-
quires nontrivial expertise for local installation [24], with port-
ing issues observed among different Galaxy versions [25]. QC is
also often overlooked. For instance, both MetAMOS and the EBI
metagenomics pipeline do not include a step for removing con-
taminant genomes, with the latter also not discarding identi-
cal duplicates. Ignoring decontamination may lead to reads not
belonging to the studied ecosystem to be used in downstream
analyses, causing potential mismapping on reference databases
and, therefore, erroneous functional profiling, especially in low-
biomass environments [26]. Moreover, the presence of contami-
nating human reads raises privacy concerns. There are now two
studies able to mine and exploit hosts’ genetic material from
publicly available metagenomics samples [26, 27]. Retaining du-
plicated reads, usually considered as technical artifacts derived
from polymerase chain reaction (PCR) amplification [28], may
hamper the correct estimation of both community composition
and functional capabilities [29]. Finally, MG-RAST performs de-
duplication after quality trimming, potentially introducing bi-
ases due to the fact that trimming, by modifying the read se-
quence, may mask true duplicates or generate false ones.

Here, we present “Yet Another Metagenomics Pipeline”
(YAMP), a ready-to-use containerized workflow that, using state-
of-the-art tools, processes raw shotgun metagenomics sequenc-
ing data up to the taxonomic and functional annotation. YAMP
is implemented in Nextflow [6] and is accompanied by a
Docker [30] and a Singularity [31] container. The YAMP script,
parameters, and documentation are available at https://github
.com/alesssia/YAMP.

The YAMP workflow

The YAMP workflow is composed of three analysis blocks: QC
(Fig.1, green rectangle) complemented by several steps of assess-
ment and visualization of data quality (Fig.1, orange rectangle)
and community characterization (Fig.1, pink rectangle).

The QC starts with an optional step of de-duplication, where
identical reads, potentially generated by PCR amplification, are
removed. The optionality of this step allows retaining natural
duplicates when PCR-free library preparation approaches (e.g.,
TruSeq) are used. Next, reads are filtered to remove adapters,
known artifacts, and phiX, and then quality trimmed. Notably,
YAMP removes duplicates before trimming, avoiding the intro-
duction of biases due to the reads’ sequence modifications.
Reads that become too short after trimming are discarded. In-
deed, they may map to multiple genomes or genomic regions
and compromise downstream analyses. When paired-end reads
are at hand, singleton reads (i.e., paired-end reads whose mates
have been removed) are preserved in order to retain as much
information as possible. Finally, reads are screened for contami-
nants, e.g., reads that do not belong to the studied ecosystem. It
should be kept in mind when preparing the custom database of
contaminant reads, that many low-complexity sequences and
certain features (e.g., ribosomes) are highly conserved among
species and should be removed to avoid false-positive matches.
The implemented QC is accompanied by multiple steps that as-
sess and visualize the reads’ quality in order to evaluate the
quality of the raw data and the effectiveness of the trimming
and decontamination step. QC is followed by multiple steps
aimed at estimating multiple α-diversity measures and at char-
acterizing the taxonomic and functional profiles of the micro-
bial community, i.e., identifying and quantifying the microor-
ganisms present in the metagenomic sample (taxonomic bin-

Figure 1: The YAMP workflow. White rectangles represent data to be provided

as input, and blue rectangles those produced in output. Pentagons represent the
analysis steps.

ning and profiling) and their functional capabilities (functional
characterization).

Implementation

YAMP is developed in Nextflow, a workflow management sys-
tem that allows the effortless development, deployment, and
execution of complex distributed computational workflows [6];
it has been used in several life-science projects (e.g.,[32–34]).
Nextflow allows for user-transparent high-level parallelization
and offers out-of-the-box support for distributed computational
environments, ensuring the scalability of large projects. Its ex-
ecutor allows porting of workflows on any UNIX-based system
(e.g., local machine, high-performance computing [HPC] facili-
ties) in a seamless fashion. Reproducibility is guaranteed by a

https://github.com/alesssia/YAMP
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user-transparent integration with Docker and Singularity and
with the BitBucket [35], GitHub [36], and GitLab [37] code repos-
itories, therefore, ensuring consistent tracking of both software
and code version. The so-called retrospective provenance, i.e.,
the description of each completed analysis step along with de-
tails about its underlying execution environment [10], is cap-
tured by task execution reports that record, among the others,
the exact command executed, the tasks’ working directory, the
environment and output, as well as the container image.

YAMP is accompanied by a Docker [30] and a Singularity [31]
container. Docker defines a platform-independent, virtualized,
lightweight operating system that includes all the pieces of soft-
ware required by YAMP and traces their versioning. Singular-
ity allows these features to be transferred to HPC systems, with
which Docker is inherently incompatible. Along with this single-
container approach, YAMP also supports a multicontainer sce-
nario. Indeed, while the former is easier to manage for users
with limited computational experience and allows a more ag-
ile deployment, the latter makes YAMP customization possible
without losing the advantages of a containerized solution in
terms of reproducibility and ease of setup.

YAMP integrates state-of-the-art tools for the analysis of
metagenomic data. QC is performed with a number of tools that
belong to the BBmap suite [38], namely, clumpify, BBduk, and
BBwrap, which are well established and allow processing both
single- and paired-end reads from all the major sequencing plat-
forms (i.e., Illumina, Roche 454 pyrosequencing, Sanger, Ion Tor-
rent, Pacific Biosciences, and Oxford Nanopore). They are also
computationally efficient, thus, scalable to large metagenomics
projects and samples. FastQC [39], which provides very detailed
reports on reads’ quality, is used to perform QC assessment
and visualization. Taxonomic binning and profiling is performed
with MetaPhlAn2 [40], which uses clade-specific markers to both
detect the microorganisms and to estimate their relative abun-
dance. The clade-based approach implemented in MetaPhlAn2
has been shown to scale to large datasets and was found to be ef-
fective in quantitatively profiling the microbial composition dur-
ing the Human Microbiome Project (HMP) [41] and the Critical
Assessment of Metagenome Interpretation challenge [42]. The
functional capabilities of the microbial community are assessed
by the HUMAnN2 pipeline [43], an extension of the pipeline orig-
inally developed by the HMP Metabolic Reconstruction Working
Group to infer the functional and metabolic potential of micro-
bial communities during the HMP [44]. Briefly, the HUMAnN2
pipeline first stratifies the community in known and unclassified
organisms using the MetaPhlAn2 results and the ChocoPhlAn
pan-genome database. It then combines these results with those
obtained through an organism-agnostic search on the UniRef
proteomic database and on the MetaCyc database of metabolic
pathways and enzymes [45]. The identified taxonomic profile is
also used by YAMP to evaluate multiple α-diversity measures
through the alpha diversity.py function available in the widely
used QIIME pipeline [46]. QIIME is an extremely modular and ef-
ficient pipeline designed for the analysis of amplicon (e.g., 16S
or 18S rRNA genes) sequencing data, which implements a num-
ber of functions to investigate ecological features relevant also
to metagenomics research.

YAMP Input/Output

YAMP accepts in input both single- and paired-end FASTQ files.
Users can customize the workflow execution either by using
command line options or by modifying a simple plain-text con-
figuration file, where parameters are set as key-value pairs.

Figure 2: An excerpt from the YAMP execution log.

While the parameters should be tuned according to the dataset
at hand, to assist nonexpert users in their analyses of human
metagenomics data, we provide a set of default parameters de-
rived from our own analysis experience. We suggest retaining
bases with a Phred score of at least 10 (Q10), representing a base
call accuracy of 90%, i.e., the probability of calling a base out
of 10 incorrectly. This allows the retrieval of low-coverage re-
gions, therefore, improving the total genome recovery and con-
tiguity, an aspect of utmost importance when the QC’ed reads
are used for assembly. We also recommend discarding all reads
shorter than 60 bp after trimming, corresponding to a complex-
ity of 460 or less. This length is considered the lowest for avoid-
ing spurious signals when carrying on functional characteriza-
tion via HUMAnN2 [47–49]. Next, we propose using a minimum
alignment identity of 95% (maximum indel length, 3 bp) to iden-
tify contaminant reads, which has been shown to possibly zero
the number of false positives when used on opportunely cre-
ated custom databases of contaminant reads [50]. Finally, we
suggest using the UniRef90 protein database, as its clusters are
more likely to be iso-functional and nonredundant. However, the
UniRef50 protein database is preferred when dealing with poorly
characterized microbiomes.
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Figure 3: An example of the YAMP execution profile. YAMP returns the time spent

during its complete execution and in each step, as well as the steps’ memory
peaks.

The output generated by YAMP includes a FASTQ file of QC’ed
reads, the taxonomy composition along with relative abundance
of microbes, genes and pathways, the pathways coverage, and
multiple α-diversity measures. An option allows users to retain
temporary files, such as those generated by the QC steps or dur-
ing the HUMAnN2 execution. Additionally, YAMP outputs sev-
eral QC reports; a very detailed log file recording information
about each analysis step, which ensures the retrospective prove-
nance (Fig.2); and statistics of memory usage and time of execu-
tion (Fig.3). It should be noted that the disk space required by
the files generated by YAMP is, on average, about seven times
the size of the raw data files. Particular attention should be paid
when multiple samples are processed simultaneously, as in mul-
ticore machines or HPC facilities. However, discarding tempo-
rary files, as we suggest, will require a final disk space of 20%–
70% the size of the raw data files, with higher-quality files re-
quiring more space due to the small number of reads discarded
during the QC process.

Results

To compare YAMP to existing metagenomic analysis workflows,
we simulated datasets that included either different percent-
ages of human contamination or of artificial duplicates. Then, to
facilitate the discussion on YAMP computational requirements
and to assess its ability to reproduce research results described
in the literature, we carried out a real-world case study, which
included 18 samples collected from different body sites. Notably,
despite both the simulation and the real-world case study focus
on human metagenomic data, YAMP can be used for the analysis
of data that originate from virtually any environment.

Simulation study
In the first simulated scenario, we aimed at testing the impact
of contaminant reads on the functional characterization of the
microbial community. Therefore, we generated 5 metagenomic
samples simulating a human oral community with 13 bacte-
rial species and including a variable amount of human reads as
contaminants. The relative proportion of the bacterial genomes
followed that suggested by Zhou et al. [51] (Supplementary Ta-
ble S1). The percentage of contaminant reads was 1%, 5%, 25%,
50%, and 80%, which is in line with the amounts observed in

the literature for human samples [26, 52, 53]. For instance, the
HMP Consortium targeted 49% of the total reads as human and
also observed that samples collected from soft tissue and prepa-
rations from saliva showed the highest human contamination,
with samples from mid-vagina, saliva, anterior nares, and throat
including 96%, 80%, 82%, and 75% of human DNA sequence,
respectively. Stool was only marginally affected, including less
than 1% of human contamination [53]. We compared the func-
tional profiles inferred by YAMP with those generated using the
EBI metagenomics pipeline (version 4.1), which does not in-
clude a decontamination step. These two workflows use differ-
ent databases for the functional characterization (i.e., MetaCyc
and both the InterPro and the Gene Ontology (GO) databases,
respectively), and their results could not be directly compared.
Therefore, for both tools, we evaluated the root-mean-square
error (RMSE) between the functional profiles inferred for each
of the contaminated dataset and that inferred for a baseline
dataset with no human contamination (the lower the RMSE, the
better the fit). YAMP showed the best performances, with an
RMSE <1.25 × 10−6 regardless of the amount of human contami-
nation (Table 1, Supplementary Fig. S1). Notably, despite the fact
that YAMP was not able to remove all the contaminant reads
(likely due to the masking of the low-complexity and highly con-
served region in the reference genome used during the decon-
tamination step), its performances are stable, plausibly thanks
to the high specificity of the annotation database used. The
EBI metagenomics pipeline guaranteed appreciable results; the
maximum RMSE was 0.086 with 80% human contamination and
using functional annotations from the GO Slim database. How-
ever, while its GO-based results showed errors that were uni-
formly distributed along the identified annotations and that in-
creased with the level of human contamination, results on the
InterPro database seemed to be concentrated on a few specific
domains (Supplementary Fig. S1). Three of these domains (“L1
transposable element, dsRBD-like domain”; “L1 transposable element,
trimerization domain”; and “Domain of unknown function DUF1725”),
which were not detected in the baseline dataset, are connected
to the long interspersed nuclear element 1 (L1), an active retro-
transposon that comprises approximately 17% of the human
genome [54], which is an obvious sign of uncontrolled contami-
nation.

In the second simulated scenario, we aimed at testing the im-
pact of artificial duplicates on the microbial community’s func-
tional characterization. Therefore, we generated three datasets
simulating the human oral community described previously
(Supplementary Table S1) but without any natural duplicates
and introducing percentages of duplication of about 0.25%,
1.25%, and 5%, which is in line with the values described in
the literature [55, 56]. Consistent with the observations that GC-
rich DNA sequences are difficult to amplify and that the lower
the CG content the higher the probability of an amplification
bias [55], we allowed the introduction of duplicates, mostly from
bacteria, with the lowest GC content, namely, Streptococcus per-
oris, Veillonella atypica, Veillonella parvula, and Veillonella dispair
(see Methods). We compared the functional profiles generated
by YAMP with those generated using the EBI metagenomics
pipeline (version 4.1), which does not include a de-duplication
step, and with those generated using the MG-RAST pipeline (ver-
sion 4.0.3), which performs trimming before de-duplication, po-
tentially introducing biases. As in the previous simulation study,
we assessed their performances on a baseline dataset that, in
this case, did not include any duplicate. YAMP was again the
best performer, with an RMSE <1.17 × 10−6 regardless of the
amount of duplication and with stable results at each dupli-
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Table 1: Results of the first simulation study (human contamination)

YAMP The EBI metagenomics pipeline

Nhuman Ntotal Ndetected RMSE MetaCyc RMSE G O RMSE G OSlim RMSE I nter Pro

1% 6,630 662,947 4,712 9.24 × 10−7 2.01 × 10−4 4.45 × 10−4 2.99 × 10−4

5% 34,543 690,860 24,558 9.88 × 10−7 9.16 × 10−4 2.12 × 10−3 1.15 × 10−3

25% 218,772 875,089 155,474 8.82 × 10−7 3.05 × 10−3 8.98 × 10−3 5.28 × 10−3

50% 656,317 1,312,634 465,920 9.94 × 10−7 7.78 × 10−3 0.023 0.018
80% 2,625,268 3,281,585 1,864,367 1.25 × 10−6 0.028 0.086 0.059

For each level of human contamination, we report the number of human and total reads and, only for YAMP, we report the number of human reads correctly detected
and removed. RMSE values were evaluated on the inferred proportions using a dataset with no human contamination as a baseline. For the EBI metagenomics pipeline

(v4.1), we report RMSE values evaluated on the three databases used for functional characterization.

Table 2: Results of the second simulation study (artificial duplicates)

YAMP The EBI metagenomics pipeline MG-RAST

Nduplicates Ntotal Ndetected RMSE MetaCyc RMSE G O RMSE G OSlim RMSE I nter Pro Ndetected RMSE SE E DSubsystems RMSE K E GG

0% 0 640 492 1 – – – – 47,839 – –
0.25% 1,640 642 132 1,641 1.17 × 10−6 1.35 × 10−3 3.50 × 10−3 7.77 × 10−4 49,249 0.243 4.55 × 10−3

1.25% 8,206 648 698 8,207 1.07 × 10−6 3.66 × 10−3 8.98 × 10−3 2.32 × 10−3 54,875 0.253 7.77 × 10−3

5% 32,835 673 327 32,836 9.75 × 10−7 0.011 0.022 6.85 × 10−3 75,925 0.312 0.017

For each level of artificial duplicates, we report the number of duplicates and total reads and, for YAMP and MG-RAST, we report the number of duplicated reads
removed. RMSE values were evaluated on the inferred proportions using a dataset with no duplicated reads as a baseline. For the EBI metagenomics pipeline (v4.1),

we report RMSE values evaluated on the three databases used for functional characterization. For MG-RAST (v4.0.3), we report RMSE values evaluated on two of the
databases available for functional characterization (i.e., SEED Subsystems and KEGG).

cation level (Table 2, Supplementary Fig. S2). The EBI metage-
nomics pipeline offered excellent results when evaluated over
the InterPro database annotation (RMSE <6.85 × 10−3). However,
its performance slightly degraded when the evaluation was per-
formed on the GO and GO Slim annotations, where we observed,
at a 5% level of duplication, a maximum RMSE of 0.011 and
0.022, respectively (Table 2). MG-RAST allows functional charac-
terization to be performed using several databases (e.g., RefSeq,
GenBank, SEED Subsystems, Kyoto Encyclopedia of Genes and
Genomes [KEGG]). For the sake of simplicity, we used the anno-
tations derived from the SEED Subsystems Ontology [57], which
are provided as a precomputed summary of the reads assigned
at the highest level of this functional hierarchy, and from the
KEGG database, which we preprocessed to extract the number
of reads assigned at each KEGG annotation – level 3 (see Meth-
ods). MG-RAST performances were acceptable when evaluated
on the KEGG database (RMSE <0.017) but decreased sensibly on
the SEED Subsystems Ontology (RMSE >0.243, Table 2), mostly
due to a progressive overestimation of the ”Nucleosides and Nu-
cleotides” ontology term (estimated to be 3.69%, 4.93%, 4.98%,
and 5.27% at baseline and at 0.25%, 1.25%, and 5% percentage of
duplication, respectively).

Real-world case study
We analyzed 18 randomly selected samples from six body sites
sequenced during phase III of the HMP [53] (Table 3). On average,
the selected samples included 12.6 M paired-end reads (25.2 M
reads in total), which yielded 13.3 M QC’ed reads (including both
paired-end and singleton reads), and were processed in an av-
erage time of 2 hours using four threads on a machine sporting
a 2.60-GHz Intel Xeon processor with 32 GB of random access
memory and using the default YAMP parameters (Table 3). At the
phylum level, each body site showed a characteristic signature
(Fig. 4), with a predominance of Actinobacteria in the airway, Fir-
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Figure 4: Phylum-level relative abundances. Each vertical bar represents a sam-
ple. Phylum relative abundances were estimated by YAMP using MetaPhlAn2.
Unspecified viral phyla are not shown.

micutes in the vagina, Bacteroidetes in the stool, and a mixture
of Actinobacteria, Firmicutes, and Proteobacteria in the oral cav-
ity, as observed in previous studies [58]. A site-specific micro-
bial signature was also present at the species level, where both
the principal coordinate analysis (PCoA), evaluated using the
Bray-Curtis dissimilarity (Supplementary Fig. S3 and S4), and the
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Table 3: Run accession number and statistics for 18 randomly selected samples from the HMP phase III [53]

Body site Locus

SRA
accession
number

Number of
raw

paired-end
reads

Number of QC’ed
reads: paired-end;

singletons
Running

time

Disk space occupation: raw data;
processed data with; without

temporary files

SRR1944674 1,181,169 590,714; 42,241 39 m 02 s 107.46 MB; 1.38 GB; 81.82 MB
Airway Anterior nares SRR1944683 2,820,900 56,151; 9,513 31 m 31 s 72.96 MB; 314.55 MB; 11.69 MB

SRR1952439 14,635,701 201,260; 17,345 42 m 00 s 379.16 MB; 1.39 GB; 28.19 MB

SRR1951826 7,956,274 7,121,697; 494,289 2 h 15 m 39 s 1.09 GB; 14.83 GB; 934.41 MB
Gut Stool SRR1944873 11,033,130 9,796,817; 942,566 2 h 26 m 01 s 1.55 GB; 18.95 GB; 1.18 GB

SRR1952058 5,834,232 5,484,362; 248,819 1 h 39 m 10 s 814.33 MB; 10.96 GB; 694.87 MB

SRR1944703 6,231,553 285,906; 24,212 39 m 09 s 184.39 MB; 1.07 GB; 57.11 MB
Buccal mucosa SRR1952437 15,361,468 3,451,844; 149,714 1 h 19 m 26 s 800.49 MB; 7.57 GB;405.52 MB

SRR1952380 11,872,420 631,595; 41,957 49 m 07 s 365.74 MB; 1.15 GB; 84.45 MB
SRR1952435 16,169,911 13,620,835; 672,610 2 h 44 m 56 s 1.99 GB; 15.42 GB; 1.45 GB

Oral cavity Supragingival plaque SRR1952436 21,971,588 17,237,506; 987,950 4 h 07 m 11 s 2.59 GB; 33.35 GB; 1.96 GB
SRR1952492 19,202,739 8,040,737; 1,805,898 1 h 51 m 05 s 1.80 GB; 16.25 GB; 1.09 GB
SRR1944869 8,074,428 6,140,295; 499,284 1 h 36 m 58 s 994.07 MB; 12.04 GB; 767.47 MB

Tongue dorsum SRR1952378 15,024,409 12,622,724; 891,920 3 h 17 m 30 s 1.93 GB; 25.00 GB; 1.48 GB
SRR1952379 42,173,063 29,697,754; 2,084,990 7 h 10 m 23 s 5.59 GB; 60.41 GB; 3.04 GB

SRR1951760 10,611,721 373,021; 24,484 42 m 19 s 277.17 MB; 1.57 GB; 44.39 MB
Vagina Posterior fornix SRR1944797 8,242,829 120,519; 10,009 35 m 14 s 203.81 MB; 967.59 MB; 17.21 MB

SRR1944845 8,537,797 140,658; 10,779 34 m 19 s 213.02 MB; 882.72 MB; 30.06 MB

Samples were processed using four threads on a machine sporting a 2.60-GHz Intel Xeon processor with 32 GB of RAM. The required disk space for the processed data

does not include the size of the raw data file.

hierarchical clustering, computed on the Manhattan distances
between species relative abundances (Supplementary Fig. S5),
showed that the taxonomy composition was sufficient to dis-
criminate among body sites, even though it had limited ability
in distinguishing between different loci in the oral cavity.

Discussion

In conclusion, with YAMP, we provide a user-friendly workflow
that makes possible the analysis of whole shotgun metage-
nomics data. By supporting containerization, YAMP allows for
computational reproducibility and also enables collaborative
studies. In fact, while software versions are described in the
Docker/Singularity container, the Nextflow script and configu-
ration file capture all the details needed to fully track each step
of data processing, therefore, satisfying the prospective prove-
nance requirements, while the very detailed YAMP log file en-
sures retrospective provenance. Indeed, to ensure reproducibil-
ity, researchers should only provide the YAMP configuration file
and a link to the container image. Being based on Nextflow,
YAMP runs on any UNIX-like system, provides out-of-the-box
support for several job schedulers (e.g., PBS, SGE, SLURM) and for
Amazon AWS cloud, and its integration with Docker/Singularity
is completely user transparent. Finally, while YAMP has been de-
veloped to be ready to use by nonexperts and potentially does
not require any software installation or parameter tuning, ex-
pert bioinformaticians will value its flexibility and simple cus-
tomization. In fact, the well-defined YAMP modularization and
the usage of standard data formats allow both an easy integra-
tion of new analysis steps and a customization of existing ones.
This is of particular importance in a fast-developing field such
as metagenomics, where the analysis guidelines and tools are
not stable yet. With YAMP we provide a workflow to which new
analysis modules can be easily added and where tools that be-

come outdated can be effortlessly replaced, therefore, securing
its sustainability.

YAMP is made available as a Nextflow script that allows
a user-friendly execution via the command line. The source
code is available in the YAMP GitHub repository, which in-
cludes a wiki with full documentation and several tutorials. The
Docker/Singularity image can be downloaded and installed from
DockerHub.

Potential Implications

YAMP has been designed with the specific goals of enabling
reproducible metagenomics analyses, facilitating collaborative
projects, and helping researchers with limited computational
experience who are approaching this field of research. However,
we are confident that other areas of research would be aided by
a more widespread use of containerized, well-structured work-
flows. Indeed, as outlined in the Background section, today a lack
of reproducibility is ubiquitous. In addition to undermining the
credibility of scientific research, it has an economical cost, quan-
tified, for instance, in $28,000,000,000/year for preclinical re-
search [59]. On the other hand, ensuring reproducibility does not
come for free. Anecdotal evidence suggests that the time spent
on a project may increase by 30%–50% [1] and that reproduc-
tion of the analysis of a single computational biology article can
require up to 280 hours [60]. YAMP along with other container-
ized workflows, such as the Integrated Meta-omic Pipeline [61]
and Bio-Docklets [62], represent a proof-of-concept that shows
a simple way to enable reproducible and collaborative research.
We also advocate the sharing of such containerized workflows,
which will benefit a wide group of researchers, regardless of their
computational experience [11].
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Methods
Data availability

Simulation study
The simulated metagenomic samples were generated using the
reference human and microbial genomes downloaded from the
National Center for Biotechnology Information (Supplementary
Table S1; human genome: build GRCh37.p13). Each microbial
genome was processed independently and used as input for the
randomreads tool from the BBmap suite [38], which allows gen-
eration of random reads in various formats. Oral bacterial single-
end sequences were generated using the default parameters and
asking for a fixed read length of 100 bp, a Phred score ranging
from 6 to 40 (average, 20), and with a probability of mutation
(single-nucleotide polymorphism, insertion, deletion, substitu-
tion, and N calls) of 0.2 (max 10 blocks of Ns per read). We also
assigned scaffolds a random exponential coverage level in order
to simulate a metagenomics coverage distribution (metagenome
= t) and asked for a fixed genomic coverage (Supplementary Ta-
ble S1). Human single-end sequences were created using the
same parameters used for the microbial genomes and asking for
a fixed number of reads (Table 1).

In the second simulated scenario, we first de-duplicated
each microbial simulated dataset generated beforehand using
clumpify [38]. Then, for each of the four species showing the low-
est GC content (S. peroris, V. atypica, V. parvula, and V. dispair), we
generated sets of duplicated reads by randomly selecting and
matching reads and quality scores in order to include 40% of
identical duplicates. We then merged the de-duplicated dataset
with these sets of duplicated reads to build a new reads pool.
Next, from the described pool, we randomly selected fixed num-
bers of reads that were finally merged with the de-duplicated
dataset in order to generate each simulated sample. This al-
lowed for duplicates more likely to belong but not limited to the
GC-poor microbial genomes and to have duplicated reads that
are more likely but not limited to have different quality scores.

The simulated datasets are available from the European Nu-
cleotide Archive website (study accession numbers PRJEB25791
and PRJEB26333; Supplementary Table S2).

Real-world case study
The 18 randomly selected samples used to assess YAMP belong
to phase III of the HMP [53] and were downloaded from the Eu-
ropean Nucleotide Archive website (study accession number PR-
JNA275349). Samples were collected from healthy adults resid-
ing in the United States at the time of sample collection. Af-
ter genomic DNA extraction, the metagenomics library was pre-
pared using the NexteraXT library construction protocol. Paired-
end metagenomics sequencing was performed on the Illumina
HiSeq2000 platform with a read length of 100 bp. Sample acces-
sion numbers are listed in Table 3.

Data analysis

Simulation Study
Samples were processed with YAMP using the default parame-
ters, as defined in the published YAMP configuration file, and the
databases queried during the YAMP execution were deposited
on Zenodo [63]. Unmapped reads were discarded. When analyz-
ing the simulated dataset with the EBI metagenomics pipeline
(version 4.1) and MG-RAST (version 4.0.3), the default settings
were used. Results from the EBI metagenomics pipeline were
downloaded via the web user interface, and the functional pro-
files were evaluated by transforming the proportion of reads as-

signed to each function to percentage. When evaluating MG-
RAST performances, we used the functional profiles evaluated
on the SEED Subsystems Ontology and KEGG databases, identi-
fied at a default alignment length of >15 bp, e-value <1 × 10−5

and with percent identity >60% (as by MG-RAST default). Data
for the SEED Subsystems Ontology, annotated at the highest
level of the hierarchy, were downloaded via the web user inter-
face, and the functional profiles were evaluated by transforming
to percentage the proportion of reads assigned to each function.
Data for the KEGG database were downloaded via the web user
interface, preprocessed to extract the number of reads assigned
to each KEGG function (level 3; reads assigned to multiple anno-
tations were discarded), and then transformed to percentage as
explained previosly.

Real-world case study
Samples were processed with YAMP using the default parame-
ters, as defined in the published YAMP configuration file, and the
databases queried during the YAMP execution were deposited
on Zenodo [63]. The Bray-Curtis dissimilarity values were eval-
uated using the species relative abundances as estimated by
YAMP using MetaPhlAn2 [40] and the vegdist function in the ve-
gan R package (version 2.4.3) [64]. PCoA was evaluated on the
Bray-Curtis dissimilarity values using the pcoa function in the
ape R package (version 4.1) [65]. Hierarchical clustering was com-
puted using the Manhattan distance between species relative
abundances and the pvclust function in the pvclust R package
(version 2.0) [66]. A total of 10,000 bootstrap interactions were
used to evaluate the P values supporting each cluster.

Availability of source code
� Project name: YAMP
� Project home page: https://github.com/alesssia/YAMP
� Operating system(s): UNIX-like systems, support for Amazon

AWS Cloud
� Programming language: Bash, Nextflow
� Other requirements: Java, Docker/Singularity
� License: GNU GPL v3
� Any restrictions to use by non-academics: None
� Documentation and tutorials: https://github.com/alesssia/

YAMP/wiki
� Scicrunch.org RRID:SCR 016236

Availability of supporting data

Snapshots of the source code are available from the GigaScience
GigaDB repository [67]. The Docker/Singularity image can be
downloaded and installed from DockerHub [68]. The databases
queried by YAMP during the simulation and real-world case
studies are available from Zenodo [63].
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GO: Gene Ontology; HMP: Human Microbiome Project; HPC: high-
performance computing; KEEG: Kyoto Encyclopedia of Genes
and Genomes; PCoA: principal coordinate analysis; PCR: poly-
merase chain reaction; QC: quality control; RMSE: root-mean-
square error.
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